Wide Field Imaging

Delft University of Technology/Knowledge Centre Aperture Synthesis Optics Research Group Iciar Montilla 11/10/2001

Contents

Introduction

•Differential Optical Path Difference (ΔOPD) :

- •Field-angle dependence
- •Equalization
- •Experimental setup
- •Application to the Very Large Telescope Interferometer (VLTI)
- •Conclusions
- •Future work

Introduction

Aperture Synthesis technique first developed for radio astronomy (one resolved point per antenna)
Optical telescopes have the advantage of a wide Field Of View (FOV)
It is useful to keep this advantage for observation of

extended or multiple objects

TUDelft

Telescopes A1 and A2 collect the light coming from a distant stellar source in the direction s. But the light "arrives" at the telescopes with a time difference

$$\tau = \frac{\vec{B} \cdot \vec{s}}{c}$$

To detect interference fringes we have to make $\tau \cdot c < L_c$

where L_c is the coherent length and $\tau * c$ is called the Optical Path Difference (OPD). This OPD is corrected using a delay line. When OPD > L_c no interference : Narrow coherent field

Dual-feed technique

Separates the fields of two stars and sends each wavefront to a different delay line. Useful for fringe acquisition/tracking on a nearby strong source.

But separating the wavefronts we lose light.

 $OPD' = \vec{B} \cdot \vec{s}'$

If we compensate the $\triangle OPD$ as function of the field angle: Wide field of view

Field-Angle Dependence of the $\triangle OPD$

(E, A) pointing vector coordinates (B_x, B_y) baseline coordinates (E + δ E, A + δ A) off-axis vector coordinates

 $\Delta OPD = B_x \left[\delta \text{EsinEsinA} - \delta \text{AcosEcosA} \right] - B_y \left[\delta \text{EsinEcosA} + \delta \text{AcosEsinA} \right]$

With $B \sim 10^2$ m the second order terms are negligible for a ~ 10 arcmin field

Equalization of the $\triangle OPD$

Focal plane

Experimental setup

Application to VLTI

Calculation of the step depth and rotation angle of the equalization mirror

Input:

declination and right ascension of the stellar object
u,v site coordinates of the telescopes

Output:

•staircase mirror shape with fixed width and adaptable depth and rotation angle as a function of Local Sidereal Time (LST) for object tracking.

VLTI parameters

VLTI optical parameters:

- •entrance pupil 8,000 mm
- •focal length 408,000 mm
- •field of view in Coudé focus 2 arcmin diameter
- •scale 1.98 mm per arcsec on the sky
- •L=24° 38' S
- •Central wavelength $\lambda = 2.2 \ \mu m$
- •Bandwidth $\Delta \lambda = 0.2 \ \mu m$
- •Mirror angle $\alpha = \pi/4$ rad

$\triangle OPD$ surface 0.2 $\Delta OPD^*sin(\alpha)$ A (arcsec) 0.15 0.1 2 0.05 Baseline projection on entrance pupil **0**--0.05 E (arcsec) $2^{\overline{2}}$ 2.5 UT2 (24,24) and UT4(112,8) хЗ 3.5

3

У

2.5

4

2

Mirror shape

UT2 (24,24) and UT4(112,8) w≈ 400 μ m (0.2 arcsec) d_{max}=30 μ m

Conclusions

•Wide FOV of several arcmin can be reached using this technique.

Shape of the mirror changes with pointing direction. An actuated mirror is needed for earth-based interferometers.
The w/PSF ratio for the Coudé focus on the VLTI is small (only 2 PSF's per step). It is necessary to decrease the PSF or increase the scale.

Future work

Performing a simulation in order to study the effect of the steps on the detected visibilitySetup implementation and "first fringes"

System parameters

Θ (rad)	0.00029089	F4 (mm)	+800	s (µm/arcs)	32.46
D2 (mm)	20	F (mm)	6563.567	δ (μm)	328
B (mm)	30	BFL (mm)	394.22	d (µm)	1948
F2 (mm)	+1330	NA	1.25e-3	D3 (mm)	3.047
F2' (mm)	-100	Z_{f} (mm)	367.214	b (mm)	4.571
F2-F2' (mm)	1258.67	$\lambda_0 (nm)$	575	Θ' (rad)	0.0019055
F2'-I (mm)	394.218	δλ (nm)	150	δ' (μm)	151
F2 –I (mm)	1652.888	L_{c} (µm)	2.2	d' (µm)	1903
F3 (mm)	+1000	m	6.563		

Spot size vs. wavelength

Back focal length vs. wavelength

larmery AND / Liguration