# Cophasing and beam combination

ROS

**RS** Darwin

# L.A. D'Arcio SRON National Institute for Space Research

## **IRSI**/Darwin



ESA's first space interferometry mission:

find/characterize earthlike planets, AND perform high resolution imaging

• six 1.5 m telescopes

 baseline range 50 m -> 500 m (up to 4 mas resolution at 10 μm)

science channel: 6 to 20+ micron

- intrasatellite metrology (~ 100 μm)
- mN and mN FEEP thrusters
- passive cooling < 40 K</p>



SRON is active in IRSI/DARWIN since early 2000. Focus on the **imaging** component, together with Leiden Observatory

- \* Critical review of Alcatel imaging study
- \* PhD student from november 2001 working on:
  - \* end-to-end modelling ( $\tau_0$  on axial/science channels)
  - \* hardware validation (wide-field beam combiner within the TPD/TUD Dutch Testbed Interferometer)
- SMART2 (DARWIN precursor, fringe tracking from star?)



Critical review of Alcatel imaging study





Blind tracking of external OPD evolution  $OPD_X = B \theta$ 

- Compensate blindly the evolution of  $OPD_X$  with DDL.
  - Tracking requirement: < 600 nm OPD change within one coherence time  $T_{CI}$  (~200 s)

Derived measurement requirements:

- \* Star separation, to  $d\theta < 0.12''$  (~ PSF/16)
- \* baseline rates, to  $dv < 7 \mu m/s$

(assuming a measurement rate of  $1/T_{cl}$ )





dV = error in knowledge baseline rate dth = error in knowledge of  $\theta$ 





Length:laser metrology0.1 mm rms @ 1 Hz OK!Off-plane:APS sensor5 mm/ 25 μm @ 10 Hz OK!Tangential:RF goniometryB tan(0.1°) @ 10 Hz no..complement with APS sensor5 mm/ 25 μm @ 10 Hz OK!



### Beam combination

**Current design:** use nulling BC (without  $\pi$  phase shifter) for both ref/science beams. 'Kind-of' all-in-one pupil-plane BC.



 $GAC_{out} (1 \text{ of } 3)$   $GAC_{out} = \frac{1}{2} A_1 + \frac{1}{6} A_4 + \frac{1}{3} A_2 + \frac{1}{3} A_6$ 



#### pros • minimizes added complexity for imaging

- **cons** small field of view  $\theta$  = 0.3", dOPD/d $\theta$  ~ 2.5 mm/arcsec ( $\lambda$  = 10  $\mu$ m, R = 300, dV/V<0.1)
  - 10 fringe outputs, unbalanced amplitudes
  - temporal modulation imposes short integration times
  - temporal modulation is chromatic

#### Alternative approach:

- separate BC spacecraft for imaging (increases redundancy)
- develop dedicated BC's for OPD tracking and science
- if possible, implement achromatic modulation



#### Reference (tracking) beam combiner

- Optical bandwidth : 1-2.3 μm
- Only five shortest B's needed
- Radial laser metrology ensures coherencing to 100  $\mu m$  rms

#### A possible approach:

Partial pairwise scheme with 180° achromatic spatial modulation (no moving parts)



Science beam combiner:

- Optical bandwidth : 6-20+ μm
- Visibility measurements on all fifteen baselines
- wide field. Goal: 3xPSF's cophased to  $\lambda/4$  @ 6  $\mu m$

A reasonably cophased field of view can be only achieved with an image-plane beam combiner with homothetic pupil mapping



#### Main requirements

- Pupil positioning accuracy: 36 μm rms over ~0.5 m stroke
- Calibration of imaging parameters

image matching reqs.:  $dM/M < 10^{-2}$ ,  $d\phi < 2$  degrees pupil mapping reqs.:  $dM/M < 1.8 \times 10^{-5}$ ,  $d\phi < 3.6''$ 

- Optics quality: 450 nm rms in the field for whole optical train
- Focal plane: ~2k x 2k detector, image zooming

#### Main challenges:

- accurate pupil positioning at cryogenic temperatures
- spectrometer implementation: FTS?
- cryogenic active optics (fine-tuning optical trains, zooming)



## Conclusions

#### Phase referencing

- need for extra array metrology (duplicate existing subsystem)
- validate multiplexing concept

Beam combiner:

- Define focal plane implementation
- Initiate technical studies for positioning and active optics devices
- Deepen understanding of optics/alignment/calibration requirements, iterate on fov goal





