Wide Field Imaging

Delft University of Technology/Knowledge Centre Aperture Synthesis
Optics Research Group
Iciar Montilla
11/10/2001

Contents

-Introduction
-Differential Optical Path Difference ($\triangle \mathrm{OPD}$) :
-Field-angle dependence
-Equalization
-Experimental setup
-Application to the Very Large Telescope Interferometer (VLTI)
-Conclusions
-Future work

Introduction

- Aperture Synthesis technique first developed for radio astronomy (one resolved point per antenna)
- Optical telescopes have the advantage of a wide Field Of View (FOV)
-It is useful to keep this advantage for observation of extended or multiple objects

Telescopes A1 and A2 collect the light coming from a distant stellar source in the direction s. But the light "arrives" at the telescopes with a time difference

$$
\tau=\frac{\vec{B} \cdot \vec{s}}{c}
$$

To detect interference fringes we have to make $\tau \cdot c<L_{c}$ where L_{c} is the coherent length and $\tau * \mathrm{c}$ is called the Optical Path Difference (OPD). This OPD is corrected using a delay line. When OPD $>\mathrm{L}_{\mathrm{c}}$ no interference : Narrow coherent field

TUDelft

Dual-feed technique

Separates the fields of two stars and sends each wavefront to a different delay line.
Useful for fringe acquisition/tracking on a nearby strong source.
But separating the wavefronts we lose light.

New approach

\vec{B} baseline vector
\vec{s} pointing vector
$O P D=\vec{B} \cdot \vec{s}$

$$
\Delta O P D=\vec{B} \cdot\left(\vec{s}^{\prime}-\vec{s}\right)
$$

$O P D^{\prime}=\vec{B} \cdot \vec{s}^{\prime}$
If we compensate the $\triangle \mathrm{OPD}$ as function of the field angle:
Wide field of view

Field-Angle Dependence of the $\Delta \mathbf{O P D}$

(E,A) pointing vector coordinates
(B_{x}, B_{y}) baseline coordinates
($\mathrm{E}+\delta \mathrm{E}, \mathrm{A}+\delta \mathrm{A}$) off-axis vector coordinates
$\Delta O P D=B_{x}[\delta E \sin E \sin \mathrm{~A}-\delta \mathrm{A} \operatorname{cosEcos} \mathrm{A}]-B_{y}[\delta \mathrm{Esin} \mathrm{E} \cos \mathrm{A}+\delta \mathrm{A} \operatorname{cosEsin} \mathrm{A}]$

With $\mathrm{B} \sim 10^{2} \mathrm{~m}$ the second order terms are negligible for $\mathrm{a} \sim 10$ arcmin field

$\Delta \mathrm{OPD}$ function is a tilted plane

Equalization of the $\Delta \mathrm{OPD}$

Focal plane

Staircase Mirror working principle

requirements:
-long focal depth
-small $\Delta \mathrm{OPD} / \mathrm{PSF}$ (Point Spread Function)

- large w/PSF

Experimental setup

TUDelft

Application to VLTI

Calculation of the step depth and rotation angle of the equalization mirror

Input:
-declination and right ascension of the stellar object
$\cdot \mathrm{u}, \mathrm{v}$ site coordinates of the telescopes
Output:
-staircase mirror shape with fixed width and adaptable depth and rotation angle as a function of Local Sidereal Time (LST) for object tracking.

VLTI parameters

VLTI optical parameters:
-entrance pupil 8,000 mm
-focal length $408,000 \mathrm{~mm}$
-field of view in Coudé focus 2 arcmin diameter
-scale 1.98 mm per arcsec on the sky
${ }^{-} \mathrm{L}=24^{\circ} 38^{\prime} \mathrm{S}$
-Central wavelength $\lambda=2.2 \mu \mathrm{~m}$
-Bandwidth $\Delta \lambda=0.2 \mu \mathrm{~m}$

- Mirror angle $\alpha=\pi / 4 \mathrm{rad}$

Δ OPD surface

$$
\begin{gathered}
\text { A (arcsec) } \\
\\
\\
\\
\\
\\
\\
1
\end{gathered}
$$

UT2 $(24,24)$ and UT4 $(112,8)$

Mirror shape

UT2 $(24,24)$ and UT4 $(112,8)$ $\mathrm{w} \approx 400 \mu \mathrm{~m}$ (0.2 arcsec) $\mathrm{d}_{\max }=30 \mu \mathrm{~m}$

Conclusions

-Wide FOV of several arcmin can be reached using this technique.
-Shape of the mirror changes with pointing direction. An actuated mirror is needed for earth-based interferometers.
-The w/PSF ratio for the Coudé focus on the VLTI is small (only 2 PSF's per step). It is necessary to decrease the PSF or increase the scale.

Future work

-Performing a simulation in order to study the effect of the steps on the detected visibility
-Setup implementation and "first fringes"

System parameters

$\Theta(\mathrm{rad})$	0.00029089	F4 (mm)	+800	s ($\mu \mathrm{m} / \mathrm{arcs}$)	32.46
D2 (mm)	20	F (mm)	6563.567	$\delta(\mu \mathrm{m})$	328
B (mm)	30	BFL (mm)	394.22	d ($\mu \mathrm{m}$)	1948
F2 (mm)	+1330	NA	$1.25 \mathrm{e}-3$	D3 (mm)	3.047
F2' (mm)	-100	$\mathbf{Z}_{\mathrm{f}}(\mathrm{mm})$	367.214	b (mm)	4.571
F2-F2' (mm)	1258.67	$\lambda_{0}(\mathrm{~nm})$	575	Θ^{\prime} (rad)	0.0019055
F2'-I (mm)	394.218	$\delta \lambda(\mathrm{nm})$	150	$\delta^{\prime}(\boldsymbol{\mu m})$	151
F2-I (mm)	1652.888	$\mathbf{L}_{\mathbf{c}}(\mu \mathrm{m})$	2.2	$\mathbf{d}^{\prime}(\mu \mathrm{m})$	1903
F3 (mm)	$+1000$	m	6.563		

Spot size vs. wavelength

TUDelft

Back focal length vs. wavelength

