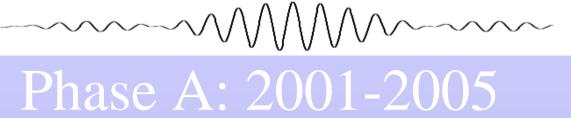
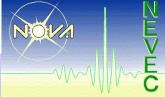


 $\mathcal{M}\mathcal{M}\mathcal{M}$

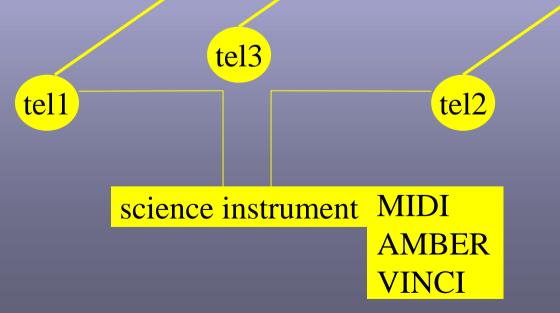
Next generations VLTI instruments

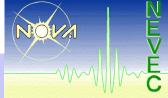

Eric J. Bakker Leiden Observatory/NEVEC



NOVA-ESO VLTI Expertise Center

Leiden, 11 October, 2001

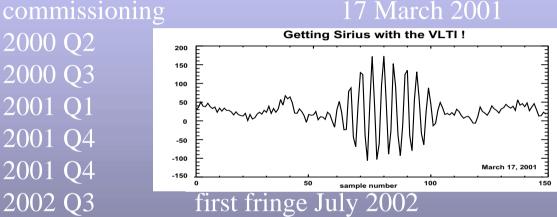




2/3 way-beam combination

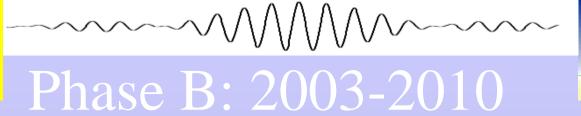
- 2/3 telescopes feeding coherent light to an infrared instrument
- Fringe tracking on science source

Dutch Joint Aperture Synthesis. Team DJAST



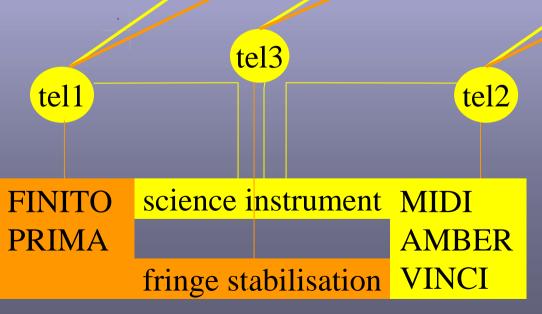
Phase A instruments/facilities

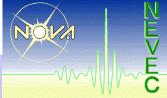
- **Delay lines 1&2**
- **Siderostats**
- VINCI
- **Beamcompressors**
- **Delay line 3**
- MIDI
- AT1 and AT2 \bullet
- **AO on UT 2&4**
- **AMBER**
- AT3
- **AO on UT 1&4**


2000 Q2 2000 Q3 2001 Q1 2001 Q4 2001 Q4 2002 Q3 2003 Q2 2003 Q3 2003 Q3 2003 Q4 2004 Q3

17 March 2001

MACAO first fringe June 2003



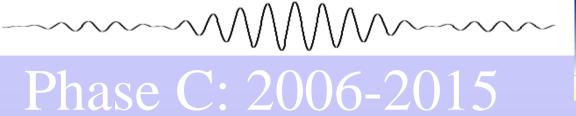

2/3-way beam phase referencing

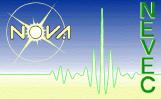
• A bright reference source can be used for phase referencing allowing longer integration on the science instrument and assessing fainter objects

Leiden, 11 October, 2001

Dutch Joint Aperture Synthesis Team DJAST

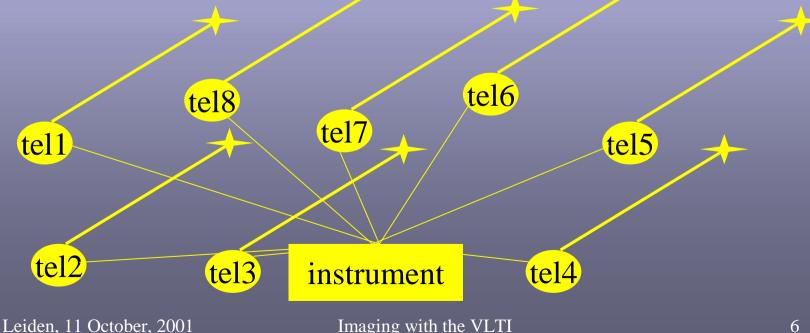
Phase B instruments/facilities

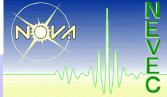

- FINITO
- Delay lines (N=4,5,6)
- PRIMA
- Dedicated Astrometry
- GENIE
- PRIMA
- MIDI II (20 micron) new
- MIDI B (3-beams) new
- AMBER VIS^{new}
- Differential Interferometer^{new}
- Achromatic Coronograph^{new}
- Phase Mask Coronograph^{new}
 new: not yet planned


commissioning2002 Q3 first fringe June 20022003 Q4200520052005Glindemann et al. [3]2006Fridlund et al. [4]

- 2007 full performance
- 2005++Leinert et al. [3]2005++Leinert et al. [3]2005++Stee et al. [3]2005++Vannier et al. [3]2005++Rabbia et al. [3]2005++Rouan et al. [3]

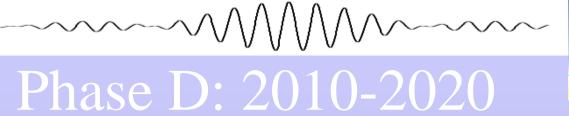
Leiden, 11 October, 2001

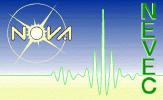




multi-beam closure phase

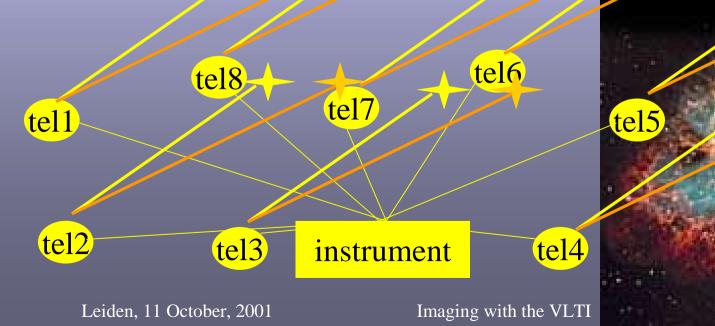
- Applying closure phase on up to 8-way beam combination to allow model independent image reconstruction
- Only suitable for bright sources, limited field of view

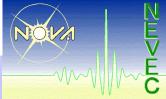



Phase C instruments/facilities

- more Auxiliary Telescopes (N=4-8) ^{new}
- more Delay lines (N=7,8)
- Integrated optics beam combiner (N=8)***
- 10X10 pixel imager, closure phase
- Multi beam advanced PRIMA (N=8) new
- Integral field spectrograph^{new}
 new: not yet planned

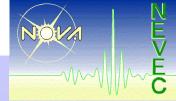
commissioning 2006⁺⁺ 2006⁺⁺ 2006⁺⁺ Malbet et al. [3] 2006⁺⁺ Haniff et al. [3] 2006⁺⁺ 2006⁺⁺ Petrov et al. [3]





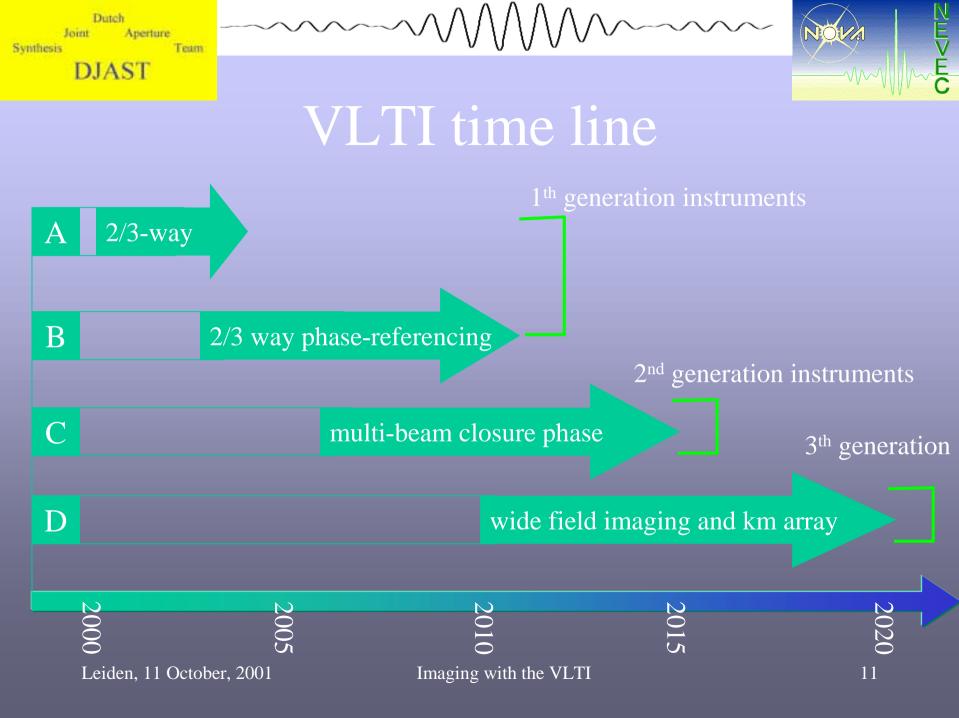
wide-field and km baselines

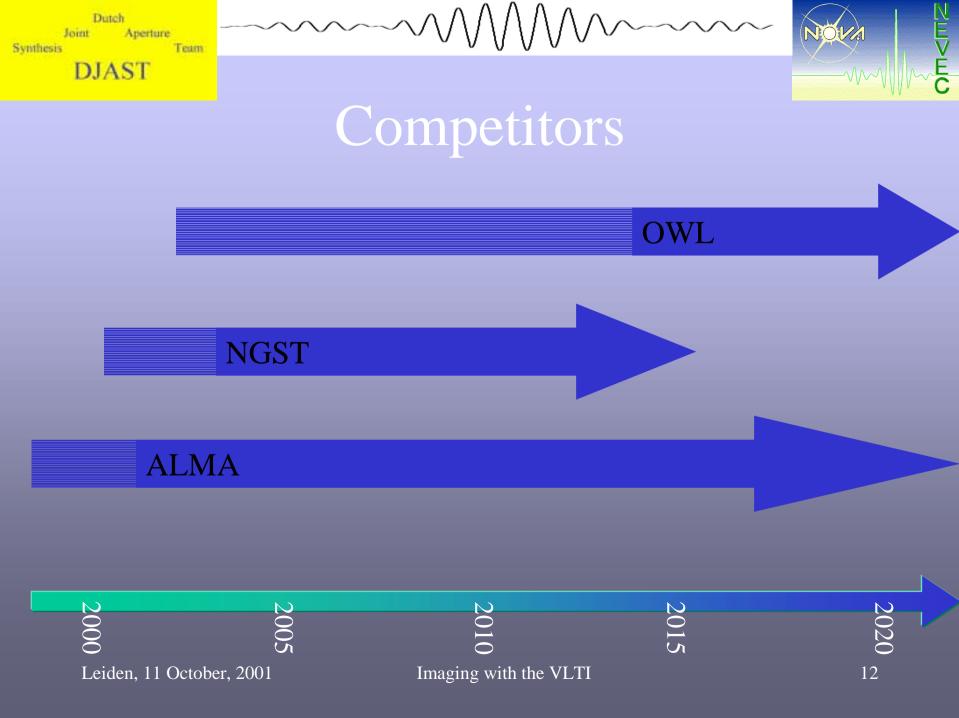
- Applying model independent imaging over a large field of view
- Kilometer baselines



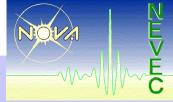
Phase D instruments/facilities

- Wide field imager (homothetic mapper)^{new}
- km baseline^{ne}
- Laser guide stars (FOV~2 arcmin)
- Overwhelmingly Large Array (OLA)^{new} new: not yet planned
- commissioning
 2010⁺⁺ Le Poole et al.
 2010⁺⁺ Glindemann et al. [3]
 2010⁺⁺ Glindemann et al. [3]
 2010⁺⁺ Glindemann et al. [3]





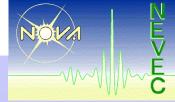
VLTI roadmap


	<mark>2/3-way beam combination</mark> K<14 at 2 μm, N<8 at 10 μm (UT)	
Phase B:	2-3-way phase referencing K<20 at 2 μm, N<18 at 10 μm (UT)	2003 - 2010
Phase C:	multi-baseline closure phases 4- to 8-way beam combination expansion to visible with Adaptive Optics	2006 – 2015
Phase D:	wide field imaging and km baselines Homothetic mapping and kilometer arrays	2010 - 2020

Dates are estimates made by EJB, phase definition after Paresce 2001 [7], science drivers after Paresce 1996 [6], other details from Percheron et al.[1] and Léna and Quirrenbach [2]

1th generation 1999⁺⁺

1th generation VLTI instruments (Phase A & B)


- phase A&B instruments
- R&D phase 1996-1999
- Construction 1999⁺⁺

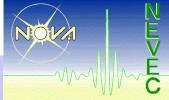
All instruments currently planned and being or will be build

- VINCI
- MIDI
- FINITO
- AMBER
- GENIE
- PRIMA

Leiden, 11 October, 2001

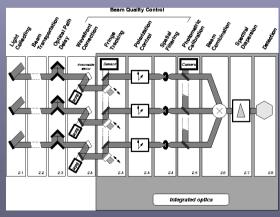
2nd generation 2007⁺⁺

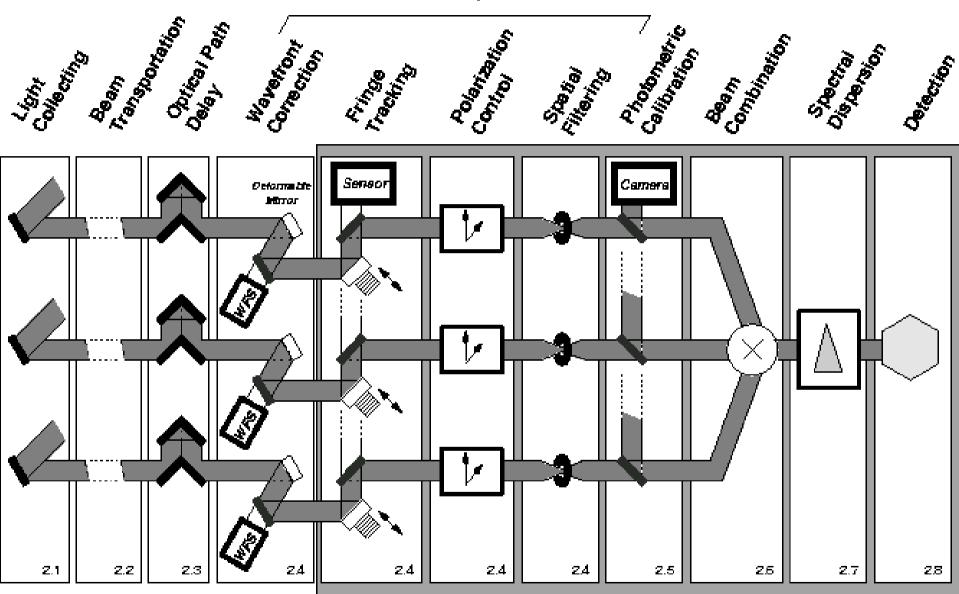
2nd generation VLTI instruments (ESO long range plan [4])


- phase C instruments
- R&D phase 2003-2006
- Construction 2007⁺⁺

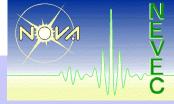
Two instruments planned by ESO (design 2004 + design 2006)1. 6-8 way beam combiner (more DLs and more ATs)2. dual-feed for all telescope (advanced PRIMA)

Other instruments anticipated (but not in ESO's long range plan)
3. Super Tunnel Junction detector
4. Advanced MIDI (N>2, Q band)
5. Advanced AMBER (Visible)


Leiden, 11 October, 2001


1. 6-8-way beam combiner

- Integrated optics on planar substrate (Malbet et al, 1999 [5]), possible in combination with fibres
- Technology available from telecom industry
- Does not require bulk optics, but allows complex function on small substrate
- Fabrication through ion-exchange (Na+ ion), or etching layers

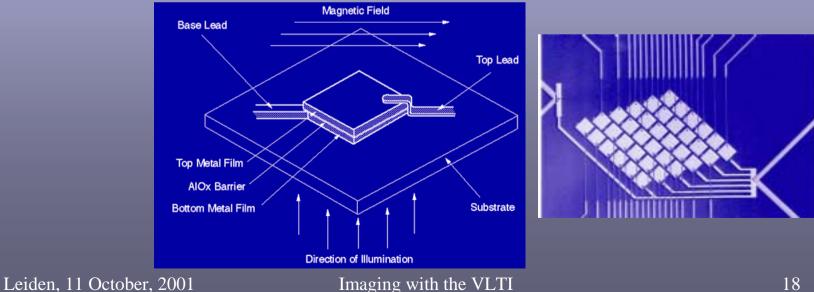

Single-mode interferometer

Beam Quality Control

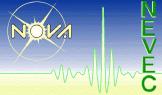
Integrated optics



2. Advanced PRIMA


- Upgrade of current PRIMA design to pair-wise combination of light from up to eight telescope
- Four sub-systems:
 - Star separator (2" beams, separated 1')
 - Metrology (15 nm over 30 minutes)
 - Differential Delay line (5 nm)
 - Fringe Sensor Unit
- K-band (2.0-2.4 μ m), later H-band added (1.6-1.8 μ m)
- 1th phase: 2002-2005:
- 2^{nd} phase: 2004-2007:
- 3th phase: 2006-2009:
- Advanced PRIMA 2007⁺⁺

- 50 mas astrometry on 2 ATs
- 10 mas astrometry on 2 ATs and 2 UTs
- improved performance

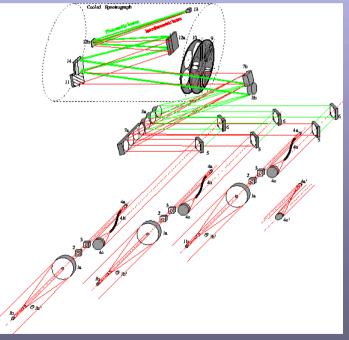

3. STJ

- Super Tunnel Junction Detector (Rando et al. 2000 [8])
- Photon counting detector (115 nm $< \lambda < 2 \mu m$ (thermal background))
- Energy resolution of 5-50 nm ($R \sim 5$)
- Can be used as Fringe Sensor Unit or be integrated in IO Beam combiner

4. Advanced MIDI

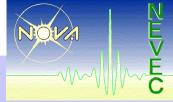
- Q-band (20 μ m) availability
- Multi-beam capabilities to measure closure phases

Leiden, 11 October, 2001



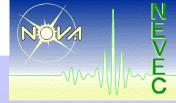
5. Advanced AMBER

- Near IR Instrument (1.0–2.5 µm)
- Limiting Magnitude K ~ 11–19 (UT), R ~ 10000
- Three beam combination
- Closure phase


Advanced AMBER: Operating in the visible

Optical layout AMBER 20

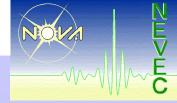
Leiden, 11 October, 2001

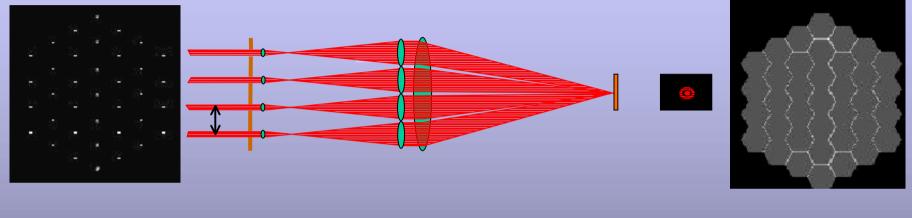


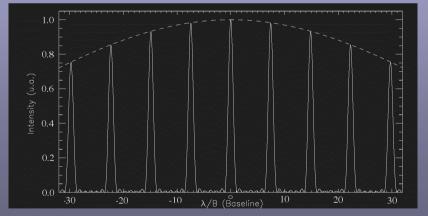
3th generation 2010⁺⁺

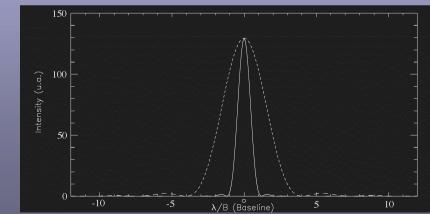
3th generation VLTI instruments

- phase D instruments
- R&D phase 2005-2010
- Construction 2010⁺⁺
- 1. Enlarged field of view
- 2. Extend wavelength coverage
- 3. Laser guide stars
- 4. Kilometre baselines

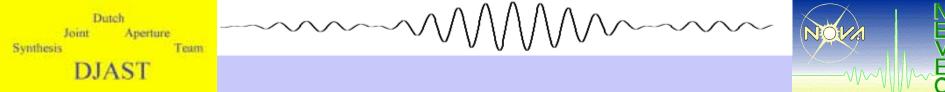



1. Wide-field imaging


- Homothetic mapping of entrance pupil to exit pupil
- By maintaining the pupil configuration (in 3-D) the array of telescopes acts as a large monolithic telescopes with a small filling factor
- Would require advanced metrology, fast and accurate fringe tracking, and large detector arrays
 - Learn from the Dutch Testbed Interferometer (TNO/TPD)
- Among the alternatives are
 - mosaic procedure (WITT testbed, NASA Goddard)
 - step mirror (Montilla, Univ. Delft)

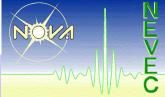


Wide-field imaging



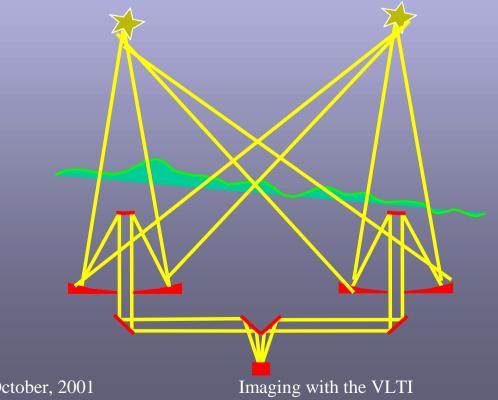
From Arnold, 2001 [9]

Leiden, 11 October, 2001

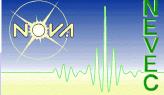


2. Extended wavelength coverage

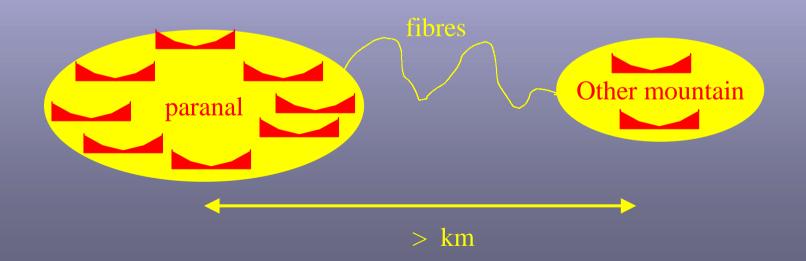
- The H α line (6563 Ångstrom) is an important diagnostic in astronomy
- Access to $H\alpha$ allows to study disks, accretion, ejection processes for galactic and extra-galactic science
- H α access would required adaptive optics to operate 600 nm (0.6 μ m) on both the UTs and ATs
- It also would require the VLTI to be operating at this effective wavelength, instead of 2 μ m $< \lambda < 10 \mu$ m



3. Laser guide star

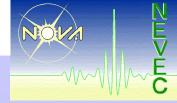

- Wide field diffraction limited imaging
- However there is a discussion among scientists whether this is feasible

Leiden, 11 October, 2001



4. Kilometre array

- Super resolution to compete with Over Welmingly Large Telescope (OWL)
- Transportation of light using optical fibres



Conclusions

- There are ample of opportunities to participate in the VLTI developments
- This is the time to start making preliminary designs of 2nd generation VLTI instruments such that if time comes alternative designs and systems can be assessed
- 2nd generation instruments will be designed in 2003-2006, and be build in 2007 and beyond
- 3th generation instruments will be designed in 2005-2010, and be build in 2010 and beyond
- Everybody is invited to participate in this process, strong need for
 - Model computations
 - Experiment on optical benches in laboratory
 - Careful study of alternative approaches proposed in other countries
- Suggestions on how to proceed after this workshop ?

References

- [1] "Space and Ground Based Optical & Infrared Interferometry", 2000, Eds. I. Percheron, I. Montilla, L. D'Arcio
- [2] "Interferometry in Optical Astronomy", 2000, SPIE Vol. 4006, Eds. P.J. Léna, A. Quirrenbach
- [3] "Science drivers for ESO future VLT/VLTI instruments", 2001, Eds. G. Monnet
- [4] ESO Long Range Plan 2001-2006, Issue 2.0
- [5] Malbet et al, 1999, A&AS 138, 135
- [6] Paresce, 1996, "Science with the VLT Interferometer"
- [7] Paresce, 2001, messenger 104
- [8] Rando et al., 2000, Review of Scientific Instruments, 71, 4582
- [9] Arnold, 2001, "Science case for OWL", OPTICON workshop, Leiden