Imaging with the VLTI
Adaptive Optics

TNO TPD

Contents

- Introduction: AO & interferometry
- Conventional AO system performance
- MCAO performance
- MAD
- Interferometry
- AO development strategy
- Conclusions

AO schematic Problem: turbulence of the atmosphere

Conventional AO performance

• Key parameter: Strehl ratio

- Error contributions:
 - DM actuator diameter
 - detector S/N
 - anisoplanatism
 - wind
 - non common-path errors
- Actuator diameter relative to seeing cell size r0
 - r0 is 10 cm for visible, > 1 meter for IR
- Detector signal
 - star magnitude
- Anisoplanatism and detector signal limit sky coverage

TPD Adaptive Optics Breadboard

Multi Conjugate AO configuration

Multi Conjugate AO performance

- Key parameter: Strehl ratio
- Error contributions:
 - DM actuator diameter
 - detector S/N +++
 - residual anisoplanatism + + +
 - wind + + + (model based control)
 - non common-path errors
- Strehl ratio improvement over larger FoV
- Further improvement by Laser Guide Star (LGS)

MAD Bench optical design

Interferometry configuration

Interferometer performance

- Key parameter: fringe visibility
- Error contributions:
 - Strehl ratio telescope A, Strehl ratio telescope B
 - piston: optical path difference (OPD)
 - fringe sensor S/N
 - outer scale of turbulence
 - residual OPD metrology error & OPD caused by DM

• Fringe sensor signal

- star magnitude
- limits sky coverage

Phase reference interferometry schematic

Phase Reference Interferometer performance

- Key parameter: fringe visibility
- Error contributions:
 - Strehl ratio telescope A, Strehl ratio telescope B
 - piston: optical path difference (OPD)
 - fringe sensor S/N + + +
 - OPD anisoplanatism
 - outer scale of turbulence
 - residual (OPD) metrology error & OPD caused by DM
- Improved sky coverage

VLTI Imaging schematic

Strategy for AO (ESO N. Hubin, jan 2000)

AO concept	Physical limitations	Performance @ SR=20%
2001 NGS	NGS flux	Sky coverage: 5% in IR
AO for 8 m telescopes	anisoplanatism	Corrected FOV: 30''
		Diff.lim. in IR
2003 LGS	Cone effect, tilt	Sky coverage: 50% in IR
AO for 8m	NGS flux	Corrected FOV: 30''
	anisoplanatism	Diff.lim. in IR
2005 MCAO	NGS flux	Sky coverage: 30% in
2005 MCAO Tomography for 8m	NGS flux Residual anisoplanatism	Sky coverage: 30% in visible
2005 MCAO Tomography for 8m 2-3 DMs	NGS flux Residual anisoplanatism	Sky coverage: 30% in visible Corrected FOV: 1' vis.
2005 MCAO Tomography for 8m 2-3 DMs	NGS flux Residual anisoplanatism	Sky coverage: 30% in visible Corrected FOV: 1' vis. Diff.lim. in vis. (0.012'')
2005 MCAO Tomography for 8m 2-3 DMs 20?? OWL	NGS flux Residual anisoplanatism Residual anisoplanatism	Sky coverage: 30% in visible Corrected FOV: 1' vis. Diff.lim. in vis. (0.012'') Sky coverage: 80% vis.
 2005 MCAO Tomography for 8m 2-3 DMs 20?? OWL Multi LGS & Tomography 	NGS flux Residual anisoplanatism Residual anisoplanatism	Sky coverage: 30% in visible Corrected FOV: 1' vis. Diff.lim. in vis. (0.012'') Sky coverage: 80% vis. Corrected FOV: 1' vis.
2005 MCAO Tomography for 8m 2-3 DMs 20?? OWL Multi LGS & Tomography for 100m, 2-3 DMs	NGS flux Residual anisoplanatism Residual anisoplanatism	Sky coverage: 30% in visible Corrected FOV: 1' vis. Diff.lim. in vis. (0.012'') Sky coverage: 80% vis. Corrected FOV: 1' vis. Diff.lim. in vis. (0.001'')

Overwhelmingly Large Telescope (OWL)

Figure 8. Telescope pointing at 60° from zenith, layout of

- Large Field of View
- Collecting Power = 40 * VLTI
- MCAO with 500.000 elements

E-m diffraction-limited Pixel 0.008 arc secs Exposure -190 seconds (Enlarged 5a)

HST - Pixel 0.02 arc secs Exposure -1600 seconds (Enlarged 10x)

VLT - Seeing 0.20 arc secs Pixel 0.045 arc secs (Test Camera) Exposure -625 seconds (Enlarged 10s)

> OWL diffraction-limited Pixel 0.0005 arc secs Exposure ~1 second

Conclusions

- Enormous gain in quality of observations is feasible
- Challenges:
 - MCAO/Interferometer system complexity
 - Data-processing
 - Subsystem development:
 - Deformable mirrors
 - Wavefront sensors & detectors
 - Control algorithms
 - Phase reference subsystems (PRIMA)