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Abstract

A long-baseline optical stellar interferometer is capable of
performing superior measurements of optical correlation (or “fringe
visibility”) in much shorter observation times if the instantaneous
atmospheric delay τ(t), can be accurately tracked to well within an
optical wavelength. This permits coherent integration of the
optical correlation. Additionally, this mode of data acquisition
permits the extraction of object phase (even when only using a two-
element interferometer) and precise astrometry, advantages not
realized using incoherently averaged interferometry.

The conventional approach to “fringe tracking” involves a
control system that servos a rapidly responding path-length
compensator in real-time. At marginal signal levels, the
reliability of such a real-time delay-tracking system suffers.
Precise delay-tracking can be achieved at somewhat lower signal
levels by employing an off-line delay-tracking system, in which the
raw data measured by the interferometer is stored for subsequent
analysis. Then it is possible to estimate the delay error at time
t using raw data collected both before and after time t, resulting
in a superior estimate.

As opposed to point estimation procedures based upon the
estimation of τ at a point in time, the optimum estimation of τ is
based upon the comparison of all possible functions, τ(t), over a
time period. Such a path estimation procedure fully incorporates
the a priori statistics of the atmospheric delay process, given by
the familiar model of D. L. Fried [1], or more generally as a
Gaussian colored noise process with a specified spectral density.
The a posteriori probability density of any τ(t) function can then
be determined, using Bayes’ theorem, as a combination of the
a priori probability of such a function occurring, and the
likelihood of such a τ(t) function having produced the sequence of
photons that had been detected.

Solutions of τ(t) are found using an iterative procedure to
maximize that a posteriori probability. However there will be more
than one local maximum of a posteriori probability. At lower
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signal-to-noise ratios it becomes increasingly difficult to
differentiate among these multiple solutions, and the resultant
estimate contains ambiguities. However by properly evaluating the
array of solutions, sufficient information can be retained for the
purpose of integrating the measurement of correlation. Very
acceptable results are obtained at signal-to-noise ratios as low as
3.0. For an unresolved object (|V | = 1), using low-noise photon
counting in the visible, a signal-to-noise ratio of 3 corresponds
to around 500–1000 detected photons per second, assuming good
seeing conditions. At that signal-to-noise ratio, the r.m.s.
estimation error of the correctly identified solution is .7
radians.
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Introduction

The concept of measuring stellar diameters by interfering
starlight received at two separate points on earth was first
proposed by Fizeau around 1868. However it was A. A. Michelson who
first implemented an optical interferometer capable of actually
resolving the disk of a star in 1920.1 Using the frame and optics
of the Mount Wilson reflector augmented by a system of mirrors,
Michelson was able to produce a fringe pattern formed by light
received from a star at a baseline of up to 6 meters. Through
visual detection of the resultant interference pattern, viewed
through a spectral filter, he was able to adjust the length of the
baseline of the interferometer to the point at which fringe
visibility was reduce to zero. Thus, finding the position of the
first null of the zero-th order Bessel function describing the
Fourier transform of the star’s disk, Michelson became the first
person to actually measure the (angular) diameters of Betelgeuse
and Antares!

A larger instrument of the same type built around 1930 by F.
G. Pease was a technical failure. The field of optical stellar
interferometry subsequently languished. It was not until the
1970’s that interest was revived, at first by the work of A.
Labeyrie who pioneered the filed of speckle interferometry. It was
also Labeyrie who, in 1974, it is believed, performed the first
demonstration of optical amplitude interference between starlight
received by separate telescopes on independent mounts [2].2 The

1Some twenty years earlier, Michelson had already employed
interferometry for astronomical measurements. Using interference
produced by sub-apertures of a smaller telescope, he had performed
accurate measurements of the diameters of the 4 larger satellites
of Jupiter. Although the disks of these objects, unlike any star,
were visible through an eyepiece (their diameters are on the order
of one second of arc), Michelson’s determinations of their
diameters using interferometry were superior to any available
estimation technique based on direct imaging.

2Also in 1974, C. Townes successfully measured interference of
infrared starlight at 10 µm using heterodyne detection using a CO2
laser as a local oscillator. The measurement of correlation was
identical to that of radio-astronomy. Although a great
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availability of improved technical apparatus was undoubtedly the
leading factor enabling the revival of the field. This certainly
included both the development of optical detectors (Labeyrie used
an image intensifier feeding a television camera), and modern
electronics and information storage and processing technology.

Concurrent developments in related fields were also
responsible for encouraging work in optical stellar interferometry.
In the 1950’s Hanbury Brown had invented the intensity
interferometer and constructed a practical instrument which was
successful in measuring the diameters of several bright stars.
Hanbury Brown, himself appreciating the limitations of the
intensity interferometer, became an early advocate for the
development of a modern rendition of Michelson’s stellar
interferometer.

Another important influence was the rapid introduction of
interferometric techniques in the burgeoning field of Radio

Astronomy. Using antennas whose individual spatial resolution was
very poor compared to optical telescopes, the radio astronomers
had, through interferometry, achieved image resolutions comparable
to (and ultimately, using VLBI, exceeding) that of optical
telescopes, The previous and concurrent development of aperture
synthesis RADAR also deserves mention in this context.

Finally, developments in the area of control systems and
interest in adaptive optics, and research in the optical effects of
atmospheric turbulence especially by D. L. Fried [1], propelled
interest in optical stellar interferometry and the implementation
of “fringe-tracking” (or “delay-tracking”) systems essential to
many configurations of an optical stellar interferometer.

For various reasons, the long-baseline optical
interferometers which have since been demonstrated have not

2accomplishment, his apparatus has little in common with
optical/infrared interferometry using optical correlation produced
by interfering the optical signals with a photomixer, and is thus
only remotely related to the subject of the present work.
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achieved scientific results comparable to those achieved by radio
interferometry. It is fair to say that long-baseline optical
interferometers built to date are better described as experimental
rather than practical instruments. Among the technical challenges
facing optical interferometry, not similarly encountered by radio
interferometers, is overcoming atmospheric delay noise. This
problem will be addressed in the context of optimizing the
performance of a two-element long-baseline optical stellar
interferometer using low-noise photon counting detectors in a
configuration to be described.

The point of interferometric techniques is, of course, high
resolution imaging of astronomical objects, and precision
astrometry. Interferometers, we know, provide data points of the
Fourier transform of the image. In some interferometer
configurations the phase angle of the transform data is lost, and
without using an array of unrealistic complexity, full coverage of
the Fourier plane will not be achieved. Interferometers built to
date invariably report loss of optical correlation (or “fringe
visibility”) and require empirical calibration. Considering these
technical obstacles, the non-existence of high-resolution pictures
of astronomical objects derived through optical aperture synthesis
is not terribly surprising.

The problem of reconstructing image data from observation
points in the Fourier plane, suffering noise, calibration errors,
and sparse coverage, has been dealt with in theory and practice,
largely for the sake of radio interferometers. Therefore, the
reconstruction problem will not be addressed at all in the present
work. Among the problems facing the reconstruction algorithms are:
1) Lost phase angle information of the Fourier data; 2) Incomplete
Fourier plane coverage; 3) Noise in the data; and 4) Best applying
a priori assumptions concerning the expected image characteristics.
On the other hand, it might be noted that in many cases the full
recovery of an arbitrary image is not at all required. For
instance, Michelson set about to measure the angular diameter of a
single star based on the assumption of uniform brightness over a
disk. Determining a single parameter such as this, in principle
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requires but one significant data point in the Fourier plane. If
a limb-darkening model were assumed containing, say, two additional
unknown parameters, then at last 3 data points in the Fourier
plane (but preferably more) would be required to determine a fit
for this particular model. Likewise the observation of a binary
star system requires a minimum of 3 data points in order to
determine the position vector and brightness ratio. So in many
cases, it can be seen, sparse coverage of the Fourier plane is
quite acceptable; what becomes of paramount importance, however, is
the accurate determination of this data.

Realm of Optical Interferometry

Classification of a telescopic imaging system as
“interferometric” itself includes a wide variety of techniques. In
fact all optical imaging systems rely on the fundamental principle
of interferometry: that the resultant amplitude of an optical field
at a point is determined by the linear superposition of possible
paths of the light form a source. Thus, the classical formation of
a real image of a distant object by a convex lens can be explained
as the phased recombination of waves received over the aperture of
the lens, adding in phase at the point of the resultant real image
but suffering phase cancellation at other points. Detailed
calculation of the integrated amplitude received at points around
the center of the image yields the Fourier integral which predicts
the Airy disc pattern in the case of a circular aperture, or the
results of Fraunhoffer diffraction in general.

Equivalently, the action by a convex lens of performing a
Fourier transform on the incident optical field, describes the
response function of a refracting telescope relative to the
impinging optical field. Since a distant point-source produces a
spatially coherent field of constant amplitude and phase, the
resultant image is the Fourier transform of a constant, namely a
delta function. Taking into account the aperture function which
multiplies this constant field, we must convolve the delta function
with the Fourier transform of the aperture function which yields

4



the resultant Airy disc. Also multiplying the impinging field by
the random phase function of the atmosphere over a large aperture
determines a net image which is larger than the diffraction-limited
image size, and which is covered with a “speckled” pattern,
reflecting the Fourier transform of the stochastic phase function
introduced by the atmosphere.

While the formation of this image can be properly described as
a result of optical interference, classical techniques for
recording the image information reduce the instrument to an
incoherent system described by a point-spread function with an
extent inversely proportional to r0 (the Fried Parameter, see page
241) rather than the physical aperture of the instrument. This
occurs because the film being exposed (for instance) averages the
power of coherently formed images over a period of time during
which the random atmospheric phase function varies wildly.
Additionally, the film records the image over a broad range of
wavelengths, incoherently combining dissimilar images formed at
different wavelengths. On the other hand electronic recording of
short term images over time periods in which there is little change
in the random atmospheric phase function can retain samples of the
actual speckle patterns created as a result of amplitude
interference, reflecting the combined effects of the atmosphere and
the original object function. Hence, speckle interferometry.

It might be added that there are other high-speed correction
techniques for reducing the effect of atmospheric turbulence
affecting a large aperture telescope. Real-time hardware
correction techniques are classified under adaptive optics.
Alternatively, there are algorithms which extract improved image
information from a large number of electronically-recorded images,
each resulting from a short-term exposure. Because these
techniques are more based on geometric optics concepts, and are
incoherent relative to the treatment of different wavelengths, they
can not be properly described as “interferometric.” So although
the principle of interferometry describes the instantaneous
behavior of any optical system, the description of a technique as
“interferometric” implies that the apparatus is sensitive to, and
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able to process measurements based upon, unknown or fluctuating
phase shifts in portions of the incoming optical wave.

Having so defined the scope of interferometry, it is not
surprising that a multitude of optical configurations could be
included in this category. Let us narrow down the range of
configurations first by excluding from further discussion speckle
interferometry and related techniques distinguished by their
combining the light received over a single aperture, generally that
of the objective of an existing large telescope. The results to be
derived for the case of long-baseline interferometry are in fact
somewhat applicable to the case of short baselines, among
configurations in which light combination at any point on the
detector is a combination of exactly two areas of the aperture.
However a proper discussion of the attributes of such an instrument
would still require a distinct analysis not included in the scope
of the present work.

Long-baseline interferometers are designed to measure much
higher spatial frequencies than the above instruments, and pose
somewhat different technical challenges. Non-coherent imaging
(long-term exposure) attains a resolution on the order of 1 arc
second. Speckle interferometry and other single-aperture
interferometric instruments can hope to extend this resolution by
an order of magnitude or so. A long-baseline interferometer, on
the other hand, obtains a resolution at least two to three orders
of magnitude greater than the 1 arc second value but does not
measure spatial frequencies correspond to the intermediate
region of resolution. Such an instrument would generally be
observing objects having no apparent extend using conventional
imaging. The detector therefore need not image an interference
pattern at the plane of the image produced according to geometric
optics (image-plane interferometry) but can just as well produce an
interference pattern at the re-imaged aperture of the two
telescopes (pupil-plane interferometry). Then, instantaneous
spatial variations in the atmospheric path delay over the apertures
will cause shifts in the interference over the detector
surface.
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A special case of long-baseline interferometry occurs when the
size of the apertures is on the order of r0 or smaller. This
configuration is termed the Michelson Stellar Interferometer, and
is the model upon which the remainder of this work is based. As
the apertures size is thus decreased, the distinction between pupil-
plane and image-plane interferometry vanishes. The correlation
between the light received at two points becomes characterized by
a single complex number (at any instant in time), which may be
resolved as the magnitude of visibility (the sought parameter) with
a phase angle combining the atmospheric delay (the unwanted
parameter) and the object phase. Conceptually, we have created a
single-mode (spatial mode) system, in which each beam has an
unchanging transverse variation and can be represented as a single
field amplitude A(t) varying in time. Unlike a multi-mode system,
the two optical signals can now be transmitted by single-mode
optical fibers or other guided-wave technology, if this is desired.

A pupil-plane-interference long-baseline interferometer using
larger apertures can be viewed as the equivalent of several
Michelson stellar interferometers operating in parallel. Since
apertures separated by distances greater than r0 receive waves
which are essentially uncorrelated, but have random delay functions
that are partially correlated (especially when looking at the lower
frequency components), there is an advantage in delay-tracking
employing information from adjacent sub-apertures. However it can
be shown that the improvement is not terribly substantial in
comparison to the increased expense of a much larger objective and
complexity of the interferometer. Consequently the primary effect
of an N-fold increase in the aperture area (also requiring a
similar increase in the complexity of the subsequent optics,
detector and electronics) is an N-fold decrease in required
observation time to attain a given level of accuracy. Because
delay-tracking interferometry is already capable of achieving a
high net signal-to-noise ratio in a fairly short observation, this
advantage would appear to not be worth the expense. However, there
will be a certain range of magnitudes of objects for which the
mutual delay information between adjacent sub-apertures would
permit delay-tracking not achievable by an r0 sized instrument.
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This might justify the possible construction of such an instrument,
despite the additional expense. However in the following pages we
will restrict our analysis to the optimization of a Michelson
(single-mode) stellar interferometer.

Delay-Tracking in a Michelson Stellar Interferometer

There are two ways in which estimation and correction of the
random atmospheric differential delay function, is important to the
operation of an interferometer. Coarse delay-tracking is necessary
for interference to occur coherently with respect to wavelength
over the operating bandwidth of the interferometer (or of any
single detector, in a multi-spectral detection system). Secondly,
more precise delay-tracking to within a fraction of a wavelength
(or “fringe-tracking”) is required in order to coherently integrate
the measured correlation over periods of time in which the phase of
interference varies due to atmospheric turbulence. Let us briefly
look at each of these problems.

Coarse delay-tracking in an absolute requirement of the
observation of interference over a non-zero bandwidth. As is well
known, the permissible bandwidth of light to be successfully
interfered is inversely proportional to the differential delay
affecting two arms of an interferometer. For instance, the
familiar Michelson interferometer found in the physics classroom,
illuminated by a filtered mercury vapor lamp, requires equalization
of the two arms to within about a millimeter. This number reflects
the bandwidth of the spectral line of mercury. Likewise, we seek
to minimize delay discrepancies in the arms of an astronomical
interferometer in order to relax the bandwidth requirements, thus
increasing the total optical power that can be utilized.3 One

3One way of relaxing this requirement, to be discussed on page
38, is the spectral dispersion of the interfered light and
detection of different wavelengths in N separate channels. This is
the equivalent of operating N narrowband interferometers in
parallel. Since the bandwidth of each resulting system has been
reduced by a factor of N, the allowable delay errors has increased

8



special case of coarse delay-tracking is open loop delay
compensation, in which there is no tracking per se, but only
correction for the expected differential delay base solely on
geometric considerations. Clearly this entails a serious bandwidth
constraint which grows more severe as the interferometer’s baseline
is lengthened, increasing the magnitude of differential delay.

The second sense in which delay-tracking is discussed, refers
specifically to the estimation of delays to well within a

wavelength of light. Also refereed to as phase-tracking or fringe-
tracking, in this context the estimation of delay is specifically
for the sake of coherently averaging the measured optical
correlation. We will discuss both ways in which the estimation and
optical path length correction can occur in real-time (page 45),
and alternatively, in which the estimation process can occur
following the observation (page 48), providing information that can
then be used to implement coherent integration of the raw data in
which the phase of measured correlation was randomly changing. We
will also touch on incoherently averaged interferometry (page 42),
in which delay-tracking, in this sense, is not required. However
a delay-tracking instrument can achieve superior results using much
shorter observation times.

Survey of Current Delay-Tracking Implementations

The following survey is intended to put the discussion of
delay estimation and tracking in perspective in relation to
interferometers that are presently operational.

The Mark III interferometer on Mt. Wilson, operated by the
U.S. Naval Observatory, incorporates precision control of the
delay-line monitored by a laser interferometer with a positional
resolution of .01 µm [13]. Claimed open-loop delay errors are

3by the same factor. In any case, however, there remains an outer
limit to the allowable delay error beyond which the measurement of
interference is compromised.
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within 10 µm, allowing operation in the incoherently averaged mode
(page 42) for faint sources. However the primary mode of operation
(especially due to its ostensible mission as an astrometric
instrument), is in the real-time fringe-tracking mode, exactly as
described on page 45. Closed-loop tracking errors of .05 to .1 µm
are claimed. Although only medium-wide bandwidths are used in two
separate spectral channels (only one of which is involved in delay-
tracking), identification of and tracking on the central fringe has
apparently been assured (which is, again, a requirement to insure
the most precise astrometric measurements). The Big Optical Array,
the U.S. Naval Observatory’s follow-up project, is slated to
include truly wideband detection using the spectrally-dispersed
detection system (see page 38).

The Infrared-Optical Telescope Array (IOTA), a U.S. based
interferometer consortium, planned in 1990 to also implement a
real-time delay-tracking system using spectrally-dispersed
detection [8]. Simulation results showed estimation errors
approximately ranging from .06 to .3 wavelengths. Their estimation
procedure follows the mathematics to be included under “Point
Estimation of τ using Time Bins,” (page 65) with a serious
calculation of the optimum bin widths, and proper inclusion of model
parameters (of both source and atmosphere). For the implementation
of the spectrographic element, a grism device had been devised
which exhibited a liner dispersion with respect to optical
frequency. However as of 1990, their delay-tracking system had
only been proved by way of simulation.

As of 1993, the Sydney University Stellar Interferometer
(SUSI) had reported [14] the successful estimation of differential
delay using artificial light only, and not using the actual optics
of the interferometer (which is, presumably operating without any
real-time delay estimation hardware). Based on hardware comparable
to that advocated in the present work (the spectrally-dispersed
detection system), the delay is estimated using the group delay
method to a reported resolution of about 2 µm, quite coarse
compared to an optical wavelength. Although termed “fringe
tracking,” it is not clear whether only coarse delay-tracking is
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being attempted, or if different parameters would ultimately be
used to allow coherent integration of optical correlation. Based
on what will be termed point estimation of differential path delay,
the trial results presented in [14] show errors characteristic of
point estimation techniques: at various points in time wild mis-
estimations of the delay occur, producing a net delay function
which would have an a priori probability near zero.

The Infrared Michelson Array (IRMA) was a prototype project of
the University of Wyoming an the National Optical Astronomy
Observatories [12] (its hardware has since been incorporated into
the IOTA projects). This instrument operated in the delay-scanning
mode (as in [7]). In order to reduce costs, the designers
compromised on a passive delay-scanning system, in which the delay
line is moved well past the central fringe, using open-loop
control. Then the earth’s rotating is allowed to “scan” the delay
pattern across the detector, after which the process may be
repeated. While suffering from a very low duty-factor, the
simplicity of the passive delay-scanning system clearly eliminates
the need for a dynamically stable and well-controlled delay-line.
The evaluation of the data reduction form a delay-scanning
instrument not dealt with in the present work. However it
should be noted that the use of such a system in which all of the
light winds up in only two detectors is a favored choice for the
detector-noise-dominated wavelength (2.2 µm) for which this
instrument was designed. It should also be noted that the
magnitude of atmospheric phase fluctuations at this wavelength is
considerably reduced below that of the visible. However we would
expect that delay-tracing instrument could unquestionably
achieve higher performance.

Finally we should mention A. Labeyrie’s Grand Interferomètre
à 2 Télescopes (GI2T) [15] which is not a Michelson stellar
interferometry per se, inasmuch as its apertures (1.5 m) are much
larger than r0. Thus real-time fringe-tracking in the present
context is not even an option since different parts of the image
would exhibit significantly different delays (of well over a
wavelength). The output of the interference pattern, however, is
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sliced and spectrally-dispersed, potentially implementing some 100
Michelson stellar interferometer operating in parallel. In any
case, reasonably accurate adjustment of the delay-line is certainly
required to reduce the maximum delay over the interfered apertures.
Part of the interfered image is spectrally-dispersed and evaluated
visually for fine adjustment of the delay-line (an automated
version of spectrally-dispersed delay estimation was reported to be
in the “testing” stage). After that point, an open-loop control
system continues the motion of the delay-line with a reported
accuracy of a few microns. Emphasis was placed on plans for a
laser metrology system to aid in open-loop setting of the delay
line, particularly important since these telescopes are movable on
tracks.
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Beam Recombination and Detection

Having restricted ourselves to the case of single-spatial-
mode stellar interferometer, we now wish to construct a model for
the optical circuit, and in particular, the beam recombination
(photomixing) optics. Different photomixer configurations and
their characteristics will be explored. For simplicity, we will
start by assuming that the light received is narrowband. The
application off these configurations to a wideband (white light)
interferometer will be treated towards the end of the chapter.

Model

The general model for the optical train is depicted in
Figure 1 where A1 and A2 represent the amplitudes of the starlight
as would be seen in outer space, prior to the effects of the
atmosphere at two points separated by (the projection of) the
baseline of the interferometer. The quantity we ultimately seek to
measure using interferometry is the normalized cross-correlation of
these two amplitudes, generally referred to as fringe visibility,
given by

V12
∧
=

〈A1A∗2〉√
〈|A1|

2〉〈|A2|
2〉

(1)

In a wideband instrument, V12 will generally be a function of
optical frequency ν.

The light actually collected by the telescopes suffers a
differential delay consisting of two terms. The first is a
deterministic variation, τg(t), the geometrical delay encountered
due to the physical placement of the telescopes and the (changing)
position of the celestial object in the sky. The second is a
random delay term simply denoted τ(t), attributable to the effects
of atmospheric turbulence (there could also be random delay
components introduced by imperfect instrumentation). We will
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Figure 1: Model of optical train through atmosphere and interferometry, up to the optical detectors.

ignore any amplitude variations that may be introduced by the
combination of the collection optics and the effects of atmospheric
seeing.

The light collected at telescope 2 is labelled X2. The light
collected by telescope 1, labelled X1, will pass through a delay
line intended to compensate for the additional delay encountered by
the light received at telescope 2. The delay line introduces a
changing delay, τg, to compensate for the deterministic geometric
delay calculated on the basis of the celestial coordinates of the
object, the placement of the telescopes, and the exact time. Using
a closed-loop system, the delay line may additionally introduce a
“correlation delay” τc, intended to compensate for random or
unanticipated delays measured by the interferometer during an
observation. Depending on the requirements of the subsequent
optical system, τc may try to follow the best estimate of τ(t) (the
actual atmospheric delay function) in real time, or may only be
required to follow delay offsets in a slow and/or coarse manner in
order to keep the uncorrected delay offset within an allowable
range.
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For certain configurations it is also desirable to have the
delay line introduce a rapid dither of peak-to-peak amplitude
approximately λ/4 (or more in some configurations). This allows
one to recover both sine and cosine components of interference when
using only a two phase photomixer. This auxiliary dither would not
generally be required if using photomixing optics which yield three
or more phases of interference, as noted in the discussion below.

The field amplitudes entering the photomixer optics are
denoted as (lower case) x1(t) and x2(t), where clearly:

x1(t)=X1(t − τg − τc)
x2(t)=X2(t)

(2)

These signals can be seen to have a cross-correlation given by V1,2

— the correlation prior to entering the atmosphere — modified by
the uncorrected delay factor of ∆τ = τ − τc. As measured at the
optical frequency ν, then, the measured correlation seen by the
photomixer and optical detectors would be Vm.

Vm
∧
=
〈x1x∗2〉
|x1||x2|

= V12e j2πν∆τ (3)

Note that, in this narrowband context, we are treating the signals
x1 and x2 as phasors at the optical frequency ν, even though the
above results is wholly applicable to the response of a wideband
instrument as measured at the optical frequency ν.

Photomixer Output Considerations

The output of the photomixer consists of N channels where N ≥ 2.
In the case of certain photomixing configurations, the output will
consist not of discrete beams but rather of a continuum of non-
identical modes. This case can be accommodated within the present
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model by dividing the continuous spatial field into N regions, and
making N sufficiently large.

It is assumed that each of the N output channels is fed into
a separate photodetector of a distinct element (pixel) of a
photodetector array. At this point we should address the
relationship between N, the number of detector degrees of freedom,
and detector noise performance. The following familiar result
applies. In the case of low-noise detector in which the dominant
noise term is due to signal quantum noise (Poisson photon
statistics), there is no penalty for increasing N. However in the
case of detectors that are dominated by internal noise sources
(such as dark current or electronic pre-amp noise) then the signal-
to-noise ratio suffers according to the square root of increasing
N.

The first result is easily shown. Consider the case in which
a single detector receives p photons in a time period. In the case
of quantum limited detection there would be an r.m.s. noise
amplitude of

√
p. Suppose we (needlessly) chose to split the light

that had been received by that detector into two equal parts which
are fed into two detectors. Now each of the two detectors would
receive p/2 photons with an r.m.s. noise of

√
(p/2). If we simply

add the output of the two detectors then we would have a signal of
strength p/2 + p/2 = p. However the noise contributions add in
quadrature resulting in an r.m.s. noise level of

√
(p/2 + p/2) =

√
p.

Thus we have produced a signal with the same signal and noise
levels that would have been obtained by collecting all of the light
in a single detector.

On the other hand, if the detector noise had been dominated by
a dark count of d, where d � p, then the r.m.s. noise suffered using
a single detector would have been

√
d. In this case, following the

above example, if two detectors had been used to each detect half
the light, then each detected signal of strength p/2 would have an
r.m.s. noise of strength

√
d. Again we add the two signals together

to obtain the original signal strength p. This time, however, we
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would obtain an r.m.s. noise amplitude of
√

(2d), cutting the
signal-to-noise ratio by

√
2.

The upshot of this result is that when employing noisy
detectors, as is inevitable in the infrared, concentrating the
available light in the fewest number of detectors (and, practically
speaking, in the smallest area detectors) will improve the signal-
to-noise ratio, everything else being equal. However in the
visible where photon-counting detection can be employed with a
relatively small dark count rate, it is permissible to divide the
optical power among detector elements, especially if there is any
information-gathering advantage in doing so. The point beyond
which increasing N will incur a noise penalty can be calculated as
follows. Suppose that the total number of photons to be counted is
about I0 photons per second, and that each detector element has d0

dark counts per second. The detectors will continue to be quantum
noise limited as long as I0/N � d0. So as long as one sets N � I0/d0

there will be no significant penalty paid for the size of N. Of
course, this calculation should be performed using the smallest
value for I0 in which operation is anticipated.

One more issue regarding the coverage of detector elements
occurs when using noisy detectors (so that reducing N is desirable)
but in which the output of the photomixer consists of a continuum
of non-identical modes. It was noted above that such a photomixer
can be characterized by arbitrarily dividing the output space into
N regions and setting N to be such a large number that each region
is essentially a pure mode. On the other hand, if we choose to
route a number of such pure modes into a single detector we have
now created an output channel which is impure, that is, it is not
single-mode. The detector now is sensitive to the sum of the power
of non-identical modes. This entails a certain loss of sensitivity
insofar as the phase of interference detected varies spatially
across the output beam.

Let us calculate this penalty. Suppose that the center of an
output channel detects the interference between x1 and x2 at zero
phase, but across the beam of uniform amplitude there is a linear
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phase variation ranging from −∆θ to +∆θ. Suppose that a portion,
a2, of the power from each input channel is routed to the output
channel in question. Now the total power of light, Id, falling on
the photodetector is found by integrating over the width of the
field over which the phase varies between these limits. Recall
that the amplitudes entering the photomixer are given by x1 and x2,
which have a normalized cross-correlation given by Vm. Then we can
write the total beam power incident on the photodetector as an
integral of the power over the beam width:

Id =
1

2∆θ

∫ ∆θ

−∆θ

dθ〈|ax1 + ax2e jθ|2〉 (4)

=
1

2∆θ

∫ ∆θ

−∆θ

dθ(|ax1|
2 + |ax2|

2 + 2 Re〈a2x1x∗2e− jθ〉) (5)

Let us call the total power entering the photomixer I0 and assume
that half this power is from x1 and half from x2. Thus:

|x1|
2 = |x2|

2 =
I0

2
(6)

We can take the exponential outside the expectation and use (3)
to obtain:

Id =
1

2∆θ

∫ ∆θ

−∆θ

dθa2I0(1 + Re{e− jθVm}) (7)

Setting the integral of the real part to be the real part of the
integral, we can evaluate the result.
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Id = a2I0

(
1 +

1
2∆θ

Re
{∫ ∆θ

−∆θ

dθe− jθVm

})
(8)

= a2I0

(
1 + Re {Vm} ·

sin(∆θ)
∆θ

)
(9)

We thus see that the sensitivity of the detection system to
the real part of Vm (this channel measures the real part of Vm

since we specified the center mixing phase as 0◦) has been reduced
by a factor we recognize as the sinc function evaluated at ∆θ/π.
The average noise power is unchanged. Therefore, this is also the
factor by which the signal-to-noise ratio has been reduced.

To give a numerical example, consider an output channel
combining interference phases over a range of 90◦, to that ∆θ = 45◦.
Then we find that the signal-to-noise ratio has been cut by a
factor of .9. Since signal-to-noise ratio varies as the square
root of collected light power (assuming quantum noise is dominant),
we would require a 23% increase in signal power to compensate for
the penalty imposed by mode impurity in the detection channel. On
the other hand, in the case of detectors dominated by internally
generated noise, the .9 factor affecting signal-to-noise ratio due
to mode impurity compares favorably to the previously discussed .71
factor that would be imposed by dividing the light into two
detectors, each with only a 45◦ interference range (in which case
there would be a mode impurity penalty of only .97).

Characterization of the Photomixer

The fields a the photomixer output are denoted y1, y2, . . . yN .
The relationship of these output modes to the input modes of the
photomixer can be described by a scattering matrix S consisting of
2 columns and N rows.
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

y1

y2

.

.

yn


=



S 11 S 12

S 21 S 22

. .

. .

S N1 S N2


×

{
x1

x2

}
(10)

Clearly we wish the photomixer to be a lossless optical
system, and we shall model it as such. For modelling purposes, the
optical losses occurring throughout the optical train, including
the effect of the detector quantum efficiency, can be lumped into
an equivalent attenuating term reducing the magnitude of A1 and A2

relative to the actual starlight received by the telescopes.

Given that the photomixer is modelled as a lossless system, we
can view it as a lossless system with N input modes and N output
modes, in which N − 2 of the input modes are unused. A lossless
system with N inputs and N outputs is described by a unitary
matrix. Thus the scattering matrix S , above, must consist of two
columns of an N × N unitary matrix. That implies two conditions.
First, the inner product of either column with itself must be
unity. That means that if only one input is excited then the power
entering the system must equal all the power exiting the system.
Accordingly, the first column satisfies:

{S 11S 21 . . . S N1}
∗ ×



S 11

S 21

.

.

.

S N1


=

N∑
i=1

|S i1|
2 = 1 (11)

and likewise for column 2. The second condition for a unitary
matrix is that the inner product between two different columns is
zero. That expresses the fact that the orthogonal input vectors
(1, 0) and (0, 1), must produce orthogonal outputs. Thus:
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{S 11S 21 . . . S N1}
∗ ×



S 12

S 22

.

.

.

S N2


=

N∑
i=1

S ∗i1 · S i2 = 0 (12)

In addition to these requirements on the characterization of
a lossless system, we would almost certainly want a photomixer in
which any output combines an equal portion of the power of each
input signal, thus satisfying:

|S i1| = |S i2| (13)

We assume that the signals entering the photomixer, x1 and x2, have
equal power levels, at least on the average. Then (13) will
maximize the sensitivity of correlation detection. Clearly if the
power reaching an output mode contributed by each input is not
equal, then complete cancellation of anti-phase inputs will be
impossible as will full doubling of the power of in-phase inputs.
The noise level, however, continues to be governed by the total
photon level (and/or detector noise). Thus a significant loss of
signal-to-noise performance occurs for large violations of (13).

Assuming a photomixer satisfying (13) in which the power from
either input mode is routed to output mode #i in the proportion of
pi, we can rewrite S as:

S =



S 11 S 12

S 21 S 22

. .

. .

S N1 S N2


=



√
p1e jΦ11

√
p1e jΦ12

√
p2e jΦ21

√
p2e jΦ22

. .

. .
√

pNe jΦN1
√

pNe jΦN2


(14)
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where the power splitting coefficients must satisfy (11) so that:

N∑
i=1

pi = 1 (15)

Now, the power leaving the photomixer is detected incoherently
and any phase delays following the photomixer are undetectable and
unimportant. Thus we can, without loss of generality, multiply
(14) on the left by a diagonal phase matrix in order to express the
essence of the photomixer’s scattering matrix in the following
canonical form:

S ′ =



e− jΦ11 0 0 . 0
0 e− jΦ21 0 . 0
0 0 . . .

0 0 . . .

0 0 0 . e− jΦN1


× S

=



√
p1
√

p1e jθ1

√
p2
√

p2e jθ2

. .

. .
√

pN
√

pNe jθN


(16)

We have now characterized each output channel by a power
coefficient pi and a mixing phase θi. In addition to the condition
(15), the condition (12) must be met, which now becomes:

N∑
i=1

pie jθi = 0 (17)
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One simple class of discrete beam photomixers uses (16) setting
pi = 1/N and θi = 2πi/N, resulting in:

S =
√

1/N



1 e− j 2π
N

1 e− j2 2π
N

. .

. .

1 1


(18)

The Two Phase Photomixer

Applying (18) with N = 2, we get the simple balanced two-phase
photomixer:

S =

√
2

2

{
1 1
1 −1

}
(19)

This network can be implemented by a single 50/50 beamsplitter as
shown in Figure 2. We assume an ideal beamsplitter with
(amplitude) reflection and transmission coefficients:
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r1 =

√
2

2

r2 = −

√
2

2
(20)

t12 = t21 =

√
2

2

Not explicitly shown in the
diagram are a number of essential
details which will be mentioned for
the sake of completeness. For a
system that is not extremely

Figure 2: Two-phase photomixer mixes x1

and x2 at 0◦ and at 180◦.

narrowband, there should be a “compensating plate” introduced in
the input beam which does not pass through the substrate of the
beamsplitter, in order to cancel chromatic delay effects resulting
from passage of light through that substrate (equivalently, the
beam splitting surface may be sandwiched in between identical glass
plates with an index-matching oil or cement). All of the air-glass
interfaces should be anti-reflection coated. Also, for wideband
interferometry, the beamsplitter’s transmission and reflection
coefficients (20) must not vary widely over the range of optical
frequency.

Now, in order for y1 and y2 to truly be single spatial modes
producing full interference between the input beams, optical
alignment must be precise so that the wavefronts received at y1 due
to either x1 or x2 alone are indistinguishable. Even for circular
(or Gaussian) anastigmatic beams, that requires matching 6
parameters characterizing the beam positions, angles, and
focussing. If using beams that are guaranteed single mode (such as
light transmitted down optical fibers), this can be accomplished by
careful alignment of the optics. However in the case of light re-
imaged from the apertures or image planes of two telescopes, there
will be random fluctuations in these parameters. The magnitude of
these fluctuations is nil for collecting optics much smaller than
r0 (the Fried parameter), and is significant but tolerable for
objective diameters about equal to r0, especially if a tip-tilt
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active optical correction system is employed. Apertures much
larger than r0 do not fall under the classification of Michelson
stellar interferometry, precisely because the received light is
multimode. For apertures not much smaller than r0, it would be
necessary to continually monitor r0 as it changes during an
observation, and use the expected degradation in measured
correlation to calibrate the results of that measurement.

Finally, interference will only be complete if the
polarizations of the interfering beams are identical. Thus x1 and
x2 must both be either vertically polarized or horizontally
polarized (or any other identical polarization state, in the case
of a beamsplitter which is non-birefringent). It is only necessary
that the characterization of the beamsplitter (19) apply to the
polarization used. In the very special case of a beamsplitter
which is truly non-birefringent (which can be approximately
implemented by reducing the angle of incidence) so that (19)
applies to all polarizations and wavelengths, we realize the
ability to run both polarizations of x1 and x2 into the same
beamsplitter and simultaneously integrate the interference of each
polarization, which would be identical in the (usual) case of non-
polarized starlight. This would be advantageous when using
detectors which are dominated by internally generated noise. When
using low-noise photon counting detectors dominated by source
quantum noise, this advantage disappears; in that case processing
the two polarization components in parallel systems may be
preferable.

The two-phase photomixer characterized by (19) has an
important drawback. Its response is only sensitive to the real
part of the measured correlation given by (3). Thus it is
absolutely incapable of distinguishing between positive and
negative uncorrected delays.

25



Quadrature Detection

This drawback of the two-phase photomixer may be eliminated by
using the quadrature detection system in which half the optical
power is used to detect the real part of Vm and the other half is
used to detect the imaginary component of correlation (the
splitting ratio need not necessarily be 50/50). Such a quadrature
photomixing system would be characterized according to:

S =
1
2


1 1
1 j
1 −1
1 − j

 (21)

A possible
implementation of this
network is shown in
Figure 3. The light at
input x1 is specified to
be in the vertical
polarization, as is the
input x2. The latter
signal is passed through
a quarter-wave plate
oriented at 45◦ to the
horizontal. The beams
are first mixed using a
(non-birefringent
achromatic) 50/50

Figure 3: Four-phase photomixer mixes x1 and x2 at 0◦, 90◦,
180◦, and 270◦. Polarizations at various stages are indicated
by double arrows.

beamsplitter as in the previous implementation of a two-phase
photomixer. Each output beam is then split again using a
polarizing beamsplitter oriented at 45◦ to the horizontal. It can
easily be shown that the four output beams are characterized
according to (21). There is also an implementation of (21) using
only polarizing beamsplitters, which may be easier to realize than
a broadband 50/50 beamsplitter.
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Such a quadrature photomixing system successfully resolves the
sign of phase delay, information that was lost using the two-phase
interference configuration. It is also possible to build a
photomixer with N = 3, the smallest value of N which maintains this
property. Recall that reducing N is advantageous when the
detectors are not quantum noise limited, since this allows each
detector to receive more light.

A balanced three-phase photomixer would implement the
scattering matrix S given by:

S =

√
3

3


1 1
1 e j120◦

1 e j240◦

 (22)

A possible
implementation is shown
in Figure 4. As in the
previous example, the
light at x2 is first
converted to circular
polarization using a
quarter-wave plate
oriented at 45◦. Then
the beams are combined
using a beamsplitter
designed to completely

Figure 4: Three-phase photomixer using a custom beam-
splitter, mixes x1 and x2 at 0◦, 120◦, and 240◦. Polarizations
at various stages are indicated by double arrows.

transmit the horizontal component but reflect two-
thirds of the power of the vertical polarization. One of the
output beams is then split using a polarizing beamsplitter at 45◦;
the other is used directly. While less symmetric than the
quadrature system, implementation of (22) is fully achieved.
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The Delay-Dispersed Photomixer

As earlier suggested, a photomixer may, instead of outputting
discrete beams, produce an output in which the phase of
interference varies over a spatial continuum. A notable example of
such a configuration, we shall term the delay-dispersed photomixer.
This has been the most common photomixing configuration used by
stellar interferometers and is basically a generalization of Thomas
Young’s original two-slit interference experiment. The two optical
sources are focussed onto two closely separated points and the
then-diverging beams are allowed to fall upon the same imaging
detector, at which point we observe (finally!) interference
fringes, in the classical sense.

Figure 5: Delay-dispersed photomixer, two implementations.

One possible implementation is shown in Figure 5A. A popular
scheme involves directing collimated input beams onto subapertures
of a Cassegrain telescope (Figure 5B). The Airy disc corresponding
to the subaperture used is then observed at the Cassegrain focus;
correlation between the two input beams will superimpose a fringe
pattern on the Airy disc.
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In any such scheme, the fringe pattern, as it ultimately
reaches the imaging detector, can be arranged to be of an arbitrary
size. Using cylindrical optics, the extent of the image in the
transverse dimension normal to the fringes can always be reduced
(to the limit imposed by diffraction). The qualitative behavior of
the delay-dispersed photomixer is ultimately determined by a single
parameter, κ. If a two-slit interferometer consists of slits of
width d1 which are separated by d2, then we define κ = d2/d1. In
the case of Figure 5B, d1 is the width (or diameter) of each input
beam and d2 is the separation between the input beams. κ is
sometimes referred to as “the number of fringes” (although the
total number of fringes in between the zeros of the single slit
diffraction pattern is actually 2κ). Note that the minimum
possible value of κ is 1, since a smaller value would require a
physical impossibility. Also, it is possible to make κ adjustable,
for instance, by finely adjusting the position of the small right-
angle mirror in Figure 5A.

As previously noted, a photomixer with a continuum output can
be viewed as one with discrete mode outputs by dividing this
continuum into N regions, where N is a large number, in which case
each region will essentially be a pure mode. In the case of noisy
detectors, however, we wish to reduce N, thus invoking a penalty
associated with mode impurity in the detected output. For
simplicity, let us assume that the input modes to the delay-
dispersed photomixer are rectangular in shape, rather than circular
(like the image of a telescope objective) or Gaussian.

Having modelled each source as a slit of width d1, we can
write the power going to the detector at the deflection angle ψ

from either source as:

p(ψ) = sinc2
(
ψd1

λ

)
=

(
sin(πψd1/λ)
πψd1/λ

)2

(23)

λ is the optical wavelength. The phase of interference due to two
sources separated by d2 is a linear function of ψ:
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θ(ψ) =
2πψd2

λ
(24)

Using the normalization:

x ∧=
ψd1

λ
(25)

we can express the power and interference phase in the following
form:

p = sinc2(x) =
(
sin(πx)
πx

)2

θ = 2πκx (26)

thus revealing the significance of κ. We can define a function,
Z(ψ) which combines the power and phase. In order to determine the
sensitivity of a detector element covering a segment of the fringe
pattern, we can write an integral similar to (7) where the
integrand is now replaced by:

p(ψ)(1 + Re
{
e jθ(ψ)Vm

}
) = |Z| + Re {Z(ψ)Vm} (27)

where
Z(ψ) ∧= p(ψ)e jθ(ψ) (28)

Z is plotted in Figure 6A for κ = 1, and in Figure 6B for κ = 2.
Note that Z(x) is not a plot of a physical interference pattern; it
is the response function of the photomixer at positions on the
detector plane. Integrating its magnitude over the extent of a
detector element yields the total power incident on that detector.
Integrating its complex value over the detector yields a complex
number indicating the phase and amplitude of interference.
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Dividing the magnitude
of that number by the
total power obtained by
integrating the
magnitude of Z, yields
the penalty due to mode
impurity. The previous
result obtained in the
integral (8) can be seen
to be a special case of
such an integral where
the optical power level
(magnitude of Z) is
constant over the
detector field.

Looking at
Figure 6: Z(x), the response function of the delay-dispersed
photomixer, plotted for two values of κ.

Figure 6, it can be seen that more than a few detector elements
would be necessary to integrate most of the power without a
significant mode impurity penalty.

Suppose we have chosen to only measure the 90% of the total
power which falls in between x = −.8 and x = +.8. Let κ = 1 (the most
favorable case). Then we could achieve mediocre performance using
only 4 detectors of equal size:

Range of x Net Power Phase Efficiency
-.80 -.40 .110 169◦ .819
-.40 .00 .338 295◦ .769
.00 .40 .338 65◦ .769
.40 .80 .110 191◦ .819

Note that the phase separation between outputs is about 130◦. If
instead we employ 6 detectors the mode impurity penalty is relaxed
to about .9. The phase separation between output channels is now
close to 90 ◦:
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Range of x Net Power Phase Efficiency
-.80 -.53 .049 134◦ .907
-.53 -.27 .152 222◦ .893
-.27 .00 .247 314◦ .889
.00 .27 .247 46◦ .889
.27 .53 .152 138◦ .893
.53 .80 .049 226◦ .907

If we tried to apply the same configuration to a larger κ, however,
we again suffer degraded performance. For κ = 1.5 the same detector
coverage would yield a much poorer efficiency:

Range of x Net Power Phase Efficiency
-.80 -.53 .049 21◦ .801
-.53 -.27 .152 154◦ .770
-.27 .00 .247 291◦ .761
.00 .27 .247 69◦ .761
.27 .53 .152 206◦ .770
.53 .80 .049 339◦ .801

While the actual integral over Z over the detector width yields
an exact result, the mode impurity penalties we have calculated
would be reasonably well approximated by the previous result (9)
applied to the range of phase angle of the detectors. Overall, it
can be seen that this photomixer configuration is handicapped when
using noisy detectors (when minimizing N is advisable). Advantages
of the configuration include its simplicity of construction (not
requiring beamsplitters using elaborate coatings) especially for
wide bandwidth operation, and its insensitivity to polarization
(assuming a symmetric configuration such as Figure 5B). And unlike
all of the discrete photomixers, this configuration can be
constructed of all reflecting optics. These advantages are of most
interest in the infrared, where, unfortunately, detector noise is
dominant and the mode impurity penalty thus takes effect. If the
delay-dispersed photomixer is to be used in such a case, one might
want to lower the value of κ to be close to unity so as to minimize
that penalty.
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Bandwidth Considerations

Up until now we have assumed that the light entering the
photomixer is monochromatic. Let us now relax that assumption and
examine the effect that optical bandwidth has on the detection of
interference. Refer to the model of the optical signal train in
Figure 1. The discrete output photomixers had the characteristic
that the response of any output channel is a function of the phase
of the uncorrected delay, but that phase is itself a function of
wavelength. Thus light of different wavelengths is not treated
uniformly and a given output channel integrates different
wavelengths incoherently. For instance, the quadrature photomixer
described by (21) has a power in the first output beam given by:

|y1|
2 = |

1
2

(x1 + x2)|2

=
1
4

E
{
|e− j2πν(τg+τ)A1 + e− j2πν(τg+τ)A2|

2
}

=
1
4

E
{
A2

1 + A2
2 + 2 Re

{
A1A∗2e j2πν∆τ

}}
(29)

=
A2

2
(
1 + |V | cos(2πν∆τ + arg(V))

)
Recall that ∆τ is the uncorrected component of atmospheric delay
given by τ − tauc. Assume for simplicity that arg(V) = 0 for all ν.
The this output channel would clearly exhibit a peak at ∆τ = 0. It
would also reach the same peak for ∆τ = 1/ν, 2/ν, etc. However if
the light were not of a single wavelength, then the argument of the
cosine in (29) would vary over the wavelength range. Suppose that
the light’s spectrum were centered at optical frequency ν0 with a
uniform power over a bandwidth of ∆ν. If the uncorrected delay ∆τ
were exactly N wavelengths at ν0, then, assuming that V is
independent of wavelength, we would measure a response integrated
over wavelength of:
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=
1
∆ν

∫ ν0+
∆ν
2

ν0−
∆ν
2

dν
A2

2
(1 + |V | cos(2πν∆τ))

=
A2

2

(
1 + V

1
∆ν

∫
cos

(
2πν

N
ν0

))
(30)

=
A2

2

1 + V
2 sin(2π ν2

N
ν0

)

(2πN/ν0)∆ν


=

A2

2
(1 + V · sinc(∆ν∆τ)) (31)

So we find that for a time-bandwidth product, ∆ν∆τ, which is not
small compared to 1, the measured correlation is degraded by the
sinc function evaluated at ν∆τ, in exactly the same way that
measured correlation was degraded by a photodetector receiving
light of spatial modes whose interference phase varied over a
range, calculated in (9). There are only two ways to avoid this
predicament. Either the maximum uncorrected delay must be reduced,
or the fractional bandwidth must be reduced.4

Sufficiently reducing the delay is possible only with real-
time delay-tracking (“fringe-tracking,” not coarse delay-tracking),

4The delay-dispersed photomixer presents an apparent exception
to this assertion. In this case, different wavelengths undergo the
same time delay, rather than the same phase shift, so peaks in the
output field (notably the central fringe) are shifted according to
the uncorrected delay, but not smeared by different wavelengths.

However the hidden trade-off presents the same dilemma. On
one hand, κ can be made small, in which case the tolerable delay
error is small. Limiting τ to this range would require a suitable
real-time delay-tracking system. On the other hand κ can be made
arbitrarily large allowing the instrument to perform equally well
over a large range of uncorrected delay. The, however, the amount
of power routed to the central fringe is proportionally reduced.
Since most of the delay estimation information is contained in the
immediate vicinity of the central fringe, the overall delay-
tracking performance is reduced by an amount similar to the
reduction that would result from limiting the bandwidth of an
instrument to achieve the same end.
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and requires operation such that the excursions of uncorrected
delay error are quite limited, generally within half an optical
wavelength. An occasional delay excursion causing a loss of the
central fringe would require “restarting” the delay-tracking
process, beginning with a search procedure. This method, does in
fact have certain advantages in the infrared where detector noise
rules out the spectrally-dispersed system to be presented below.

Limiting the instrument’s bandwidth, on the other hand, is the
classical approach to avoiding loss of correlation predicted by
(31). The required bandlimiting is inversely proportional to the
maximum expected differential delay in order to keep the argument
of the sinc function in (31) from approaching ±1. For constant
atmospheric conditions, the maximum extent of differential delay is
expected to vary as the 5/6 power of baseline distance (up to the
“outer layer of turbulence”) according to (42). For a long-
baseline interferometer, at visible wavelengths, this may be in
excess of 100 wavelengths. Thus a bandwidth of less than 1% would
be required to maintain coherence, entailing a corresponding
decrease in the amount of light received by the interferometer
contributing to the estimation of the random atmospheric delay. We
shall find that there is a minimum photon flux necessary for
successful delay-tracking, and that photons of different
wavelengths more or less equally contribute to this function.
Consider the effect, for instance, of the 1% bandwidth suggested
above. The associated 99% loss of optical power would entail a
decrease in sensitivity fully amounting to 5 stellar magnitudes!

In addition to conserving the received optical power for the
sake of delay-tracking, there are two further reasons that white-
light interferometry is desirable. One concern is that V , the
optical correlation or fringe visibility that we seek to measure,
is itself a function of wavelength. In order to obtain the most
information from an observation, we would like to receive different
wavelengths simultaneously in order to measure V as a function of
ν. However simply introducing broadband light into a photomixer as
previously described, would measure some sort of “average”
correlation.
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Secondly, it is possible for a white-light interferometer to
measure not only the amplitude, but also the phase of the
visibility function V(ν). This is of extreme importance for the
sake of image recovery which requires performing the Fourier
transform on a complex visibility function to retrieve the real
image brightness profile in the case of a non-symmetric image5.
In the case of narrowband interferometer, the phase of V(ν) is
intermingled with the phase delay caused by the random atmospheric
delay, preventing both from being determined with one
measurement6. The inclusion of simultaneous interferometric

5Measurement of the object phase is not required in the case
of objects that can be safely assumed to be symmetric, since the
Fourier transform of a symmetric function has zero phase. This
would include common observations such as measurements of the
diameter and brightness profile of solitary stars. For the case of
non-symmetric objects, it has been shown that mathematical
redundancy in the Fourier transform of two-dimensional objects can,
given low noise measurements and good Fourier plane coverage, make
possible the recovery of lost phase information.

There have also been techniques described under the category
of triple correlation interferometry or phase closure, which permit
extraction of the phase of the visibility function. This requires
light received from at least three telescopes undergoing
simultaneous interference.

Each of these approaches is dependent on dense coverage of the
Fourier plane, thus requiring measurements on the same object using
a wide range of baselines. For that reason they have been
exclusively applied to speckle interferometry and are unlikely to
prove useful for long-baseline interferometry

6More specifically, the measured complex correlation, Vm (see
(3)), incorporates the phase not only of V , but also of ∆τ, the
uncorrected delay error. Not only does ∆τ vary wildly over a range
of many wavelengths, but it includes a priori errors in the
knowledge of the position of the object, which determines τg (see
page 13 and Figure 1). Clearly that position could not be known to
within a small fraction of a wavelength over a long baseline!

On the other hand, simultaneous measurement of Vm at N
different wavelengths, yields instantaneous determinations of
measured correlation at these wavelengths all of which are subject
to the same ∆τ, thus permitting N − 1 comparisons of phases of V(ν)
at N different ν. The remaining free parameter corresponds to the
definition of the “center” of the image, which may be arbitrarily
defined.

For this procedure to work in practice, it is first necessary
that the instrumental dispersion of the interferometer optics be
calibrated (for instance, by observation of a known symmetric
object, or by observing an object at a baseline near zero), and
that the dispersion function be stable over the period of an
observation.
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measurements using N different wavelengths, on the other hand,
provides information combining both the atmospheric delay, and V(ν)
at N different wavelengths, with one free parameter undetermined.

Assume that the object being observed is uniformly colored, so
that there is no wavelength dependence to the normalized Fourier
transform of the object function. The key to the recovery of the
phase of interference, rests upon the fact that for a given
physical baseline L, the measurement of interference at the optical
frequency ν, determines the component of spatial frequency ν/L of
the object. Thus in a wideband observation, a range of points on
the Fourier plane will be determined in magnitude and phase, with
one free parameter to be determined. Additional observations at
different baselines can be used to match overlapping data,
eventually resulting in a complete description of the Fourier
transform of the object function in one direction. The possibility
of recovering phase information in this manner has been examined by
and [10], and simulations have been performed demonstrating the
technique.

White Light Interferometry using the Delay-Dispersed Photomixer

The previous discussion of the delay-dispersed photomixer has
been discussed relative to narrowband light. Unlike the previous
discrete output photomixers, the detection response of this system
is wavelength dependent. That can be seen from the definition of
x (25); at a given detector position ψ the photomixing phase θ is
characterized by a time delay ∆τ (hence the name “delay-dispersed”)
so that the photomixing phase at the optical frequency ν is 2πν∆τ.
One ramification of this characteristic in a wideband system,
especially for larger κ, is the formation of a classical white
light fringe at the center of the fringe pattern (for ∆τ = 0). As
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the uncompensated delay error between the photomixer inputs
wanders, the white light fringe shifts across the detector field in
direct relationship to the delay error. While greatly simplifying
the computational complexity for delay tracking, such a system has
few additional merits. For large κ, an inordinately small amount
of power is devoted to the channels where the white light fringe is
most likely to be detected. For small κ, it would take but a small
untracked delay discrepancy to move the white light fringe outside
the range of detection.

Neglecting the issue of delay tracking, it can be observed
that the superposition of different optical frequencies at
different spatial frequencies, will preserve wavelength dependent
information in the Fourier transform of the fringe pattern,
permitting, in theory, its recovery. The wider the fringe pattern,
(large κ), the finer the spatial frequency resolution determined by
the fringe pattern, and therefore the finer the resolution in
optical frequency (wavelength). Using such a system, implemented
by scanning the delay line, [7] were able to reconstruct
correlation as a function of wavelength. Amazingly they achieved
useful results without even maintaining close delay tracking over
the period of a scan.

Spectrally Dispersed Detection

When using low noise detectors, there is an alternative
configuration that implements white light interferometry without
either compromising the amount of light usable for delay-tracking,
or the breadth of information received. All of the received light
can be efficiently employed simultaneously as long as different
wavelengths are independently detected. Imagine that the light
received by each telescope is separated into N spectral channels,
and each pair of optical signals is processed using a separate
interferometer. Rather than constructing N interferometers to be
operated in parallel, however, it is equivalent to route the
broadband light through a single delay line and photomixer, and
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then to disperse the detected light beams into spectra, so that
different wavelengths get detected separately.

The spectrally dispersed
detection system is diagramed
in Figure 7. The output beams
of the photomixer are each
shown to be routed through a
dispersive prism (or other
spectrometer implementation)
and each spectrum falls upon a
linear detector array which
detects that spectrum in N
wavelength channels. In the

Figure 7: The Spectrally-dispersed
detection system creates spectra of photomixer out-
put beams for simultaneous detection of photon
wavelength and interference phase.

case of a photomixer with one dimensional continuum output (page
28), the spectrometer would be implemented to preserve the image in
that dimension, but spectrally disperse the light in the opposite
two dimensional detector array.

Again, considering only the detector elements receiving a
particular wavelength, we are presented with a system which is
indistinguishable from a narrowband interferometer. All
characteristics of a narrowband instrument apply to this subset of
the total hardware. Now considering two wavelengths, we could just
as well be looking at two interferometers side-by-side, each
independently measuring the optical correlation at its optical
frequency. From a delay-tracking standpoint, however, the
situation is far improved over having two side-by-side instruments.
That is because the optical delay affecting the two wavelengths is
then guaranteed to be identical7, unlike the case for physically

7At least this will be assumed for the discussion of delay-
tracking. Specifically, the assumption states that a delay error
at any one time can be characterized by a single number, τ, such
that the phase difference measured by an interferometer at optical
frequency ν, is exactly 2πντ. A somewhat more general assumption
— but one that is equally suitable for the purposes of delay-
tracking — is that the delay process at any one time is described
by a single number, x, and that the phase difference at optical
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distinct optical collectors. Therefore their measurements of delay
error could be combined, yielding an improved estimate. So using,
say, 100 wavelength channels, we can reap the benefit of 100
simultaneously operating narrowband interferometers, but require
only the hardware of a single instrument, up to the point of the
prism in Figure 7. The total optical power received, then, can be
used to estimate the single delay error characterizing the receiving
light.

7frequency ν is given by Φ0(ν)x, where Φ0(ν) is a fixed function of
optical frequency describing the chromatic dispersion of a unit
quantity of the turbulent medium. The more general model that we
will not consider, is to suppose that the function of phase over
optical frequency contains two (or more) degrees of freedom, and is
thus given by Φ1(ν)x + Φ2(ν)y where x and y represent the delay
contributions from two different species whose chromatic
dispersions are dissimilar.

The near-field approximation that is valid in describing the
effect of the atmosphere on the light received at the earth’s
surface (except under poor seeing conditions), would rule out the
possibility of geometric effects leading to anachromaticity in the
atmospheric delay. The other possibility that might dispute the
assumption would be the existence of two different material sources
of atmospheric delay. It is generally assumed that in the visible
and near-infrared the dominant source of differential delay is the
turbulent mixing of air masses of different temperatures. A
secondary source of differential delay would be the effect of air
masses having different water-vapor content. While unquestionably
of little significance in the visible, the differential effect of
water vapor would be exaggerated in the infrared. Conceivably, an
interferometer extending well into the infrared might require
implementing a delay model with two degrees of freedom as suggested
above.
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Overview of Delay-Tracking Methods

Recall that there were two contexts in which delay-tracking
applied to an optical stellar interferometer. We first identified
coarse delay-tracking as a requirement to insure that interference
was not partially or totally canceled due to the finite bandwidth
of light falling upon a detector. The required accuracy for this
aspect of delay-tracking was dependent upon the bandwidth of
detector elements, and on the permissible delay-bandwidth penalty
we were willing to tolerate in the detection of interference
(complete cancellation of detected interference would occur for a
delay-bandwidth product ∆τ∆ν = 1).

The second way in which we discussed delay-tracking was also
referred to as phase-tracking or fringe-tracking. This referred to
the estimation, and possible optical compensation, of the
differential atmospheric delay, to well within a wavelength,
specifically for the purpose of interpreting the raw data in order
to accumulate statistics yielding the magnitude of optical
correlation that we seek to measure.

While delay-tracking in the second sense requires an error
of much less than a wavelength, the tolerable error of coarse delay-
tracking in the first sense may be similar (in the case of wideband
detection) or much greater (in the sense of spectrally-
dispersed detection with off-line delay-tracking). Also “coarse”
delay-tracking necessarily refers to adjustment of the hardware
(optical) delay-line, whereas “fringe-tracking,” as we shall see,
may occur in hardware or software. There may or may not be a great
deal of overlap between the two tasks. However, in the following
pages we will be solely addressing the problem of “fringe-
tracking,” or delay-tracking for the purpose of integrating the raw
data to measure optical correlation.

We will first note, however, that there are three general
cases of “coarse” delay-tracking. In the looses case, only open-
loop delay compensation is implemented in order to correct for the
expected geometrical delay, with no additional compensation for
random delay components. At the other extreme, wideband detectors
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will require real-time delay-tracking to well within a wavelength,
in which case the two senses of delay-tracking may coincide. In
the intermediate case, the detection bandwidth is such that a delay
error of several or many wavelengths may be tolerated, but a
feedback system is used which reduces the overall magnitude of
delay error below that of the random atmospheric delay process that
would remain uncorrected in the first case. Such techniques
include those that are termed “group-delay tracking” in the
literature ([4], [6]), and also could include tracking the envelope
of delay error determined running the global path-estimation
algorithm (page 172) in real-time. Henceforth, such a system will
be termed medium-coarse (real-time) delay-tracking.

Now, relative to the tracking of differential path delay for
the purpose of integrating the raw data produced by an
interferometer, there are three general approaches we can identify.
These three approaches to delay-tracking apply to somewhat
different optical power levels (i.e. stellar magnitudes). These
are termed absolute interferometry (which uses no delay-tracking),
real-time delay-tracking, and off-line delay-tracking. Let us look
at each.

Incoherently Averaged Interferometry

An absolute or incoherently averaged interferometer uses only
a priori delay compensation, that is, there is no feedback or
attempt to estimate or compensate for atmospheric delay noise. The
measurement of magnitude of optical correlation or “fringe
visibility” is obtained from an averaging scheme which assumes a
random phase, and integrates the square of the magnitude of the
optical correlation. The success of this scheme rests upon the
assumption that within a certain time interval the differential
phase delay does not change appreciably. Then, it can be shown
that within a very short time interval the probability of two
photons being found in the same interference phase is enhanced by
a factor of (1 + |V |2/2) where V is the fringe visibility or
normalized cross-correlation between the two received signals (we
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have assumed a low photon arrival rate, so that the expected photon
count in such a time interval is much less than 1).

Such a system has the advantage that it will work at any light
level. Unfortunately the required integration time increases
rapidly with decreasing signal level, since the base probability of
detecting two photons in a short time interval falls according to
the square of received optical power level. What’s more, the
detection is of the correlation squared, further reducing the
sensitivity to smaller correlations. Also, as we have noted, the
instrument responds only to the magnitude of correlation and loses
all phase information (this limitation can be overcome with a
“triple correlation” system, whose sensitivity falls even more
rapidly with signal level). Despite these drawbacks, this is the
only possible mode of operation in the case of very low light
levels, in which case delay-tracking would be impossible.

Figure 8 shows the
block diagram of an
incoherently averaged
system, for illustrative
purposes based on analog
electronics (rather than
discrete photon
processing). The two
optical signals, after
receiving coarse (open
loop) delay
compensation, are
interfered in two
opposite phases,
producing optical

Figure 8: An incoherently averaged interferometer uses
open-loop control of the delay line. Optical correlation is
manifest as an increase in the “noise level” of I1 − I2.

outputs I1 and I2 which are detected to produce analogous
electrical signals. Assuming that the total input is I0

(which may be varying) and is equally divided between x1 and x2, we
know that the intensities expected at I2 and I2 are governed by:

43



I1 =
I0

2
(1 + |V | cosΦ) (32)

I2 =
I0

2
(1 − |V | cosΦ) (33)

where Φ must be regarded as a totally random phase (since no delay-
tracking is employed). We assume that the response of the
photodetector and preamp combination is (whether intentionally or
not) low-pass filtered, but still has a rapid response in relation
to the changing phase of atmospheric delay. We also assume that
any dark current has been subtracted. Then the sum and differences
of I1 and I2 are formed and squared. The results are averaged over
a period of time to reduce the effects of noise, resulting in the
accumulated statistics Z− and Z+. Using (33) and considering Φ to
be random with a uniform distribution, the expectations of the
resultant statistics are evaluated.

Z− = 〈(I1 − I2)2〉 =
1
2

I2
0 |V |

2 + n2
1 + n2

2 (34)

Z+ = 〈(I1 + I2)2〉 = I2
0 + n2

1 + n2
2 (35)

n2
1 and n2

2 refer to the mean squared noise introduced by detectors
1 and 2 respectively. By subtracting these noise terms, we form
the following estimator for the squared magnitude of optical
correlation.
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|V |2 ≈ 2
〈(I1 − I2)2〉 − n2

1 − n2
2

〈(I1 + I2)2〉 − n2
1 − n2

2

= 2
Z− − Z−0

Z+ − Z−0
(36)

In the final expression, Z−0 refers to the observed value of Z−
under the condition of no optical correlation, which determines a
baseline value for the detector noise power. Z−0 could be
measured, for instance, by introducing an optical misalignment or
path length discrepancy which destroys the interference without
affecting the net optical power falling upon the detectors.

Real-Time Delay-Tracking

A real-time delay-tracking system is workable and desirable
under the condition of a sufficiently strong signal level. In such
a system the imaginary part of measured correlation is monitored in
real-time and comprises the error signal of a control system. The
output of the control system servos a high speed path length
compensator in order to cancel differential delay errors. The net
delay error is kept to a small fraction of a wavelength enabling
coherent integration of the real part of measured correlation.
Unlike the incoherently averaged mode described above, integration
is now of fringe visibility V , not |V |2, removing the penalty for
observing well resolved objects (except insofar as the delay-
tracker itself will eventually fail as the magnitude of V is
reduced).

The block diagram of a possible real-time delay-tracking
system based on analog electronics is shown in Figure 9. The
received optical signal X1 passes through a path-length compensator
(delay line) which rapidly responds to the output of a feedback
system. The delayed light, x1 is fed into a quadrature (4-phase)
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Figure 9: A real-time delay-tracking system servos the delay line to maintain a delay error of
much less than a wavelength, using the imaginary component of correlation as an error signal.

photomixer, the outputs of which are detected and subtracted to
obtain instantaneous estimates of the real and imaginary parts of
the correlation between x1 and x2. Of course these measurements
are inevitably corrupted by noise.

The difference between the signals labelled I1 and I3 is
sensitive to the imaginary part of correlation.

I1 − I3 =

(
1
2
|x1 + jx2|

)2

−

(
1
2
|x1 − jx2|

)2

= −Re
{
jx1x∗2

}
= Im

{
x1x∗2

}
(37)

This signal is then filtered and controls the delay line in order
to reduce the imaginary component of correlation. The filter might
consist of simply an integrator with a certain gain, in which case
we have implemented a basic first-order linear control system (we
have assumed a small phase error so that the imaginary part of
correlation, given by the sine of phase error, is proportional to
the phase error itself). Increasing the loop gain would increase
the speed of the control loop which, not considering noise, would
lower the net phase error. Unfortunately, detector noise (not
considered in (37)) will also be amplified with increased gain.
The optimum gain and frequency response of the feedback loop will
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thus depend on the level and spectral characteristics of the random
delay process and detector noise.

The real part of the correlation is measured in a like manner
using the other two phases of interference.

I4 − I2 =

(
1
2
|x1 + x2|

)2

−

(
1
2
|x1 − x2|

)2

= Re
{
x1x∗2

}
(38)

The result can be converted to the magnitude of “fringe visibility”
(normalized correlation) V . We may use an adder, as shown in
Figure 9, to sum the four detected intensities (we assume that dark
current has been subtracted out) to determine the total light power
received, labelled I0. If we can assume that the two input beams are
of the same power, then we can write:

|x1|
2 = |x2|

2 =
I0

2
(39)

Using I0 to normalize I4 − I2 we find:

I4 − I2

I0/2
=

Re
{
x1x∗2

}
I0/2

= Re
{

x1x∗2
|x1||x2|

}
= |V | cos(Φ) (40)

where Φ represents the instantaneous phase error between x1 and x2,
the phase that the control loop is attempting to cancel.
Integrating the voltage will yield an estimate of |V | that is
degraded by the effect of non-zero Φ:〈

I4 − I2

I0/2

〉
= |V |E {cos(Φ)} = |V |e−

1
2Φ

2
(41)

This result, based on Φ having a Gaussian distribution, is thus
seen to depend on the mean squared phase error, which might be
estimated by integrating the square of I1 − I3 (as shown in
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Figure 9), which (neglecting noise) we have shown is proportional
to the imaginary part of correlation.

While further details of hardware implementation of a real-
time delay-tracking system would require an extensive discussion,
its performance can be estimated using the results that will be
obtained for an off-line delay-tracking instrument by imagining
that the data processing unit has been made infinitely fast (and in
fact real-time delay-tracking can be implemented as part of what
will be termed the off-line delay-tracking system, precisely by
employing a fast computer). The expected estimation error that
would thus result from employing only past photon detections, is
discussed starting on page 149. We will not further dwell upon the
characteristics of a real-time delay-tracking instrument, except to
emphasize its practicality under the condition of sufficiently
strong signals.

Figure 10: In an off-line delay-tracking system, real-time control of the delay-line is optional.
Estimation of the delay function is performed by subsequent processing of stored photon events.

Off-Line Delay-Tracking

Finally, the off-line delay-tracking system, on which the
remainder of this work is based, will be briefly introduced. Off-
line delay-tracking has a sensitivity similar to, but extending
substantially beyond that of real-time delay-tracking. A block
diagram of such an interferometer is shown in Figure 10. As in the
previous configurations, the signal X1 is first passed through a
delay line. As in the incoherently averaged system, only coarse
delay equalization is absolutely required. The control of the
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delay line is derived from a controller which may optionally
receive feedback from the detection system. The light, as shown,
is then fed into a quadrature photomixer8. The detector outputs
are accepted by a computer interface for recording onto mass
storage for subsequent analysis.

Of course a data processing system of sufficient speed may be
able to carry out this analysis at the same rate that the data is
collected. We shall still refer to this as an off-line system for
the reason that the algorithms employed to estimate delay error at
time t will employ data collected before and after time t.
Thus even if a very fast computer is used to servo the hardware
delay line in real-time (an optional configuration), that estimate
of optical delay will necessarily be inferior to the ultimate
estimate employing what amounts to a non-causal filter. The beauty
of the off-line process is that the improved estimate of optical
delay error can be employed to better estimate V , the optical
correlation we are ultimately trying to determine. What’s more,
the interferometer hardware required to implement the off-line
delay-tracking system does not go beyond that described for the
previous two cases; the only additions involve data processing
hardware.

Now, consider the hardware depicted in Figure 10, assuming
that we have implemented the optional feedback loop to control a
rapidly responding delay line. Then it is apparent that we have
implemented all of the hardware required to also perform either
incoherent averaging or real-time delay-tracking, as they were
previously described. All we require is a modest computational
power in the real-time delay-tracking control unit shown in
Figure 10. Thus, by adopting this general hardware configuration,
we have subsumed the other two methods.

8Since close control of the uncorrected delay is not expected,
the implementation of a wideband system would require using the
spectrally-dispersed detection system, not explicitly shown in
Figure 10.
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Estimation of the differential delay function using the
stored data, is the primary issue addressed throughout the
following pages. Having created that estimate of the random
atmospheric delay function, the procedure for integrating the
accumulated off-line data in order to determine V(ν) is described
in Appendix II. First, however, we will make a few general
observations concerning the relationship between delay-tracking
systems and the choice of photomixing and detection hardware.

Photomixing and Bandwidth Considerations

In the preceding descriptions of the three approaches to
delay-tracking, there was no reference to detection systems and
bandwidth considerations in particular. Note that each photomixing
configuration shown in the examples was included for illustrative
purposes, and does not represent the only possible configuration
for the respective delay-tracking system. We chose to illustrate
the real-time and off-line delay-tracking systems using a
quadrature photomixer since, as we have previously noted, a two-
phase photomixer is incapable of resolving the sign of delay error.
In the case of incoherently averaged interferometry, this was not
a concern, and the two-phase photomixer shown in Figure 8 would
therefore suffice.

Let us recall the characteristics distinguishing different
photomixing and detection configurations. One important
characteristic was the degree to which the received light was
divided among a number of detectors. This was of particular
importance in the infrared where detector noise would be dominant,
but also could become important if the number of low-noise
detectors were to be increased to the point that a faint optical
signal would no longer be quantum noise dominated in each one. The
second important characteristic was the fractional bandwidth
received by any one detector element, since this placed a limit on
the maximum optical delay that could be tolerated without
compromising the measurement of interference as determined in (31).
Third, there was a penalty to be paid for detectors which, in quest
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of the first criterion, combined light from spatial modes of
differing phases, reducing the detection of interference according
to (9). Recall that there were trade-offs possible between these
three goals.

Now, let us see how these characteristics relate to the three
approaches to delay-tracking. The most striking relationship
pertains to bandwidth reduction. In either the incoherently
averaged system or the off-line delay-tracking system not using
real-time feedback, the net excursion of uncorrected delay error is
fairly large, and increases with longer baselines. The preferred
solution to bandwidth reduction is, as we have previously
discussed, implementation of spectrally-dispersed detection. The
repercussions of dividing the light into N spectral channels are
far more serious in the case of the incoherently averaged system
for two reasons. First, because that is a system that would need
to be used at the lowest light levels, at which point detector dark
counts would become dominant for a much smaller value of N. On top
of that, because this configuration does nothing to measure either
the instantaneous value or statistics of the atmospheric delay
process, the effect of a non-negligible value of ∆ν∆τ is much more
pernicious. The degradation of measured correlation according to
(31) would affect the interferometer’s estimation of |V | without
any ability to correct for this degradation, due to the lack of any
independent measurement of the delay error in effect during the
observation. In the case of the off-line delay-tracking system
this is not problematic precisely because the delay function will
eventually be estimated, thus supplying a figure for correcting
degraded measurements of correlation, as described in Appendix II.

However, even using off-line delay-tracking with a spectrally-
dispersed detection system, there will still be an eventual point
at which spectral diversity will compromise the signal-to-noise
ratio, due to the optical level at each detector element becoming
insufficient for quantum limited operation. This becomes
particularly true as we venture into the infrared wavelengths. A
decrease in detector signal-to-noise ratio will translate into an
increased optical level required in order for the off-line delay
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tracking algorithm to become operational. One useful feature in a
spectrally-dispersed detection system might be a (cylindrical)
“zoom lens” in between the spectrograph and the detector, so that
N, the number of detector elements covering the spectrum, may be
adjusted. Then N could be reduced to optimize the instrument for
observation of the very dimmest objects, especially under the best
seeing conditions and/or using shorter baselines. N would
otherwise be increased to accommodate the larger expected
excursions of atmospheric delay anticipated in the case of longer
baseline and poorer seeing, and also to obtain superior spectral
resolution.

A strategy that could be of assistance in reducing N in the
operation of the off-line delay-tracking system, is to
simultaneously employ, in real-time, what was previously referred
to as medium-coarse delay-tracking (page 42). In this case, by
rapidly processing the received interference signal to track the
envelope of possible atmospheric delay estimates in a coarse
manner, the required allowable range of uncorrected delay error may
be greatly reduced (especially relative to that necessary for
processing light received from a very long baseline configuration).
That would allow the reduction of N, reducing the effect of
detector noise. Of course, at higher signal levels, the same
hardware would just become an implementation of the real-time
phase-tracking system already discussed.

Now let us consider the question of bandwidth in the use of
the real-time delay-tracking system. A real-time delay-tracking
system using a feedback system based on the imaginary part of
measured correlation, such as shown in Figure 9, either maintains
a delay error of less than half a wavelength or it “loses lock.”
So, as long as it works at all, we can see that allowing detectors
to receive a very wide bandwidth is allowed in this case. This is
therefore the optimum configuration to be used in the infrared, at
wavelengths where low-noise detectors are unavailable.

Even though we may thus choose to use wideband detection for
optimizing the delay-tracking performance of an infrared
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interferometer, we need not simultaneously abandon any hope of
measuring V(ν) with a higher degree of spectral resolution. By
using most of the received light in a wideband detection channel
for delay-tracking, one can use a narrowband pick-off to
simultaneously measure the correlation in a narrow spectral band.
Since the amount of received light in such a narrow bandwidth would
be small, with the detector contributing no less noise, the result
of this detection would be a weak signal buried in noise. However
since the delay-tracking information is obtained from the wideband
channel, the assurance of a reasonably small delay error is
maintained. By taking advantage of that delay-tracking, coherent
integration of the (noisy) narrowband correlation channel can be
performed over time, eventually producing an accurate estimate of
V(ν).

That would be a reasonable strategy for delay-tracking and
coherent integration of optical correlation using an interferometer
having only infrared capabilities. It would also be appropriate
for observing objects whose emission is almost totally in the
infrared. On the other hand, when observing objects with a more or
less “white” spectrum (even including stars that are described as
“red”), the most sensitive mode of delay-tracking would probably be
based on use of the visible radiation. Even though, in
interferometric detection, there is a strong advantage realized
with increasing wavelength, a sharp decline in sensitivity occurs
as we exceed the maximum wavelength (about 1 µm) at which efficient
photon counting with low noise detection is technologically
possible. However a delay-tracking instrument in which most (or
all) of the delay-tracking information is obtained from visible
photon detections, can simultaneously perform infrared detection,
using the successful estimation of delay using the visible
radiation to enable coherent integration of the infrared
correlation.
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Model of Atmospheric Path Delay

We wish to characterize the
random process affecting the phase
of interference observed by a
stellar interferometer due to
atmospheric turbulence. Consider
the case of two telescopes at
positions r1 and r2, receiving
light from the same star, as shown
in Figure 11. Let us denote the
net delay a light wave encounters
in its trip trough the atmosphere,
when observed at a point r1 on the
earth, as τ0(r1). According to the

Figure 11: Starlight in each of two
paths is subject to atmospheric delay denoted
τ0. The interferometer sees the differential
delay, denoted, simply, τ(t).

widely accepted Fried model [1], the random field τ0 is Gaussian
and characterized by the structure function Dτ0 given by:

Dτ0(~r1, ~r2) ∧= E
{(
τ0(~r1) − τ0(~r2)

)2
}
=

6.88
Gτ

L5/3

where: (42)
L ∧= |~r1 − ~r2|

L is the distance separating two observation points (or baseline)
and Gτ is a parameter expressing the magnitude of atmospheric
turbulence having dimensions of length5/3*time−2. In terms of the
more familiar Fried Parameter, r0, applicable to the optical
frequency ν0, Gτ is given by:

Gτ = r5/3
0 (2πν0)2 (43)

Consider an interferometer over a baseline of length L. The
differential delay is simply denoted τ.

τ
∧
= τ0(~r1) − τ0(~r2) (44)

τ will thus be a zero-mean Gaussian random process of variance:
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E
{
τ2

}
=

6.88
Gτ

L5/3 (45)

Dynamics of τ(t)

To evaluate the temporal characteristics of this process, we
shall accept the Taylor hypothesis which assumes that the
turbulence of the atmosphere is “frozen in” and is simply swept
across our field of view by a wind of velocity v0. Then it can be
shown that τ(t) is a zero-mean stationary Gaussian process
characterized by an auto-correlation function Rττ(∆t) given by:

Rττ(∆t) =
3.44
Gτ

v5/3
0 ∆t5/3

[ (
1 + L

L + 2v0∆t cos θ
(v0∆t)2

)5/6

+

(
1 + L

L − 2v0∆t cos θ
(v0∆t)2

)5/6

− 2
]

(46)

where θ is the angle between the wind velocity vector and the
baseline vector. We are mainly concerned with the small ∆t
behavior of this function, in which case Rττ(∆t) is well
approximated by:

Rττ ≈
6.88
Gτ

L5/3
[
1 − (

v0

L
∆t)5/3

(
1 −

5
6

(
v0

L
∆t)1/3

)]
(47)

For long baselines and short time intervals, L � v0∆t, we can
neglect the final factor and further approximate Rττ as:

Rττ ≈
6.88
Gτ

L5/3
[
1 − (

v0

L
∆t)5/3

]
(48)

For a random process x(t) with a finite variance, the structure
function is related to the auto-correlation by:
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Dx(∆t) = 2 [Rxx(0) − Rxx(∆t)] (49)

In this case, the temporal structure function of τ, defined as the
mean-squared change in τ over a time interval ∆t, would be
approximately:

Dτ(∆t) ≈
13.76

Gτ
v5/3

0 ∆t5/3 = T 1/3
τ ∆t5/3 (50)

where we now define the single controlling parameter, Tτ, as:

Tτ
∧
=

2605
G3
τ

v5
0 =

v5
0

r5
0

2605
(2πν0)6 (51)

Note that under this assumption (large L) the structure
function for τ is no longer dependent on the baseline L, and is, in
fact, exactly twice the value of the temporal structure function of
τ0, the one-way atmospheric delay. This is what we would expect
from the addition (or in this case, subtraction) of two identically
distributed independent random processes. Thus for large L, this
equation treats τ0(r1) and τ0(r2) as independent. Given typical
separations for the elements of a long-baseline interferometer, we
have formed a reasonable approximation for the dynamics of τ using
the statistics of τ0 alone. (50) is no longer contaminated by the
assumption of the atmospheric delay structure propagating as a
monolith over a long range, which accounted for the complexity of
the more “exact” expression, (46).

A simple parameter reflecting the time basis on which the
phase of interference changes, is often termed the “fringe
coherence time” or “speckle lifetime” parameter T0, defined as the
Fried parameter r0 divided by the “wind velocity” v0 (different
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authors have used definitions of this quantity that may vary by a
constant factor9).

T0
∧
=

r0

v0
(52)

It can be verified using (50) that in the time period T0, the
r.m.s. change in optical phase is 3.71 radians (which would suffice
as an alternate definition). Unfortunately T0 is defined in terms
of r0 which varies with wavelength. Thus we will, in most
instances, employ non-narrowband parameters such as Tτ and Gτ, even
if their definitions are relatively opaque.

We have now simplified the characterization of τ(t) using (50)
in which only one parameter, Tτ, need be specified. However, one
word of caution is in order. According to this simplified model,
τ(t) has ever increasing energy at low frequencies. In fact, our
approximations had assumed a small ∆t and were thus never meant to
be accurate at low frequencies. Therefore at low temporal
frequencies, or equivalently, at large ∆t, this formula grossly
overestimates the magnitude of differential path delay. The
eventual result of this discrepancy will thus be a pessimistic
evaluation of an interferometer’s performance. It will be seen,
however, that in tracking τ(t), the low frequency components are
the least problematic, and the resulting degradation of estimated
performance is small.

It might be pointed out, however, that for an interferometer
not performing tracking of the interference phase (i.e. using open-
loop control of the delay lines), the penalty for low frequency
components of τ(t) differs, and the low frequency components are
thus of much greater significance. Since the low frequency cut-off

9For instance [8] uses τ0 corresponding to the period in which
the expected r.m.s. phase change due to τ would be exactly 1
radian. In terms of our T0, his τ0 = .207T0. [4] uses a time period,
t0, at which the temporal structure function of the one-way
atmospheric delay τ0 (see page 54), would be 1 radian2. Thus, in
terms of our T0, his t0 = .314T0.
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below which (50) breaks down, increases with the interferometer’s
baseline L (at least up to the size of the so-called “outer layer
of turbulence”), it can be seen that an open loop non-delay-
tracking scheme suffers with increasing baseline while a delay-
tracking instrument maintains its performance up to the point where
an object begins to become resolved.

Given the desirability of a model specified by only one
parameter, we shall continue using (50). We must be prepared to
consider an alternative description, however, in addressing issues
which are dependent on low-frequency components of τ(t), such as
establishing an a priori search space for initial acquisition of
interference, and certain other problems not addressed in the
present work.

The Power Spectrum of τ(t)

Due to the increasing energy at low frequencies, given the
above model, we face a problem when we try to find the power
spectrum of τ(t). Normally the power spectrum would be found by
obtaining the Fourier transform of the auto-correlation. The auto-
correlation of τ(t), however, according to the present
approximation (50) is not well behaved (it is not described as a
positive-definite function) and the Fourier integral does not
converge.

Therefore we shall use an indirect method of determining the
power spectrum of this process. We shall, at the same time, be
introducing and characterizing the cosine transform of τ(t) which
will be employed in the theory to be later presented concerning
path estimation. Le us consider a sample function of τ(t) over
the interval = 0,T , which is Gaussian and governed by (50). We can
expand over this interval in a cosine transform:
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τ(t) =
∞∑

i=0

Ui cos(
π

T
it) 0 < t < T (53)

Over the ensemble of realizations of τ(t), the Ui are then
distributed as zero-mean independent Gaussian random variables
whose variance we shall denote as:

Var{Ui} = E{U2
i } = σ

2
i (54)

Our task, then, is to find the values of the σ2
i consistent with

(50).

Recalling the definition of the structure function Dτ:

Dτ(∆t) ∧= E
{
[τ(t) − τ(t + ∆t)]2

}
(55)

and substituting in the cosine transform expansion (53) for τ, we
obtain:

Dτ(∆t) = E


 ∞∑

i=0

Ui[cos(
π

T
it) − cos(

π

T
i(t + ∆t))]

2 (56)

While the expected value is stipulated to be taken over the
ensemble of τ functions, we could additionally let it run uniformly
over all t in the interval 0,T . This will allow us to evaluate the
right hand side of (56). Expanding the square inside the
summation, and replacing the expected value of the sum with the sum
of the expected value we find:

Dτ(∆t) =
∞∑

i=0

∞∑
j=0

E
{
UiU j [cos(

π

T
it) − cos(

π

T
i(t + ∆t))] ·

[cos(
π

T
jt) − cos(

π

T
j(t + ∆t))]

}
(57)
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For terms in which i , j, the Ui and U j are uncorrelated, so the
expected value of such terms is necessarily zero. Retaining the
terms in which i = j we find:

Dτ(∆t) =
∞∑

i=0

E
{
U2

i [cos2(
π

T
it) + cos2(

π

T
i(t + ∆t))

−2 cos(
π

T
it) cos(

π

T
i(t + ∆t))]

}
(58)

Noting that the Ui are not functions of t or ∆t, we may express the
expectation of the product as the product of the expectations. We
then substitute in σ2

i for the mean squared value of the Ui as
defined in (54), and take the expected value over t of the cosine
terms. We can immediately assign 1/2 to the expected value (over
time) of terms of the form cos2(kt) (except for the zero frequency
term, i = 0, resulting in an in accuracy of negligible significance as
T grows large). Then expanding the last cosine factor, we obtain:

Dτ(∆t) =
∞∑

i=0

σ2
i

[
1 − 2E

{
cos(

π

T
it) [cos(

π

T
it) cos(

π

T
i∆t)

− sin(
π

T
it) sin(

π

T
i∆t)]

}]
(59)

Again taking the expectation over t, the first term inside the
brackets is seen to produce a cos2(t) term while the second term
results in zero expectation. We find:

Dτ(∆t) =
∞∑

i=0

σ2
i

[
1 − cos(

π

T
it)

]
(60)

Now equating this expression for Dτ with the formula (50)
derived from the dynamics of atmospheric turbulence, we shall
determine the values of the σ2

i .
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∞∑
i=0

σ2
i

[
1 − cos(

π

T
i∆t)

]
= Dτ(∆t) = T 1/3

τ ∆t5/3 (61)

For large T there is no loss in accuracy if we transform the
discrete summation into an integral over i. If we also divide both
sides by T∆t5/3 and make the substitution:

x ≡
i∆t
T

(62)

and consider σ2
i to now be a function of a continuous argument, we

obtain: ∫ ∞

0

σ2(T x/∆t)
∆t8/3 [1 − cos(πx)]dx =

T 1/3
τ

T
(63)

Since this must hold equally well for any ∆t, and ∆t only appears
in the fraction of the integrand, this fraction must therefore not
by a function of ∆t:

σ2(T x/∆t)
∆t8/3 = A (64)

where A is an as-of-yet undetermined function of only x and T . Let
us hold x and T constant, so that i is inversely proportional to ∆t
according to (62). Then substituting the frequency index i back
into (64) in order to again express σ2 in terms of i, we obtain:

σ2(i) = A
T 8/3x8/3

i8/3
=

α

i8/3
(65)

where α is now to be determined.

Substituting (65) into the integral of (63) we find:
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∫ ∞

0

α(T x
∆t )−8/3

∆t8/3 [1 − cos(πx)]dx =
T 1/3
τ

T
(66)

All parameters can now be taken out of the integral:

α

∫ ∞

0
x−8/3[1 − cos(πx)]dx = T 1/3

τ T 5/3 (67)

The definite integral has been evaluated numerically and is
approximately 14.06. Thus

α ≈
T 1/3
τ T 5/3

14.06
(68)

yielding our final expression for the variances of the cosine
transform coefficients:

σ2
i = E{U2

i } = αi−8/3 =
T 1/3
τ T 5/3

14.06
i−8/3 (69)

The power spectrum S ττ( f ) can now be calculated. By
convention, the total power contained in a small frequency interval
f , f + ∆ f is

∆P =
∫ f+∆ f

f
2S ττ( f ′)d f ′ ≈ 2S ττ( f )∆ f (70)

But this frequency interval corresponds to frequency components of
the cosine transform used above (53) running from i to i + ∆i where:
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i = 2T f
∆i = 2T∆ f (71)

in which there is therefore an expected power of:

∆P =
i+∆i−1∑

j=i

1
2
σ2

j ≈ ∆i
1
2
σ2

i = T∆ fσ2
2T f (72)

Substituting the value we have found for σ2
i in (69) we find:

∆P = T∆ fαi−8/3

= T∆ f
T 1/3
τ T 5/3

14.06
(2T f )−8/3 = ∆ f

2−8/3

14.06
T 1/3
τ f −8/3 (73)

Equating (70) with (73) we solve for the spectral density S ττ( f ):

S ττ( f ) = .0056T 1/3
τ f −8/3 (74)

The above expression for the spectral density function is
included for reference only. Future calculations requiring
knowledge of the spectral characteristics of τ(t), will be based on
the cosine transform expansion(53) and our determination of the
variances (69) of the cosine transform coefficients.

It should be pointed out that the Fried model [1] for the
spatial structure function of τ0, on which the determination of the
temporal structure function of τ was based, are theoretical
predictions derived from the Kolmogorov theory of turbulence.
While there have been empirical studies producing results
consistent with this model (for instance [5]), the validity of the
−5/3 power law for the structure function of τ0 (42) is not a
given. Some authors have preferred to model the power spectrum as
a general power law in which the exponent remains undetermined.
Additionally, there is unquestionable decrease in the magnitude
of the low-frequency components of τ relative to this simplified
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model, due to the finite baseline distance L as discussed earlier,
and also due to the existence of an “outer layer of turbulence,”
the size of which is subject to considerable disagreement.
Although results in the following pages are strictly based upon the
above model, it should be apparent that the mathematical procedures
employed could be generalized to accommodate any characterization
of the spectrum of τ.
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Point Estimation of τ using Time Bins

In this chapter and the next chapter we shall introduce
relatively simple approaches to the τ(t) estimation problem. In so
doing, we introduce the tools necessary for the development of the
ultimate solution to be presented in a later chapter. We will, in
this journey, present sub-optimum, but nevertheless, reasonable
solutions to the estimation problem which are more closely related
to conventional approaches than is the path estimation procedure,
to be presented later.

One simplification present in the following solutions is that
the entity we are estimating is τ(t1), the differential atmospheric
delay at a given time t1, rather than a function, τ(t), over a
range of t. We face a far simpler problem in the one dimensional
estimation problem of τ at one time t1 (or “point estimation”, as
opposed to the infinite dimensional problem of estimating the path
of the function τ(t) over an interval (or “path estimation”. The
point at which the degrading approximations, (75) and (144), are
invoked in order to thus limit the scope of the estimation problem,
will be noted.

Now let us initially restrict ourselves to the narrowband
case. Under the narrowband assumption, all received photons are of
approximately the same optical frequency ν. This simplifies the
solutions we shall obtain. The application of the point estimation
methods to wideband (white) light is depicted in the simulation
results of Figure 15 and Figure 16.

Simplified Model

A casualty of point-estimation procedures is the lack of
detailed incorporation of the a priori statistics of τ(t), that is,
properly rewarding solutions which display the smoothness in τ(t)
favored by its power spectrum, which, as we have shown, is
dominated by low-frequency components. In the first part of the
discussion of point-estimation procedures we will even further
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ignore the a priori characteristics of τ(t). The very simplified
characterization of τ(t) is essentially to assert that over a short
time interval its value must be almost constant. In our case
“constant” means changing much less than an optical wave period
1/ν. Our assumption is then:

τ(t) ≈ τ(t1) t1 −
T
2
< t < t1 +

T
2

(75)

which, as we have noted, must be true for a sufficiently small T
given that τ(t) is a smooth function. We shall thus proceed taking
(75) as an equality.

This approach is explicitly employed in classical treatments
of the τ estimation problem. Generally a criterion is first set
for the “approximately equals” in (75), and then a maximum limit is
arrived at for T , the width of the time “bins,” so that (75) is
satisfied. This maximum T is then on the order of, but somewhat
smaller than T0, the atmospheric coherence time parameter (52),
during which interference “fringes” or “speckles” formed by the
interference of starlight, are relatively stationary. In [8],
using a time binning procedure equivalent to that described below,
there is a proposed solution to the optimization of T taking into
account the expected delay errors both due to the approximation of
(75), and due to the lack of available photons as T is decreased.

The upshot of the assumption (75) is that photons received
during the interval (t′ − T/2) < t < (t′ + T/2) are employed, with
equal weight, to estimate the point τ(t′), whereas photons outside
this interval will be considered irrelevant to the estimation of
τ(t′). One thus forms N time bins: 0 < t1 < T ; T < t2 < 2T ;. . .
(N − 1)T < tN < NT ; so that the problem of estimating τ(t) is reduced to
independent estimations of the N points τ(ti), each of which is
based only on photons received in its particular time bin10. We

10One could, of course, gain additional time resolution in the
estimate of τ by creating overlapping time bins at a spacing, ∆t,
which is smaller than T , the width of the time bins. In the
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simplistically ignore any correlation between τ(ti) and τ(t j) for
i , j. We will assume the a priori probability density of τ(t1) to
be uniform over some indefinite (or, perhaps, infinite) interval.

Following the present discussion we will discover how better
results can be obtained by abandoning the time-binning strategy and
instead taking into account the a priori spectrum of τ(t) in order
to best weight the received photons in order to estimate the point
τ(t′). Following that, we will further improve our results by
going to path estimation procedures, in which the entire function
τ(t) is estimated over an extended interval of time.

So let us reiterate the very simplified model to which we have
reduced our problem. We wish to estimate the value of τ(t) at t = t′

using K received photons acquired during an interval of width T
centered about t′, during which τ(t) does not appreciably change
according to (75). All photons are of the same optical frequency
ν. Let us assume, for the sake of the following presentation, that
the interferometer employs a balanced quadrature photomixer feeding
noiseless detectors11. Also, for the sake of simplicity, let us
assume that the “correction delay” τc included in the model
discussed on page 14, is zero. Each photon, numbered k for k = 1 to
K is found in a quadrature channel qk, where qk = 0, 1, 2, or 3.
Assume that we are employing a photomixer characterized by (21).
Now, given that the underlying τ(t) around time t′ is equal to
τ(ACT), with τc = 0, then the field amplitude seen at the photomixer
output channel #i at optical frequency ν would be given by the
generalization of (29).

10extreme case, we would compute a “moving average” so that each
point in time is based upon a slightly different set of photons, as
in [8]. In any case, the results that will be presented are not
affected by the choice of ∆t.

11The choice of a balanced quadrature detector (see page 26)
will add to the symmetry of the following calculations. However
any photomixer configuration will achieve essentially identical
results. The only exception is the two-phase photomixer which, as
we have previously noted, is capable of measuring only the cosine
and not the sine of phase angle, resulting in an expected error
which is dependent on τ itself, and which is incapable of resolving
the sign of any phase error.
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|yi|
2 = |

1
2

(x1 + jix2)|2

=
|A|2

2

(
1 + Re

{
jiVe j2πντ(ACT)})

(76)

Note that we have changed the index of y to run from 0 to 3, rather
than 1 to 4 as previously shown. Assume that photon #k was
detected at optical frequency ν. Then the conditional probability
of having found photon #k in quadrature channel qk would clearly be
given by:

P(qk|τ
(ACT)) =

1
4

(
1 + Re

{
jqkVe j2πντ(ACT)})

(77)

where, again, V is the complex visibility for photons of optical
frequency ν. Given τ(ACT), these events are independent, thus the
joint probability of finding K photons in a series of quadrature
channels q1, q2, . . . qk would simply be the product of K factors,
each given by (77).

Finding the A Posteriori Density of τ

We wish to find the a posteriori probability density for τ(ACT)

under these assumptions given a received data set q1, q2, . . . qk.
Bayes’ theorem says that the a posteriori probability of an
underlying random variable x given an observation y is given by:

P(x|y) = k1P(y|x)P(x) (78)

where k1 is a constant that normalizes the total probability of
P(x|y) such that its integral over all x is unity. In other words,
the a posteriori probability is proportional to the likelihood of
x given y (given by P(y|x) above) times the a priori probability of
x. In the case of a uniform a priori probability for x, then, we
conclude that the a posteriori probability of x given an
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observation is just proportional to the likelihood function12

P(y|x). Applying this to the estimation of τ(t′) given the qk from
K photons, we find using (78):

P(τ|~q) = k1

K∏
k=1

(
1 + Re

{
jqkVe j2πντ

})
(79)

From now on we shall write expressions not for the probability
density in (79) but for the logarithm of this probability. This
will conveniently transform products (such as in (79)) into
summations. The normalization factor k1 will now become an additive
term C1, which, incidentally, we will really never need to evaluate
or further consider13. Now, the problem of maximizing (in either
a global or a local sense) the a posteriori probability density is
clearly achieved by maximizing its logarithm, knowledge of C1 being
totally unnecessary.

One further ramification of looking at the logarithm of
probability will be mentioned. Let Λ be a constant plus the
logarithm of probability. Then, if Λ is at all smooth, it can
naturally be approximated around its maximum point in a second-
order polynomial. But a second-order polynomial is exactly the
logarithm of a normal (Gaussian) density! This procedure,
therefore, lends itself to the evaluation of Gaussian solutions.
The variances of these Gaussians can be directly obtained from the
curvature (second derivatives) of Λ around the maxima.

12In other words the Maximum A Posteriori Probability (MAP)
estimate, in the case of a uniform a priori characterization of the
unknown, is identical to the Maximum Likelihood estimate.

13It should be pointed out that k1 or C1 is only a constant
relative to the quantity being estimated, τ. It will generally not
constant for different data sets!
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The Complex Likelihood Function

Let us introduce the following notation. The Complex
Likelihood Lk, for photon #k, will be defined as:

Lk(τ′)
∧
= jqkVe j2πντ′ (80)

Lk is thus a function which embraces the information derived from
the reception of photon #k at time tk with optical frequency νk and
detected in quadrature channel qk. Given these parameter, Lk is
then a function of a single argument: τ′. When the argument of Lk

is not explicitly specified, we will take it to be τ(tk), the
independent variable of estimated τ(t), that is, the estimated τ

function evaluated at time tk, the time that particular photon was
received (there will only be a few cases when the argument of Lk

needs to be specified differently.) Since, in the present case, we
are taking τ to be constant over a time bin, we will just use the
estimated τ for time bin #1, or τ1 to be the argument of Lk for all
photons received during the interval of length T centered about
t1 = T/2. Thus:

Lk = jqkVe j2πντ1 (0 ≤ tk ≤ T ) (81)

ν and V are the same for all photons, in the present case, since we
are assuming narrowband reception. We shall continue to refer only
to time bin #1 since all time bins are treated identically and
independently of one another.

Now let us write the a posteriori probability density of τ(tk)
given only the detection of a single photon. As before we assume
a uniform a priori distribution for τ(tk). Then we can rewrite
(79) for K = 1 (only one photon detected) as:

P(τ|qk) = k1 (1 + Re {Lk}) (82)

Note that the physically significant quantity derived from Lk

is always given by one plus its real part. This number is always
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between 0 and 2, and yields the probability as seen in (82). Since we
shall henceforth be dealing solely with the logarithm of
probability density, we rewrite (82) as:

log P(τ|qk) = C1 + log (1 + Re {Lk}) (83)

The Linear-Log Approximation

Before proceeding, we shall digress and introduce one
important approximation which will be frequently employed
throughout the rest of this work. The Linear-Log Approximation
(LLA) says that:

log(1 + x) ≈ x (84)

is a very good approximation under the condition:

|x| � 1 (85)

Even for x = +1 it is not a terribly bad approximation, although as
x approaches −1 it clearly fails. In the practical case to which
we now apply this approximation it will be seen to be reasonably
good (for |V | ≈ 1) to excellent (for |V | � 1).

Applying the linear-log approximation to (83) results in the
simplification:

log P(τ(tk)|qk) = C1 + Re {Lk} (LLA) (86)

Equations such as (86) in which the linear-log approximation has
been applied will not be written with an “approximately equals”
sign (which will be reserved to indicate further levels of
approximation) but will be punctuated with “LLA” to remind the
reader that this approximation has been invoked. Similar equations
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in which the LLA approximation has been avoided will be labeled
with “EL” for “exact logarithm.”

Let us see to what extend using the LLA approximation in (86)
will distort the determination of probabilities. Let us call Λ a
constant plus the logarithm of probability density. Then
probability density is given by

P = k1eΛ (87)

But (for the case of observing a single photon) Λ is given by (83)
or (86) depending on whether or not we are employing the LLA
approximation. Thus:

Λ =

{
log(1 + |V | cos(Φ))
|V | cos(Φ)

(88)

where we have now rewritten Lk as:

Lk = jqkVe j2πντ = |V |e jΦ

∴ Re{Lk} = |V | cos(Φ) (89)

We have assembled all the phase factors of Lk in the e jΦ factor,
which then multiplies the magnitude of V , the “fringe visibility”
or correlation being detected by the interferometer. |V | can be as
high as unity in the case of observation of a totally unresolved
object (a virtual point source). In this case the LLA
approximation will be at its worst. More typically, a source will
be at least sightly resolved. Or there might be a significant
level of dark counts in the photon detection system which,
equivalently, reduced the detected correlation well below unity.
As the correlation decreases, then x in (84) is bounded by:

−|V | ≤ x ≡ Re{Lk} ≤ |V | (90)
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Now the relative probability densities computed using (87) using
the exact and approximate expressions in (88) would be

P
k1
= eΛ =

{
elog(1+|V | cos(Φ)) = 1 + |V | cos(Φ) (EL)
e|V | cos(Φ) (LLA)

(91)

In Figure 12 this computed
probability is plotted for all
possible values of x both with and
without the LLA approximation. For
correlations higher than .8 it can
be seen that the LLA approximation
can be off by a factor of 2 (when
x = −.8). Such a discrepancy,
however, is less serious than might
appear at first sight. That is
because the whole point of the
estimation procedure is to find
solutions which maximize the
a posteriori probability. But the
y axis of Figure 12 is exactly a

Figure 12: Distortion of probability reckoned
using the LLA approximation compared to
exact logarithm.

plot of probability, and our solution, if it is any good, would
favor points the upper right of the graph (whichever curve
you choose), the points at the lower left being strongly avoided.
The major difference, therefore, between an exact algorithm and one
using the LLA approximation, is that the latter would consider
solutions which find Re{Lk} near −1 to be quite unlikely whereas
the exact algorithm would judge such solutions to be totally
unlikely. However the reckoning of the probabilities of likely
solutions, having higher values of Re{Lk}, tends to be much less
distorted by the LLA approximation.

Now it can be seen that the LLA approximation consistently
overestimates the Λ of any solution. In fact there is a very
marked difference in the overall figures of merit produced using
the two methods, as will be pointed out on page 159. However this
bias is of no concern since we are computing relative not absolute
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probabilities, and choosing solutions on the basis of these
relative numbers.

The net degradation suffered due to using the LLA
approximation will be quantified in a later section. For |V | not
approaching unity, this degradation will be found to be negligible.
Even if not used, however, the increase in accuracy using the exact
logarithm remains of academic interest since the enhancement gained
is a specifically quantum effect which can not be accounted for
using classical models in which the quantized nature of light is
reduced to an equivalent “shot noise” level with an r.m.s.
amplitude given by the square root of photon flux.

For the remainder of this chapter we shall apply the LLA
approximation as in (86).

The Net Complex Likelihood Function

(86) was derived by applying the LLA approximation (84) to
(82), representing the probability due to a single photon.
Generalizing this result for K Photons, the logarithm of
probability is expressed as a summation of logarithms approximated
using (84).

log P(τ|~q) = log k2 +

K∑
k=1

Re{Lk} (LLA)

= C2 + Re{L(b)∑ } (92)

where we hereby introduce the notation L(b)∑ for the net complex
likelihood for the time bin being considered. The superscript (b)
reminds us that this complex likelihood is computed using binning
rather than a more sophisticated weighting yet to be introduced.
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The net complex likelihood is now defined simply as the
summation of the photons’ complex likelihoods for each photon in
the time bin:

L(b)∑ ∧
=

K∑
k=1

Lk (93)

For the narrowband case, this summation takes on a particularly
simple form:

L(b)∑ = K∑
k=1

jqkVe j2πντ = Ve j2πντ
K∑

k=1

jqk (94)

We are reminded that the summation of K phasors (with respect to τ)
of the same frequency ν, yields a phasor of that frequency of some
magnitude and phase. Since the real part of L(b)∑ gives us the
logarithm of a posteriori probability density, we can see that the
plot of a posteriori probability will be periodic with peaks
separated by 1/ν. Of course we already knew that a very narrowband
interferometer is only capable of phase-tracking, with integer
wave-period delay ambiguities being unavoidable. Let us suppose
that we have overcome that ambiguity (or are willing to ignore it!)
and calculate the expected error in phase determination obtained by
maximizing the logarithm of a posteriori probability in (92), equal
to the real part of (94) plus a constant.

The Resulting Estimator

The real part of (94) will clearly be maximized for phases in
the exponential which cancel the phase angle of V times the complex
summation, so that we would naturally form the estimator:

Φ̂ = 2π(ντ̂ + N) = −(arg(V) + arg(Z)) (95)
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where Z is a statistic derived from the received photon events:

Z ∧
=

K∑
k=1

jqk (96)

Of the K received photons, about half, KR, will have q = 0 or 2 and
contribute to the real part of Z. KI will likewise contribute to
the imaginary part.

Z =
KR∑

kR=1

(−1)qkR/2 + j
KI∑

kI=1

(−1)(qkI−1)/2

=

KR∑
kR=1

z′kR
+ j

KI∑
kI=1

z′′kI
(97)

= ZR + jZI

We have now expressed the effect of each photon accumulated in (96)
as either z′kr or z′′ki depending on whether it contributes to ZR or
ZI, the real and imaginary parts of the complex statistics Z. Using
(77) we can see the KR photons counted in the z′ summation of (97)
are each independently distributed according to:

P{q = 0} = 1 − P{q = 2} =
1
2

(
1 + Re{Ve jΦ(ACT )

}
)

(98)

where
Φ(ACT ) ∧= 2πντ(ACT ) (99)

is the actual phase we are attempting to estimate. Note that the
probabilities for q = 0 and q = 2 have been doubled since we are only
selecting photons whose q is even and have omitted from
consideration photons whose q is odd. Then the random variables z′

in (97) each take on the value +1 or −1 with probabilities given by
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(98) (A similar expression applies to the probabilities of the z′′

taking on +1 or −1). Computing the mean and variance of each z′ we
find:

E{z′} = (+1) · P{q = 0} + (−1) · P{q = 2}

=
1
2

(
1 + Re{Ve jΦ(ACT )

}
)
−

1
2

(
1 − Re{Ve jΦ(ACT )

}
)

(100)

= Re{Ve jΦ(ACT )
}

Var{z′} = E{(z′)2} − (E{z′})2

= 1 − (Re{Ve jΦ(ACT )
})2 (101)

Likewise for the z′′:
E{z′′} = Re{ jVe jΦ(ACT )

} (102)

Var{z′′} = 1 − (Re{ jVe jΦ(ACT )
})2 (103)

The means and variances of the real and imaginary parts of Z are
given by multiplying by KR and KI respectively. Calling:

Φ′
∧
= Φ(ACT ) + arg(V) (104)

then:
E{Re{Z}} = KR|V | cos(Φ′) (105)

Var{Re{Z}} = KR(1 − |V |2 cos2(Φ′)) (106)

E{Im{Z}} = −KI |V | sin(Φ′) (107)

Var{Im{Z}} = KI(1 − |V |2 sin2(Φ′)) (108)
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∴ E{Z} =
K̄
2
|V |e− jΦ′ =

K̄
2

V∗e− jΦ(ACT )
(109)

where K̄ is the expected value of K, so that KR and KI each have an
expectation of half this value. Substituting the expected phase
angle of Z according to (109) into the estimation equation (95) we
indeed find that the estimator works and is unbiased:

E{Φ̂} = −E{arg(V) + arg(Z)}
= −(arg(V) + arg(V∗) − Φ(ACT )) (110)
= Φ(ACT )

(We have assumed that the expected value of a phase angle is the
phase angle of the expected value, always true for complex
Gaussians.)

Determination of the Estimator’s Performance

For a sufficiently strong signal we can determine the r.m.s.
error in the resultant estimation Φ(ACT ) using the following
procedure. By “strong signal” we mean that

K|V |2 � 1 (111)

Under this condition, the approximations invoked in various of the
following steps become justified. Since we expect (and shall
find!) that the expected estimation error is significantly less
than a radian, we can proceed to determine the mean squared
estimation error.
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E{(Φ̂ − Φ(ACT ))2} ≈ E{sin2(Φ̂ − Φ(ACT ))}
= E{(Im{e jΦ̂e− jΦ(ACT )

})2} (112)
= E{(Im{e j(Φ̂+arg(V))e− j(Φ(ACT )+arg(V))})2}

Substituting (94) and (104) into (112) yields

= E{(Im{e j arg(Z)e− jΦ′})2}

= E{(Im{
Z∗

|Z|
(cosΦ′ − j sinΦ′)})2} (113)

= E{
(− Im{Z} cosΦ′ − Re{Z} sinΦ′)2

|Z|2
}

We shall crudely evaluate the expected values of the numerator
and denominator separately, and then perform the division. Working
on the denominator:

E{|Z|2} = E{Z2
R + Z2

I }

= (E{ZR})2 + Var{ZR} + (E{ZI})2 + Var{Zi} (114)
= E{KR + KI + K2

R|V |
2 cos2Φ′ + K2

I |V |
2 sin2Φ′

−KR|V |2 cos2Φ′ − KI |V |2 sin2Φ′}

By (111) the dominant terms can be identified and retained.
Loosely applying (119) we then obtain

E{|Z|2} ≈
|V |2K̄2

4
(115)

The numerator can now be expanded as:
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numerator = (cos2Φ′)Z2
I + (sin2Φ′)Z2

R

+2 sinΦ′ cosΦ′ZRZI (116)

Taking the expected value of each term, and expressing the expected
value of the square of a random variable as its variance plus the
square of its mean, all given by (105)–(108) we find:

E{numerator} = E{(cos2Φ′)(KI(1 + (KI − 1)|V |2 sin2Φ′))
+(sin2Φ′)(KR(1 + (KR − 1)|V |2 cos2Φ′)) (117)
−2 sinΦ′ cosΦ′KI |V | sinΦ′KR|V | cosΦ′}

We have evaluated the expectations over z, but retain the expected
value notation around the expression since KI and KR remain
(slightly) random. Continuing:

= E{(KI cos2Φ′ + KR sin2Φ′)
+ cos2Φ′ sin2Φ′|V |2(K2

I − KI + K2
R − KR) (118)

−2 sin2Φ′ cos2Φ′|V |2KIKR}

Next we substitute in the expectations for terms containing KI and
KR, given by:

E{KI} = E{KR} =
K̄
2

(119)

E{K2
I } = E{K2

R} =

(
K̄
2

)2

+
K̄
2

(120)

E{KIKR} =

(
K̄
2

)2

(121)

Then we find that the last two major terms in (118) cancel exactly,
yielding the expected value for the numerator of (113):
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E{numerator} =
K̄
2

(122)

Dividing this number by the expected value of the denominator of
(113) given by (115) we approximate the mean squared estimation
error:

E{(Φ̂ − Φ(ACT ))2} ≈
K̄/2

(|V |2K̄2/4)
=

2
K̄|V |2

(123)

It is only natural to define the bin signal-to-noise ratio as:

S NR(b) ∧= K̄1/2|V | (124)

If photons are received at an average rate of I0 (photons per
second), then, using time bins of duration T , we would find the
signal-to-noise ratio to be:

S NR(b) =
√

I0T |V | (125)

Now using this definition for signal-to-noise ratio, the r.m.s.
estimation error is simply given by:

Φ̃ =

√
E{(Φ̂ − Φact)2} ≈

√
2

S NR(b) (126)

or in terms of delay error:

τ̃ =
Φ̃

2πν
≈

√
2

2πνS NR(b) (127)

Note that the condition, (111), required for the validity of
the approximation used in the derivation of (126), can be re-
written:
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S NR(b) � 1 (128)

As can be seen from (126) the signal-to-noise ratio would need to
exceed 2.8 just to attain an estimation error of 1/2 radian.
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Point Estimation of τ using Optimum Weighting

The estimation of delay at a particular time by considering
only photons in a certain time “bin” suffers a certain shortcoming.
We wish to raise the signal-to-noise ratio as high as possible in
oder to improve delay-tracking performance. Recall that the
signal-to-noise ratio in (124) is proportional to the square root
of K, the expected number of received photons in a time bin. K and
the bin signal-to-noise ratio can be increased by lengthening T ,
the interval of time in which photons are accumulated into one bin.
As earlier discussed on page 66 however, we have required that T be
sufficiently small so that τ(t) does not change appreciably over
this time period in order for the assumption (75) on which we have
formulated the binning procedure to retain its validity (the
derivation of (126) rests on this assumption). This dichotomy
between the need to increase T and to limit T illustrates the need
to go beyond “binning.” We shall now develop a more sophisticated
procedure which can optimize the use of all photons which may
contain some information concerning τ(t′) without simply allowing
an overly wide bin size which, using the previous procedure, would
be counter-productive.

To lead into this discussion, let’s recall the definition of
the “net complex likelihood” function (93) of τ(t′), that is, the
function related to the logarithm of a posteriori probability of τ

evaluated at the particular time t′. Rather than summing over the
K photons in the bin, we can rewrite (93) as:

L∑(τ(t′)) =
K∑

k=1

LK(τ(t′))w(tk − t′) (129)

where the summation is now taken over a much larger set of photons,
perhaps all photons received in an observation, but weighted
according to w, which, consistent with (93) would be given by:
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w(b)(tk − t′) =
{

1 |tk − t′| ≤ T/2
0 |tk − t′| > T/2

(130)

In other words, photons which were assigned to the bin estimating
τ(t′) according to (75) (see the discussion on page 66) will have
a weight of unity, and photons outside the specified interval will
have zero weight. So with the choice of weighting function given
by (130), then the giant sum in (129) clearly is identical to the
binned sum in (93). The conclusion of the following analysis,
however, yields a more natural weighting function which drops off
from 1 to 0 in a smooth manner as shown in Figure 13.

Incorporating A Priori Statistics of τ(t)

What we wish to do, therefore, is to incorporate knowledge
regarding the dynamics of atmospheric path delay τ(t), into the
problem of estimating τ′ = τ(t′) (partially) from a photon #k
detected at time tk = t′ + ∆t for a substantial time difference ∆t
during which τ is expected to vary at least a significant fraction
of a wave period 1/ν. As before, the computation of the
a posteriori probability of τ′ given a series q1, q2,. . . qK,
requires computation of the likelihood, defined as the a priori
probability of having received the set of qk given only that the
actual τ at time t′ takes on the value τ′. Let us proceed to
determine this probability. The problem is as follows. Given that
τ(t) evaluated at the particular time t′ is exactly τ′, then what
is the conditional probability of a photon detected at some other
time tk being found in quadrature channel qk of an interferometer?

Solving for that probability first requires determining the
probability density of τ at one time tk given τ at a different time
t′. That quantity is dependent upon the structure function Dτ for
the stochastic process τ(t), which we have determined in (50) based
upon the widely-accepted Fried model of atmospheric turbulence.
Recall the definition of the structure function:
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Dτ(∆t) ∧= E{[τ(t) − τ(t + ∆t)]2} (131)

τ being a stationary stochastic process, the structure function Dτ

is independent of t. The particular form for Dτ in (50) may be
substituted into the results obtained in the following analysis.
Regardless of the exact Dτ used, we assume that τ(t) is a Gaussian
process. IN that case (131) implies that knowing only the value of
τ′ = t(τ′), then if τk represents τ at some different time tk = t′ + ∆T ,
then τk will have an expected value of τ′ and variance given by
Dτ(∆t) as can be seen by its definition (131). Thus:

P(τk|τ
′) =

1
√

2πDτ(∆t)
e−

(τk−τ
′)2

2Dτ(∆t) (132)

Now we already have an expression for the a priori probability of
finding a photon in quadrature channel qk given τk:

P(qk|τk) =
1
4

(
1 + Re{ jqkVe j2πντk}

)
(133)

We can combine (133) and (132) to form a joint probability, and
then integrate over τk to find the marginal probability of qk,
conditional on τ′ only.

P(qk|τ
′) =

∫ ∞

−∞

dτkP(qk|τk)P(τk|τ
′) (134)

=

∫ ∞

−∞

dτk

1
4

(
1 + Re{ jqkVe j2πντk}

)
√

2πDτ(∆t)
e−

(τk−τ
′)2

2Dτ(∆t) (135)

Calling:
∆τ = τk − τ

′ (136)
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and noting that the integral of a real part is the real part of the
integral:

=
1
4

(
1 + Re{

∫ ∞

−∞

d∆τ
jqkV
√

2πDτ

e−
∆τ2
2Dτ
+ j2πν∆τe j2πντ′}

)
(137)

=
1
4

(
1 + Re{

jqkV
√

2πDτ

e j2πντ′
∫ ∞

−∞

d∆τe−
∆τ2
2Dτ
+ j2πν∆τ

}

)
(138)

Evaluation of the definite integral yields:

=
1
4

(
1 + Re{

jqkV
√

2πDτ

e j2πντ′
( √

2πDτe−
4π2ν2
4/2Dτ

)
}

)
(139)

=
1
4

(
1 + Re{ jqkVe j2πντ′e−2π2ν2Dτ(∆t)}

)
(140)

If we now, in anticipation, jump ahead of ourselves and set the
weighting function to be

w(∆t) = e−2π2ν2Dτ(∆t) (141)

then we can substitute the simplified notation of (141) and (80)
into (140) yielding the solution of (134):

P(qk|τ
′) =

1
4
(
1 + Re

{
w(tk − t′)Lk(τ′)

})
(142)

Note that, in this important exception, we are using the complex
likelihood Lk evaluated for an argument other than τ(tk). Lk in
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this case has an argument τ′, the τ we are estimating for the time
τ′, separated from tk by ∆t.

What we really need, however, is not the probability of qk

given τ′ as given by (142), but rather the joint probability of the
set of qk’s for all k, given τ′. It would be tempting to write
this joint probability as the product of individual factors each
given by (142) And it is true that, because photon events occur
independently, the joint probability of a qk sequence given a τ(t)
function over all time is given exactly by the product of the
individual probabilities:

P(q1, q2, . . . qk)|τ(t)(∞ < t < ∞)) =
P(q1|τ(t)) · P(q2|τ(t)) · . . . · P(qK |τ(t)) (143)

But given only τ′ = τ(t′), then, τ(t1) and τ(t2) at two times other
than t′ are still each random variables obeying (132). However
τ(t1) and τ(t2) are not independent of each other (especially for
small |t2 − t1|. Therefore q1 and q2, which are conditional on τ(t1)
and τ(t2) respectively, are not exactly independent. Thus we can
only write as an approximation:

P(q1, q2, . . . qk)|τ′) ≈
P(q1|τ

′) · P(q2|τ
′) · . . . · P(qK |τ

′) (144)

We shall accept this approximation for the time being, however; any
attempt to further quantification of the expression for joint
probabilities would, out of necessity, duplicate work to be presented
in a subsequent chapter in which path estimation is considered.
The following results using the above approximation approach the
performance limit attainable within the realm of point estimation,
that is estimating τ at a particular point in time t′, in terms of
photons received at various times around t′. Only when we consider
path estimation, evaluation of the likelihood of a function τ(t) in
time, can we employ the exact expression of independence (143).
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Nevertheless, (144) is not a bad approximation at all, and will
lead to surprisingly close estimates of τ′.

Evaluation of the A Posteriori Density of τ(t)

To evaluate the a posteriori probability density of τ′ based
upon the data set q1, q2, . . . qK, we again employ Bayes’ theorem
using a uniform a priori probability density for τ′:

P(τ′|~q) = k1P(~q|τ′)P(τ′) = k2P(~q|τ′) (145)

Again we wish to write expressions for the logarithm of this
probability density. The LLA approximation (84) is again applied
in order to simplify the evaluation of the logarithm of (142). In
the case of binning we noted that the LLA approximation held well
when the magnitude of x, bounded by |V | according to (90) was not
close to unity. In the case of (142), application of (84) shows x
to be bounded by:

−w(∆t)|V | ≤ x ≤ w(∆t)|V | (146)

Since the weight function w(∆t) varies between 0 and 1, this places
us even more toward the (desirable) center of Figure 12, especially
for photons separated appreciably in time from t′. Thus even for
|V | = 1, the LLA approximation will hold well for most terms in the
following equation.

Using the approximation of independence (144), the result
(142), and applying the LLA approximation (84), then (145) becomes:

log P(τ′|~q) = c1 + Re{L(w)∑ (τ′)} (LLA)

= c1 + Re{
K∑

k=1

w(tk − t′)Lk(τ′)} (147)
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L(w)∑ is the net complex likelihood using the weighting function
w(∆t). The maximization of the real part of that function, now,
maximizes the a posteriori probability of τ(t′) according to the
above model, yielding the MAP estimate of τ. Note that we have
achieved a summation of the generalized form proposed in (129) in
which the classical binning procedure corresponds to a weighting
function (130) which abruptly fell from 1 to 0 at |∆t| = T/2. Now we
have derived a weighting function (141) which smoothly falls from
1 to 0 in a manner dictated by the dynamic characteristics of τ(t).
Given the previous expression (50) of the structure function for
τ(t), we can write out the weighting function in (141) as:

w(∆t) = e−2π2ν2T 1/3
τ |∆t|5/3 (148)

Note that this weighting is
barely distinguishable from a
Gaussian weighting function,
in which case ∆t in the
exponent would be raised to
the power of 2 instead of 5/3.
This weighting function is
plotted in Figure 13 for the
case of the Fried parameter
r0 = .1 meter and the effective
wind velocity (see page 55)
v0 = 10 m/sec. It can be seen
that the weighting function
has virtually fallen to zero

Figure 13: Weighting function for the con-
tribution toward the net complex likelihood
function by photons separated from t′ by ∆t.

at 10 milliseconds, the “speckle coherence time” parameter T0 = r0/v0.
Photons outside the central 10 millisecond wide window are seen to
have little influence on the estimation of τ′ using (147).

In the narrowband case, we can, again, write the MAP solution
for the estimate of τ or Φ in closed form:

Φ̂(w) = 2π(ντ̂(w) + N) = −(arg(V) + arg(Z(w))) (149)
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where Z(w) is the weighted version of Z, which had been defined in
(96).

Z(w) ∧=

K∑
k=1

w(t′ − tk) jqk (150)

Performance of the Estimator

It is possible to compute the r.m.s. phase estimation error as
we did for the case of binning in (126). The mathematical
procedure followed is similar to (112)–(127) but somewhat more
involved. Heuristically, however, the result to be presented can
be understood as follows.

If we think of each photon as providing an independent
“estimate” of τ′, then the expected “accuracy” (reciprocal of
r.m.s. error) for a photon at time tk = t′ + ∆t is proportional to
w(∆t) (photons whose tk = t′ are the most “accurate” for estimating
τ(t′) as w(0) = 1). Then we take the contribution of each photon and
weight it by w to manufacture our estimate of τ′. The accuracy of
the net estimate is governed by the familiar result which says that
an estimate based upon the optimally-weighted average of
independent measurements has an accuracy equal to the accuracy of
each individual measurement added in quadrature. Thus the photon
at time tk has a relative contribution of (w(tk − t′))2 toward the
square of the net “accuracy.” In the discussion of error using the
binning procedure we found the square of the “accuracy” to be
proportional to the number of photons considered, as seen in (123).
Retaining this relationship, we would find the contribution of each
photon to be the denominator of the mean-squared phase error in (123)
to also be proportional to the square of its weight as given by
(148).

We are thus, in effect, producing an average base upon an
effective number of photons given by:
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Ke f f =

K∑
k=1

(w(tk − t′))2 (151)

where this summation is taken over all possible photons, with only
a finite number really contributing to the sum. Given an average
photon arrival rate I0, the expected value of (151) can easily be
seen to be:

E{Keff} = I0

∫ ∞

−∞

d∆τ(w(∆t))2 = I0Teff (152)

where we hereby define an effective time interval analogous to (but
better than!) the time bin interval T in (125). Using this analogy
the resultant estimation error takes on exactly the same form as
(123).

E{(Φ̂ − Φact)2} ≈
2

K̄eff|V |
2
=

2
I0Teff|V |

2 (153)

Given the assumed structure function (50) for τ, and resultant
weighting function (148) shown in Figure 13, numerical integration
has determined the effective time window to be:

Teff = .37T0 (154)

for a “speckle coherence time” parameter T0 = r0/v0.

Henceforth, we would like to refer to the signal-to-noise
ratio in a way (unlike (124)) which is not dependent upon the
estimation algorithm being considered. We thus define the
intrinsic signal-to-noise ratio as the square root of the number of
photons received in the period T0 (52) times the magnitude of
correlation |V |.
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S NR ∧
=

√
I0T0|V | (155)

Applying (154) to (153), and expressing the result in terms of
the intrinsic signal-to-noise ratio (155), we find the expected
r.m.s. phase or delay estimation error to be given by:

Φ̃
∧
=

√
E{(Φ̂ − Φact)2} ≈

√
2√

I0Teff|V |

=

√
2√

Teff
T0

S NR

=
2.3

S NR
(156)

τ̃ =
Φ̃

2πν
=

2.3
2πνS NR

(157)

Simulation Results

Wideband simulations were
performed in which the real
part of the net complex
likelihood (129) using the
optimum weighting given by
(141), was calculated as a
function of time and τ. Note
that in the wideband case, the
weighting function (141)
becomes a function not only of
∆t, but also of νk, the
optical frequency of the

Figure 14: The actual τ function estimated in Figure
15 and Figure 16 using optimum weighting, and also
in Figure 44 using a more sophisticated algorithm.

detected photon to which it is being applied. Photons were
randomly generated over a 2:1 wavelength range, based on a randomly
generated τ(t) function shown in Figure 14. Plots of the real part
of the net complex likelihood are shown in Figure 15 for an
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intrinsic signal-to-noise ratio of 2.5 (a marginal signal level)
and in Figure 16 for a signal-to-noise ratio of 5, corresponding to
a four-fold increase in the photon flux. The underlying τ(t)
function is also indicated with a thick line on the top of the
surfaces plotted in Figure 15 and Figure 16.

Figure 15: Plot of real part of the net complex likelihood at SNR=2.5, with the underlying τ
function shown in Figure 14. Negative values have been clipped at zero, to aid in visualization.

In Figure 16 with the higher signal-to-noise ratio,
identification of the dominant peaks as close estimates of τ is
evident. However with the marginal signal level in Figure 15,
examination of the contour of the complex likelihood alone would
hardly be the basis for an estimate of τ at most times. Part of
the actual τ(t) function even crosses an area of the complex
likelihood where the real part is negative (negative real parts
have been plotted as zero, to aid in visualization of the
contour). This outcome can be compared to the results of the
global path estimation algorithm, using the same set of photons, in
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Figure 44, in which the multiple path estimate of τ at least
includes the actual τ function itself, albeit with a reported
probability of only 15%. Compared to the path estimation
procedure, maximization of the real part of the complex likelihood
using optimum weighting produces acceptable performance at higher
signal levels. At the marginal signal level used in Figure 15 and
Figure 44, however, the path estimation procedure produces
estimates which are both closer to τ(ACT), and which are better
quantified in terms of their confidences, as plotted numerically in
Figure 43.

Computer simulations were run to test the prediction of
expected estimation error given by (156). In each case, a random
τ(t) function was generated, and for every point in time the
position of the peak of the real part of the net complex likelihood
closest to τ(ACT) was ascertained. The resultant errors over a
series of time were squared and averaged to find the r.m.s. error
in estimating τ(t), which was multiplied by 2πν0 to determine the
r.m.s. phase error. ν0 is the r.m.s. optical frequency over all
detected photons, which were simulated as being uniformly
distributed over a 2:1 range of optical frequency. The results are
plotted versus intrinsic signal-to-noise ratio (155) (also based on
the r.m.s. optical frequency ν0) in Figure 17.

While the simulation data points are seen to roughly follow
the direction of the theoretical curve in Figure 17, the error
levels can be seen to exceed the theoretical prediction by about
30% at the lower signal-to-nose ratios, to about 60% at the higher
signal levels. This discrepancy cannot come as a great surprise.
The above analysis of estimation error accepted the validity of the
approximation (144) which ignored the interdependence of the
received photon events beyond their information concerning τ′.
This interdependence becomes more pronounced at higher signal-to-
noise ratios. The validity of the approximation sin(x) ≈ x,
originally employed in (112) and propagated into the present
analysis, deteriorates for low signal-to-noise ratios not yielding
estimation errors much smaller than 1 radian. Given these
limitations, however, the performance of delay-tracking using
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Figure 16: Plot of real part of the net complex likelihood at SNR=5.0. The actual τ function is
plotted in a thick line on the surface of the contour.

conventional point estimation
approaches has been quantified
with reasonable accuracy.

Figure 17: Simulation results of r.m.s. estima-
tion error (in radians) vs. SNR, using the opti-
mum weighting estimator. Theoretical value
given by (156) graphed for comparison.
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Theory of Path Estimation

The previous two chapters considered estimation of τ at a
particular time t′, given a collection of received photons. The
estimate of τ(t′) was the value which maximized the a posteriori
probability density given by the result of Bayes’ theorem. In each
of the previous two chapters, the determination of the a posteriori
probability density was achieved with the aid of approximations,
(75) and (144). These approximations compromised the r.m.s. error
of the resultant estimates. In both cases, we calculated the
estimator’s expected error on the basis of assumptions whose
validity was tenuous at best.

More importantly, there was no concerted effort to produce
estimates of τ at slightly different times which were necessarily
well connected. In other words, there will be occasions
(especially using wideband reception) when the τ value which
maximizes (147) at different times causes a discontinuity in the
net τ function. So even through each point of the reconstructed
function maximizes the a posteriori probability of τ for that one
point, the probability of the net τ function is near zero, due to
the total improbability of a jump in the value of τ at one point in
time.

We now turn from point estimation to path estimation. As
opposed to the point estimation procedure, path estimation relies
on no approximations in the determination of the a posteriori
probability density (except for the previously discussed LLA
approximation, which may be applied optionally). Thus we will be
able to express the estimate as the τ(t) function which maximizes
the r.m.s. error of that estimate by observing the variance of the
a posteriori density. While it is unrealistically optimistic to
imagine that, in a practical system, all parameters and elements of
the model would be accurately known, we will nevertheless present
a self-consistent analysis in which accurate prior knowledge of the
model is assumed in order to find the attainable performance limits
of the estimator. In the present work, we will not address the
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sensitivity of the estimator to model parameter discrepancies, or
the issue of model parameter re-estimation.

In the case of point estimation, we found the relative
a posteriori probability for τ′, and found the τ′ for which that
function peaks. In other words we consider the function over all
possible values of τ′. Recall that τ′ represents the differential
path delay function τ, evaluated at the time t′. Now in the case
of path estimation we consider not simply all possible values of
τ(t′), but rather all possible paths (functions) of τ(t) over an
interval of time, say 0 ≤ t ≤ T . This infinite dimensional problem
can be somewhat simplified by considering the path of τ over that
interval to be piece-wise approximated by specifying its values at
M + 1 equally spaced points between t = 0 and t = T inclusive. Thus we
could picture a function of M + 1 variables, τ(0), τ(T/M), τ(2T/M),
. . . τ(T ).

Over this M + 1 dimensional space, the a posteriori probability
consists of various peaks and valleys. The function around each
peak can be (approximately) described as a Gaussian density with an
expected value given by the point of the peak and a covariance
structure specified by an M + 1 square matrix. The τ functions
corresponding to these peaks represent distinct paths obtained
according to the MAP (Maximum A Posteriori Probability) estimation
procedure. Under conditions of sufficient signal strength, there
will be a dominant peak near which the underlying τ function almost
surely lies. Under conditions of much lower signal strength, the
bulk of probability mass can only be accounted for by considering
the union of several such peaks, thus revealing an ambiguous
result. For still lower signal levels, the probability mass is so
dispersed throughout the M + 1 dimensional space that accounting for
it is pointless; in this regime the path estimation procedure is
inapplicable.

There are two facets to the path estimation problem. Consider
the strong signal case in which the a posteriori probability
density is dominated by a single Gaussian function. Given an
initial estimate of the path τ(t), expressed as a point in M + 1
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dimensional space, which is in the tails of that dominant peak,
then, by what procedure is the peak found which identifies the
estimated path τ(MAP)(t) which maximizes the a posteriori
probability density? And when that point is found, what is the
expected r.m.s. distance from the point of the peak to the actual
τ function being estimated? That expected distance determines the
r.m.s. estimation error. The discussion related to these questions
will henceforth be refereed to as the “local estimation problem,”
since it concerns the behavior of the a posteriori probability
function in the locality of a dominant peak.

In contrast, the second aspect of the path estimation problem
is termed the “global estimation problem.” This study, to be
presented in later chapters, considers the totality of the
a posteriori probability density function. Now we will ask how to
find the dominant peak without being supplied an initial estimate
in the tails of that peak (information to which we would normally
not be privy!). And, especially in the case of lower signal
levels, how can we exhaustively search the M + 1 dimensional space
for probability mass in order to account for all likely paths?
Furthermore, we would like to know at what signal level the
transition from a single dominant peak to multiple peaks is
expected to occur. It should be noted that, unlike the local
problem, we are no longer dealing with a mathematically tractable
problem as the probability density can no longer be described as a
Gaussian. Thus the answers to most of these questions are based on
the results of computer simulations.

We shall now set up the ingredients for the determination of
the a posteriori probability density of τ(t) given an observation
of K received photons over a time period of duration T . In the
case of path estimation, we will be taking into detailed account
the a priori characterization of τ(t) as well as the probablistic
response of the instrument. Let us recall the expression of
a posteriori probability given by Bayes’ Theorem. If y is an
observation and x is an underlying process that we wish to
estimate, then Bayes’ Theorem says that the a posteriori
probability for the process x given the observation y is:
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P(x|y) = k1P(y|x)P(x) (158)

P(y|k) is the response function of the instrument, and P(x) is the
a priori probability for the process x. k1 is a normalizing
constant chosen to insure that the integral of P(x|y) over all x is
unity. For simply comparing a posteriori probabilities, k1 need
never be evaluated. We will henceforth be evaluating not
probability density but the logarithm of probability density, which
we shall denote as Λ.

Λ
∧
= C1 + log P(τ(t)|receiveddata) (159)

C1 is an additive constant which, again, may be set arbitrarily
without effecting the maximization procedure. It should be noted
that C1 is a constant as we consider different τ(t) functions; if
convenient, it is allowed to be a function of the received data
set, since the maximization of Λ only occurs after the data has
been received at which time C1 would no longer be treated as
variable.

To evaluate Λ using Bayes’ Theorem, we need expressions for
the a priori probability for an arbitrary τ(t) function, and the
conditional probability of having received a particular data set
given a sample function τ(t). The a priori characterization of
τ(t) is best expressed in terms of its Fourier coefficients using
the previously defined cosine transform (53). The Fourier
coefficients of Gaussian colored noise consist of independent zero-
mean Gaussian random variables. Let us truncate the Fourier cosine
series to M terms, where M may be arbitrarily large. Then we can
write the probability density of τ(t) in U space as:

Pτ = k2e
− 1

2
∑M−1

i=0
U2

i
σ2

i (160)

We have previously evaluated the variance σ2
i of each Fourier

component Ui given the assumed model of atmospheric turbulence in
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(69). That model will eventually be inserted into the expressions
containing σ2

i . We can now write the logarithm of this probability
density as:

log Pτ = C2 −
1
2
χ2 (161)

where:

χ2 ∧=

M−1∑
i=0

U2
i

σ2
i

(162)

is a random variable whose a priori probability density is χ2 with
M degrees of freedom (assuming the accuracy of our model).

Now to determine the instrumental response component to insert
into Bayes’ Theorem, we will refer back to the model describing the
path delays in an interferometer shown in Figure 1. We would first
like to determine the conditional probability of detecting a photon
in photomixer output channel yi at time tk given an assumed
atmospheric delay τ(tk) for time tk. We can find the field
amplitude at yi using the delay model and the model for a balanced
photomixer given by (16).

yi =
√

pix1 +
√

pie− jθi x2

=
√

pi

(
e− j2πντc A1 + e− jθie− j2πντA2

)
(163)

We will assume that the input fields are each of the same power.
The expected optical power in yi is given by the squared magnitude
of the field amplitude.

〈|yi|
2〉 = pi

(
|A1|

2 + |A2|
2 + 2 Re

{
e jθie j2πν(τ−τc)A1A∗2

})
= 2pi|A|2

(
1 + Re

{
Ve jθie j2πν(τ−τc)

})
(164)
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In a very short time interval, the probability of detecting a
photon is proportional to the optical power. Thus in some short
time interval around t′, the probability of detecting a photon in
photomixer channel i, at optical frequency ν, given the atmospheric
delay function τ(t) which may be partially compensated by the
“correction delay” τc, is:

P(Di|τ(t)) = k2

(
1 + Re

{
Ve jθie j2πν(τ−τc)

})
= k2 (1 + Re{Lk}) (165)

P(Di|τ) in (165) denotes the probability of detecting a photon in
a photomixer output channel of mixing phase θi, given the knowledge
of τ(t) at that time. We will not need to specify the “short time
interval” or evaluate k2. We have again consolidated the combined
phases and correlation magnitude in Lk, the complex likelihood, as
we did in the case of point estimation. Given a photon, labelled
#k, detected at time tk, in a photomixer output channel of mixing
phase θk, at optical frequency νk, we can write Lk as:

Lk
∧
= V(νk)e jθke j2πνk(τ(tk)−τc(tk)) (166)

Since we will be dealing with the logarithm of probability, we
now define the logarithm of the likelihood function for photon #k
as λk.

λk
∧
= log

(
1
k2

P(Di|τ(t))
)
= log(1 + Re{Lk}) (167)

We may choose to simplify the evaluation of λk by using the Linear-
Log Approximation (LLA) presented on page 71.

λk =

{
Re{Lk} (LLA)
log(1 + Re{Lk}) (EL)

(168)
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What we need to insert into Bayes’ Theorem, is the joint
probability of detecting the set of K photons received during the
time interval 0 < t < T . Given a τ(t) function over this time
interval, the joint probability of these K photons being found in
the photomixer channels i1, i2, . . . iK are given by the product of
the probabilities of each photon being detected, since given an
optical power level, the occurrence of photons are independent.

P(i1, i2, . . . ik|τ(t)(0 < t < T )) =
P(i1|τ(t)) · P(i2|τ(t)) · . . . · P(iK |τ(t)) (169)

Note that this is the assumption that we were not able to use in
the derivation of point estimation on page 87. Let us denote the
logarithm of this joint conditional probability, plus a constant,
as λ (without a subscript).

λ
∧
= log P(i1, i2, . . . iK |τ(t)) +C2

= log
K∏

k=1

P(ik|τ(t)) +C2 =

K∑
k=1

λk (170)

Now, the logarithm of a posteriori probability given by Λ in
(159) is evaluated using Bayes’ Theorem (158). Then we can
substitute in the value we have obtained for the a priori
probability of τ(t) when expressed as a Fourier cosine series given
by (161) and (162). We can also substitute the determination of
the instrumental response function, the logarithm of which is
expressed by λ in (170). We obtain:

Λ = C2 + log P(i1, i2, . . . iK |τ(t))P(τ(t))

= λ −
1
2
χ2 (171)

Now, the solution to the path estimation problem amounts to
finding one or more maxima of (171) in order to account for most of
the probability mass given by eΛ. The components of (171), again,
are contained in (162) and (170); the relationship between the time
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domain representation of τ(t) (used in (170)) and the frequency
domain representation (used in (162)) is given in (53).
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MAP Path Estimation of τ

Consider the set of all possible τ(t) functions over 0 < t < T .
Suppose we seek to find the Maximum A Posteriori Probability (MAP)
estimate of τ, defined as the τ(t) which maximizes Λ. We start
from an initial estimate τ(1)(t). We might suppose that τ(1) is in
the tails of the global maximum of Λ. However the following
discussion would equally apply to estimation of a local maximum of
Λ given an initial guess in the tails of that local maximum. Call
τ(MAP)(t) the position of the maximum of Λ nearest the starting
point τ(1)(t). Let the Fourier cosine series of τ(MAP)(t) be
denoted14 U(MAP)

i . We shall consider the set of band-limited τ(t)
functions whose Fourier series are truncated to M terms. M may be
arbitrarily large.

Around U(MAP), Λ can be expanded to second order as:

Λ( ~U) = Λ(MAP) −
1
2

M−1∑
i=0

M−1∑
j=0

Ai j(Ui − U(MAP)
i )(U j − U(MAP)

j ) (172)

where Ai j = A ji. There are no first order terms in (Ui − U(MAP)
i ) since

we are located at the maximum of Λ.

To put this equation in perspective, recall that Λ is by
definition a constant plus the logarithm of the a posteriori
probability density of U given the received photon detections.
Therefore the probability density of U around U(MAP) would be given
by:

P( ~U) = ke−
1
2 ( ~U− ~U(MAP))T A( ~U− ~U(MAP)) (173)

where we have assembled the coefficients Ai j into a matrix A. The
reader will recognize (173) as the Gaussian probability density whose
covariance matrix is the inverse of A.

14Note that we are using superscripts to denote different
sample functions, as the subscripts refer to different frequency
components of U.
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We wish to find the U(MAP) in (172) starting from an initial
guess τ(1)(t) whose cosine transform we shall call U(1). If U(1) is
sufficiently close to U(MAP) then the second order expansion (172)
around U(MAP) will still describe Λ around U(1). Not initially
knowing U(MAP), we would find the expansion of Λ around U(1) to be:

Λ( ~U) = Λ(1) −

M−1∑
i=0

Bi(Ui − U(1)
i ) −

1
2

M−1∑
i=0

M−1∑
j=0

Ai j(Ui − U(1)
i )(U j − U(1)

j ) (174)

The Ai j in (174) and (172) are, under this assumption, the same.
The Bi can be expressed in terms of U(MAP) and U(1) by equating the
two expressions for Λ, and then equating the coefficients of first
order terms in Ui, resulting in:

M−1∑
j=0

Ai jU
(MAP)
j = −Bi +

M−1∑
j=0

Ai jU
(1)
j (175)

Calling ∆U the vector from the initial estimate U(1) to the MAP
estimate U(MAP):

∆ ~U ∧
= ~U(MAP) − ~U(1) (176)

then (175) becomes
M−1∑
j=0

Ai j∆U j = −Bi (177)

The set of M equations in M unknowns can be written as the matrix
equation:

A∆ ~U = −~B (178)

which has the standard solution for ∆U given by Cramer’s rule, or
equivalently, by multiplying by the inverse of the matrix A.
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Determination of the Matrix Elements

To find the Bi and Ai j at a point U(1) we need only evaluate
the first and second partial derivatives of (174) at U(1):

δΛ

δUi | ~U(1)
= −Bi (179)

δ2Λ

δUiδU j
= −Ai j (180)

We can find these partial derivatives of Λ given by (171) in terms
of the received photon events as expressed in λ by (170),
(168) and (166), and the a priori model for U expressed in χ2

given by (162). For now, we will determine the results using the
LLA approximation (see page 71). Evaluating the partial
derivatives of (171) at U(1), we therefore find:

δΛ

δUi
= −

U(1)
i

σ2
i

+

K∑
k=1

2πνk cos(
π

T
itk) ·

Re{ jVe jθke j2πνk(τ(1)(tk)−τc(tk))} (LLA) (181)

δ2Λ

δU2
i

= −
1
σ2

i

−

K∑
k=1

(2πνk)2 cos2(
π

T
itk) ·

Re{Veθke j2πνk(τ(1)−τc)} (LLA) (182)

δ2Λ

δUiδU j
= −

K∑
k=1

(2πνk)2 cos(
π

T
itk) cos(

π

T
jtk) ·

Re{Ve jθke j2πνk(τ(1)−τc)} (LLA) (183)

By evaluating (181) (182) and (183), inverting the matrix A, and
solving (178), we can obtain ∆U and thus U(MAP).
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Practically speaking, there are a few drawbacks to this
procedure. (181), (182) and (183) require tallying a large number
of coefficients (about M2/2). Then we need to invert a large (M × M)
matrix to solve for ∆U. Finally, the solution U(1) + ∆U will not
reach U(MAP) exactly since we have ignored third and higher order
terms in the expansion (172). Thus we would need to perform more
than one iteration of this lengthy procedure in order for it to
converge onto U(MAP).

A Computationally Practical Solution

The practical solution we have adopted is to perform several
iterations involving a much simpler calculation. We shall take
advantage of the fact that the matrix A in (178) is dominated by
its diagonal terms. If we arbitrarily set all off-diagonal terms
to zero:

Ai j = 0 (i , j) (184)

then we could easily solve for an approximate ∆U:

∆Ui ⇐
−Bi

Aii
=

δΛ
δUi

− δ2Λ

δ2U2
i

(185)

Although we have eliminated most of the computation involved in
solving (178) directly, we have nevertheless produced a procedure
which will, after 5 or 10 iterations, converge to U(MAP). In
practice, it has been found we obtain convergence at the same rate
if instead of (185) we use

∆Ui ⇐

δΛ
δUi

Âi
(186)
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where

Âi
∧
= E

− δ2Λ

δ2U2
i

 (187)

is a pre-tabulated function of i. This further reduces the burden
of computation.

Consider the iteration of U towards U(MAP) using (186). If the
denominator of (186) were a constant, then this would simply amount
to adding to U at every iteration a factor times the gradient of Λ
with respect to U. To guarantee the quickest convergence, however,
we prefer to scale the elements of the gradient non-uniformly
according to the reciprocal of (187).

Continuously following the gradient of a function will always
lead to a maximum of that function. IN this case we are taking
discrete steps. The amplitude of each step is scaled according to
(185) or (186) in order to, as nearly as possible, approach U(MAP)

in that single step. That will not occur, as we have noted, due to
mixed terms in (174) and higher order terms that have been omitted
from (174). Eventual convergence is guaranteed, however, as long
as we do not overshoot the correct solution by an amount greater
than the initial value ∆U.

Such an overshoot could occur if the denominator of (186)
underestimates the actual value of Aii by a factor of 2 or more.
While an uncommon occurrence, a practical algorithm must check for
non-converging behavior and reduce the scaling factor as necessary.15

15A simple measure of over/undershooting is the inner product
of the ∆U calculated in successive iterations:

[∆ ~U (N+1)]T [∆ ~U (N)] =
M−1∑
i=0

∆U (N+1)
i ∆U (N)

i

A negative quantity indicates overshooting, while a positive
measure will occur when the step size has been reduced below its
optimum level.
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Figure 18: τ (in femtoseconds) vs. time (in milliseconds) of underlying function, and progression
of iterative estimation procedure.

Simulation Results

An example of performing such a maximization procedure is
shown in Figure 18. The underlying τ function, shown in the upper
left, is typical for the atmosphere under good “seeing” conditions.
The y-axis is τ in femtoseconds; the x-axis is time in
milliseconds. The initial estimate, as shown in the upper right,
is constructed as a line joining the endpoints of the underlying τ

(which, in a real situation, would, of course, not be initially
known). During the 50 milliseconds, 100 photons are received over

15A simpler test that has proved satisfactory operates on the τ
function itself. The values of the starting function τ(t)(N) at a
number of points on a coarse scale, are stored initially.
Following one iteration of the estimation procedure, yielding
τ(t)(N+1), the absolute deviations from the initial stored function
are found and the maximum absolute deviation is noted. Following
the second iteration yielding τ(t)(N+2), the maximum absolute
deviation from the original stored function is, again, found. If
the second maximum absolute deviation from the initial stored
function is found to be smaller than the determination of that
number following the first iteration, that is deemed evidence of
overshooting, and the gain will be reduced.
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a 2 : 1 wavelength range. After the fourth iteration, shown in the
lower right, Λ has essentially reached its peak value of 43.2.16

A few features of the resulting solution in the lower right of
Figure 18 will be noted. The higher frequency components of the
underlying τ(t) are clearly absent from the solution τ(MAP). That
is because the χ2 penalty term in (171) is preferentially sensitive
to high frequency components in τ according to (69) and the
definition of χ2 (162). The smoothing over of high frequency
components contributes a significant but tolerable component of
estimation error. In Figure 19 the MAP solution is similarly
calculated using 50, 200 and 500 photons. The increased recovery
of high frequency information with increased signal level is both
apparent on visual inspection, and from the value of χ2 printed at
the top of each graph.

Some of the estimation error observed, however, is clearly not
due to smoothing but simply results from statistical fluctuations
(noise) involved in reconstructing τ from a finite number of
randomly produced photons. In the top left and top right of
Figure 19 different samples of 50 randomly produced photons are
seen to generate dissimilar errors in the resultant MAP estimates
of τ.

Finally, we must note that the success of the convergence to
the global τ(MAP) in Figure 18 was dependent upon the initial
estimate U(1) having its probability density dominated by the tails
of the global U(MAP) (even though it was only 10−16 of the peak
probability density at the point of the initial estimate!) and not
some other local maximum of a posteriori probability. In
Figure 20, using the same set of 100 photons as in Figure 18, we

16The data in this example, although randomly generated, has
been selected for presentation. Not all random τ functions and
random sets of photons generated with these statistics, when
initially estimated with a straight line in this manner, would
converge to the global MAP solution. Refer to the discussion on
page 100. Also, the algorithm used in these examples is virtually
equivalent to that discussed in the text, but utilizes a modified
sine transform in which the endpoints of the τ function, that is
τ(0) and τ(50), are constrained.
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Figure 19: Results of estimation of τ(t) as in Figure 18, using different signal levels.

Figure 20: Estimation in which the initial estimates caused the iterative procedure to converge on
local maxima of Λ, well below the figure of 43.2 obtained in Figure 18.

start in the tails of different local maxima and converge to
erroneous solutions which have a posteriori probabilities of only
10−8 and 10−10 of that of the correct solution. Only if we had
found the global MAP solution, however, would we have become aware
of the improbability of the solutions shown in Figure 20. That is
the crux of the global problem.
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Solution using the Exact Logarithm

Suppose that instead of employing the LLA approximation for
the determination of the derivatives of Λ, as in (181)–(183), we
had employed the exact logarithm for the determination of λ written
out in the lower expression of (168). We will then, for
compactness, express the results in terms of the previously defined
complex likelihood, for photon #k. Given a sample function τ(1),
then Lk is given by:

Lk
∧
= V(νk)e jθke j2πνk(τ(1)(tk)−τc(tk)) (188)

Then using the exact logarithm, the derivatives of Λ with respect
to the Ui are found to be:

δΛ

δUi
=

K∑
k=1

2πνk cos( πT itk)Re{ jLk}

1 + Re{Lk}
−

U(1)
i

σ2
i

(EL) (189)

δ2Λ

δU2
i

= −
1
σ2

i

−

K∑
k=1

(2πνk)2 cos2(
π

T
itk)
|V |2 + Re{Lk}

(1 + Re{Lk})2 (EL) (190)

δ2Λ

δUiδU j
= −

K∑
k=1

(2πνk)2 cos(
π

T
itk) cos(

π

T
jtk)
|V |2 + Re{Lk}

(1 + Re{Lk})2 (EL) (191)

In the practical algorithm resulting from the previous analysis,
only the substitution of (189) for (181) is required to perform
estimation based on the exact logarithm. (190) and (191) are
included only for future use in analyzing the performance of the
algorithm.

It should be mentioned that in applying the algorithm using
(189), especially for |V | ≈ 1 (which is the only time that a
significant improvement can result from using the exact logarithm),
the stability of the iterative process is affected. This
characteristic can be easily traced to the denominator of the terms
summed in (189), which can, with an unfortunate selection of net
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phase, find itself close to zero, causing the associated term to
blow up. This is the result of a dilemma in which the algorithm is
considering a sample function of τ which predicts nearly zero
probability of a photon being detected which actually had been
detected. A practical algorithm has alleviated this problem by
multiplying the real part of the complex likelihood in the
denominator of (189) by a factor which starts at 0, and gradually
approaches 1 during the course of the iterations. Note that
setting this supplementary factor to zero exactly implements the
LLA estimation algorithm.
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The Time-Domain Algorithm for Maximizing Λ

While the convergence toward τ(MAP) using the path estimation
procedure described above is no less than optimum, it is, in
practice, computationally inefficient. This is particularly true
as T , the interval over which τ is estimated, increases.

Consider that the iteration of each Fourier component of Ui in
(186) requires the evaluation of K terms, one for each photon, as
described by (181). This then be done for all M frequency
components of τ(t) being considered, for a total of MK
computations. Now, consider what happens when the interval T is
doubled. The frequency spacing between adjacent Fourier components
is halved, so that in order to make a comparable estimate, the
number of Fourier components considered, M, must be doubled. Also
the number of photons in that interval, K is approximately
doubled. Thus, this interval requires four times as much
computation in order to estimate only twice as much of the unknown
τ(t) function.

This progressive inefficiency can be trace to the distributed
information contained in the Fourier coefficients Ui, each of which
affects the function τ(t) over the entire interval 0 < t < T . On the
other hand, the effect of a given photon is relatively local,
affecting the resultant solution τ(MAP)(t) only over a time span on
the order of T0, typically around 10 milliseconds. Thus by
carrying out the computation of (181) we are, in effect, tediously
computing the Fourier transform of a time-domain series of impulses
corresponding to the received photons, only to subsequently (after
filtering) use a Fourier transform to return to the time-domain.

The reader may correctly suspect that the transformation to
and from the frequency-domain can be bypassed. The effect of
individual photons on the maximization of Λ will then result from
passing a time series through a properly designed filter whose
impulse response duration need only be on the order of the time
period over which a photon affects the change in τ(t) from
iteration to iteration. What follows, now, is the development of
such a procedure in the time-domain, which realizes an operation
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identical to that previously implemented by applying (186) to the
Fourier coefficients Ui, followed by transformation to the time-
domain.

In the previously described path estimation procedure we
update our estimate of τ(t) over an interval 0 < t < T by successively
adding to the present estimate of the Fourier cosine series of τ

contained in the vector U, a correction vector ∆U calculated using
(186). The updated U is then transformed to the time-domain to
yield the updated τ(t). If the present estimate of τ(t) is denoted
τ(N) then we denote the new estimate as τ(N+1) which would thus be
given by:

τ(t)(N+1) =

∞∑
i=0

cos(
πi
T

t)(U(N)
i + ∆Ui) (192)

Using (186) we can write ∆Ui as a gain parameter ai for that
frequency component, multiplying the partial derivative of Λ:

∆Ui = ai
δΛ

δUi
(193)

It was previously pointed out that the gain ai did not affect the
ultimate solution, but rather the rate and stability of convergence
toward that solution. The expected “optimum” value of ai has been
given as the reciprocal of (187) and will be discussed below.

Recalling (189), we see the derivative of Λ has two
components:

δΛ

δUi
= −

Ui

σ2
i

+

K∑
k=1

2πνk cos(
π

T
itk)

Re{ jLk}

1 + Re{Lk}
(194)

The first term is a relaxation term flowing from the present
estimate of τ, in which the higher frequency components are
emphasized and subtracted from the present estimate in order to
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achieve a smoother function incurring a smaller χ2 penalty in its
value of Λ given by (171). The remaining summation in (194) is due
to the K photons. Let us define Pi to be proportional to this
entire summation according to17

εiπT Pi =

K∑
k=1

2πνk cos(
π

T
itk)

Re{ jLk}

1 + Re{Lk}
(195)

Using this simplified notation for the summation of photon
increments in (194), substituting that result into (193), and
substituting that result for Ui into the inverse transform for
τ(N+1) given by (192), then yields:

τ(t)(N+1) =

∞∑
i=1

cos(
π

T
itk)

U(N)
i + ai

−U(N)
i

σ2
i

+ εiπT Pi


=

∞∑
i=0

cos(
π

T
itk)

1 − ai

σ2
i

 U(N)
i +

∞∑
i=0

cos(
πi
T

t)(aiεiπT )Pi (196)

Implementation using Time-Domain Filters

Each of the two summations in (196) has a special form, given
generally by:

17Note that the time-domain procedure using (195) implements
the previously described algorithm using the exact logarithm. The
implementation of the estimation procedure in which the LLA
approximation has been applied simply requires eliminating the
denominator of (195). Likewise, unstable or chaotic behavior of
the time domain estimation procedure due to the denominator of
(195) approaching zero, can be alleviated by multiplying the real
part of the complex likelihood in the denominator of (195) by a
factor in between 0 and 1. During the course of the iterations
toward the solution, that factor is allowed to approach unity, as
described on page 113.
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y(t) =
∞∑

i=0

cos(
πi
T

t)Yi =

∞∑
i=0

cos(
πi
T

t)HiXi (197)

What this general form expresses is that if we start with a
function x(t), with Fourier coefficients Xi, multiply each
coefficient by Hi, and then take the inverse transform, calling the
result y(t), this will have implemented the temporal filtering of
x(t) by a filter whose frequency response H(ω) is given by:

H(ω) = Hi|i=ωT
π

(198)

Applying this observation to (196) we find the new estimate of τ(t)
to consist of the addition of two filtered time series. The first
term is a filtered version of the present estimate of τ(t) since
U(N) is the Fourier cosine transform of τ(N). Now we have only to
ask what, when transformed, yields Pi as defined in (195).

To answer that, we form a time function consisting of K Dirac
delta functions, one corresponding to each photon. Each delta
function is set at the time tk of the respective photon, and is
assigned a strength according to the multiplicative factors in
(195) (aside from the cosine factor).

p(t) =
K∑

k=1

νk
Re{ jLk}

1 + Re{Lk}
δ(t − tk) (199)

To verify that Pi is the cosine transform of p(t) so defined, we
need only insert (199) into the general formula for the
determination of the coefficients of the Fourier cosine series for
a function of time x(t):
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Xi =
2
εiT

∫ T

0
x(t) cos(

πi
T

t)dt (200)

Each delta function sifts out a factor of the cosine of the
frequency times tk producing a summation equivalent to the
definition of Pi expressed in (195).

To go further, we must address the frequency-dependent gain
parameter ai introduced in (193). We have previously discussed the
fact that insufficient gain will slow down the rate of convergence,
whereas excessive gain will lead to overshooting. Gain of over
twice the optimum value will cause absolute instability making
convergence impossible. The optimum gain was specified in (185) as
the negative reciprocal of the second derivative of Λ with respect
to Ui. But Λ, given by (171) has two components. The second
derivative of the χ2 component is deterministic. The second
derivative of the other part, λ, is random with an expected value
which we shall call −Q′ (this accepted value is not a function of
the frequency index i, except at i = 0 where it is doubled). So the
optimum gain would be:

ai(optimum) =
−δ2Λ

δU2
i

−1

=
1

− δ2λ
δU2

i
+ 1

2
δ2χ2

δU2
i

=
1

1
σ2

i
− δ2λ

δU2
i

(201)

∴ E
{

1
ai(optimum)

}
=

1
σ2

i

+ εiQ′

where:
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Q′ ∧= −E
 δ2λ

δU2
i

 (202)

We shall leave the deterministic part alone, but apply an
additional gain factor b, to the random (and essentially unknown)
quantity whose expected value we call −Q′.

We shall therefore choose, for the gain of frequency component
i, the value given by:

ai =
1

1
σ2

i
+

εiQ′
b

≈

{ b
Q′ small i
σ2

i large i
(203)

We have inserted b into this expression in such a way that at low
frequencies (where σi is large) the gain is equal to the expected
optimum gain times b, but at high frequencies, where the effect of
the first term in the reciprocal dominates, the gain is unaffected
by b (since the optimum gain has already been closely determined).
Let us now substitute this choice into (196) so that we can
evaluate the frequency response of the filters to be applied to
τ(t)(N) and p(t).

Using this choice for ai, (196) becomes:

τ(t)(N+1) =

∞∑
i=0

cos(
πi
T

t)

1 − 1

1 + Q′σ2
i εi

b

 Ui

+

∞∑
i=0

cos(
πi
T

t)
εiπT

1
σ2

i
+

εiQ′
b

Pi (204)
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=

∞∑
i=0

cos
(
πi
T

t
) 1

1 + b
Q′σ2

i εi

(
Ui +

πTb
Q′

Pi

)
(205)

What this equation expresses is that by having judiciously chosen
the gain in (203) and making b independent of frequency, we have
reduced the problem to a single time-domain filter acting on the
sum of the current estimate τ(N) and a scaled version of p(t). We
expect the essence of the actual system to not be dependent on T ,
the time interval over which it operates. Q′ in (201), is given by
(202) as the negated second derivative of λ which is itself the sum
of λk for each photon in the time interval. Thus Q′ will be
proportional to T , so let us call:

Q ∧
=

Q′

πT
(206)

Figure 21: Signal flow diagram of one iteration of the time domain algorithm.

The resulting algorithm is depicted in Figure 21.

Determination of the Filter Transfer Function

Now using the value of σi derived for the atmosphere using
our model in (69) we can determine the frequency response of the
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smoothing filter whose impulse response is denoted h(t) in the
diagram. Its frequency response, H(ω), will be a real number, with
no phase angle, at all frequencies. Thus its impulse response is
symmetric about t = 0. Making the substitution for σi using (69) we
find:

H(ω) =
1

1 + b
Q′σ2

i εi

=
1

1 + b
αQ′ i

8/3
(207)

Setting the frequency index i to correspond to the frequency ω,
this reduces to:

H(ω) =
1

1 + b
αQπT

(
ωT
π

)8/3 =
1

1 +
(
ω
ω0

)8/3 (208)

where
ω0

∧
= π11/8T−5/8α3/8Q3/8b−3/8

ω0 is the filter’s −6 db cutoff frequency, which we shall proceed
to determine. α has been determined in (68). The second
derivative of λ is determined, using the LLA approximation as part
of (236)–(238). Using the exact logarithm it is determined in
(265). The result for Q, in either case is given by:

Q =
E

{
− δ2λ
δU2

i

}
πT

=
π2K̄ν2V2e1

πT
= πν2V2e1I0 (209)

Using the exact logarithm, e1 is defined in (265). The appropriate
result if using the LLA approximation, is obtained by setting e1 = 1.
Using these results for α and Q, we find the cutoff frequency ω0 to
be:

121



ω0 = π11/8T−5/8

T 1/3
τ T 5/3

14.06

3/8

(πν2V2e1I0)3/8b−3/8

= 2.75T 1/8
τ (ν2V2e1I0)3/8b−3/8 (210)

As we require, T has dropped out of the expression, leaving a
filter response whose shape is fixed, but frequency-scaled
according to parameters expressing the signal level and the level
of atmospheric delay noise. The cutoff frequency must also be
adjusted slightly as we vary b, the supplemental gain factor
applied to the photon impulses in the lower branch of Figure 21.

Substitution of the definitions for the intrinsic signal-to-
noise ratio and T0 (see (233)) results in the following simplified
(and more transparent) form for ω0:

ω0 =
1.83
T0

(
k2e1

b

)3/8

S NR3/4 (211)

Note that the factors inside the parenthesis are on the order of
unity. e1 is defined in (265), and k2 is defined in (257). The
intrinsic signal-to-noise ratio is defined in (233). For a signal-
to-noise ratio of 5, we see that the filter cutoff frequency occurs
at a frequency of about 1 cycle per T0, the atmospheric coherence
time parameter. T0 is evaluated at the nominal optical frequency,
ν0, defined in (231).

Similarly expressing the photon impulse gain, b/Q, in terms of
the signal-to-noise ratio yields:

b
Q
=

T0

πν2
0

b
k2e1S NR2 (212)
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Expected Error using the Path Estimation Procedure

Using the path estimation procedure described above to find
the function τ(t) which maximizes Λ (and therefore the a posteriori
probability of τ(t) given the set of received photon data), we
would like to find the expected estimation error. We will use as
an error measurement the r.m.s. difference between the τ function
which maximizes Λ and the actual function, τ(ACT ), which governed
the statistics of the received photons. We will, in this chapter,
consider only the solution of the local problem, that is, we will
be considering the local maximum of Λ nearest to τ(ACT ) whether or
not that is also the global maximum of Λ, a concern that will be
addressed in the following two chapters.

The derivation of the expected error will proceed on the basis
of the LLA approximation (see page 71). The corresponding
derivation using the exact logarithm is mathematically cumbersome
and will be included at the end of this chapter.

We will define18 ∆τ as the difference between an arbitrary
τ function and the MAP (Maximum A Posteriori Probability) estimator
τ(MAP). If that τ function is considered to be random and governed
by the a posteriori probability density of U given the received
data, then ∆τ will be a random function describing the difference
between the MAP estimate, and the real location of τ(ACT). The
r.m.s. average of ∆τ may be performed over time (0 < t < T ) and/or over
the ensemble of realizations of the model. We choose to average
over both. The mean squared value of ∆τ over the time interval is
calculated as:

〈∆τ2〉 =
1
T

∫ T

0
(τ(ACT )(t) − τ(MAP)(t))2dt (213)

18Note that ∆τ as used in this chapter is not to be confused
with ∆τ = τ − τc used in (3) and defined in page 15.
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The result we seek will be the expected ∆τ2 over the ensemble of
realizations of the model. However first averaging over the time
interval allows us to employ Parseval’s theorem to express ∆τ2 in
terms of the corresponding cosine transform coefficients. Recall
the form of the cosine transform of τ(t) over 0 < t < T that we
introduced on page 59.

τ(t) =
∞∑

i=0

Ui cos(
π

T
it) 0 < t < T (214)

Using this form, let us designate the transform coefficients of
estimated τ(t) as Ui and designate the transform of τ(MAP) as U(MAP).
If ∆Ui is the difference between Ui and U(MAP)

i , then ∆U is also the
cosine transform of ∆τ. Parseval’s theorem says that, for this
transform pair, the power in the time function and the transform
series must (with the proper normalization) be equal, according to:

〈∆τ2〉 =
1
T

∫ T

0
(∆τ(t))2dt =

∞∑
i=0

εi

2
(∆Ui)2

where (215)

εi =
{ 1

2
i > 0
i = 0

Using (215), we can determine the expected error in τ by finding
the mean squared values of the ∆Ui. The ∆Ui themselves have zero
mean, due to symmetry. Their mean squared values are then given by
their variances, which comprise the diagonal elements of the
covariance matrix describing ∆U. The covariance matrix for ∆U is
identical to the covariance matrix of the a posteriori U itself,
since they differ only by a constant, U(MAP). Given a set of
received data, the a posteriori density of τ(t), expressed in terms
of its Fourier coefficients Ui, is given by (173). Once U(MAP) has
been evaluated by an algorithm, the ∆U separating it from τ is
itself governed by (173), assuming the accuracy of our model.
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Thus we shall undertake the following procedure to analyze the
r.m.s. magnitude of estimation error. We will assume that the
actual τ(t) function, expressed in U space, lies in the tails of a
Gaussian probability density given by (173). The statistics of the
components of the A matrix in the exponential of (173) will be
estimated. Then, the covariance matrix of the vector ∆U, given by
the inverse of A, will be considered. The statistics of the
diagonal terms of the covariance matrix will be estimated, yielding
the mean squared value of the ∆Ui. These values can then be
inserted into Parseval’s theorem (215), yielding and estimate for
the man squared estimation error of τ(t) itself. Finally, the
relevant mathematical steps will be summarily repeated using the
exact logarithm form for the complex likelihood function.

The Statistics of the Complex Likelihood at τ(ACT)

Before proceeding, it will be convenient to have on hand the
first and second order statistics of the real part of Lk, the
complex likelihood function for photon #k, evaluated at τ(ACT ). The
complex likelihood was defined in (166), which we repeat here:

Lk
∧
= V(νk)e jθke j2πνk(τ(tk)−τc(tk))

= |V(νk)|e jΦ (216)

In the lower expression, we have consolidated all of the phase
factors in Φ, where:

Φ
∧
= arg(V(νk)) + θk + 2πνk(τ(tk) − τc(tk)) (217)

Note that Φ is a combination of random and non-random components,
thus causing it to be random variable τ in (217)) is a random
variable governed by the a posteriori density of τ(ACT ) given θk).
The probability density of Φ can be shown to be:
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P(Φ) =
1 + |V | cos(Φ)

2π
(218)

Proof:
Although a simple result, the formal derivation requires several
steps. Call:

ψ
∧
= arg(V) + 2πνk(τ − τc) = Φ − θk

Given the observation of photon #k at mixing phase θ, then θ is
known but ψ is unknown, thus random. Not knowing θ, the a priori
density of ψ would clearly be uniform:

P(ψ) =
1

2π

As previously determined, the probability of receiving a photon in
mixing phase θ is enhanced by one plus the real part of the complex
likelihood:

P(θk|ψ) = P(θ)(1 + Re({Lk})
= P(θ)(1 + |V | cos(θk + ψ))

Applying Bayes’ theorem to obtain the a posteriori density of ψ:

P(θk|ψ) =
P(θk|ψ)P(ψ)

P(θk)
=

P(θk)(1 + |V | cos(θk + ψ)) · 1
2π

P(θk)

=
1

2π
(1 + |V | cos(θk + ψ))

Now the random variable Φ is deterministic given ψ and θk. Since
the derivative of Φ with respect to ψ is unity, there is no
additional factor involved in computing the probability density of
Φ from that of ψ. Thus:

PΦ(Φ = Φ|θk) = Pψ(ψ = Φ − θk|θk) =
1

2π
(1 + |V | cos(θk + (Φ − θk)))

=
1

2π
(1 + |V | cos(Φ))

Since the probability of Φ given θk is no longer a function of θ,
we can omit the conditional probability notation, proving (218).
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Using this first result it is possible to evaluate a number of
expectations. First, to evaluate the expected value of the real
part of Lk given νk, we find:

E{Re{Lk}|νk} =

∫ 2π

0
dΦ P(Φ)|V(νk)| cos(Φ)

=

∫ 2π

0
dΦ

1 + |V | cos(Φ)
2π

|V | cos(Φ) (224)

=
|V(νk)|2

2

Similarly, the expected value of the square of the real part of Lk

can be computed:

E{(Re{Lk})2|νk} =

∫ 2π

0
dΦ P(Φ)| (|V | cos(Φ))2

=

∫ 2π

0
dΦ

1 + |V | cos(Φ)
2π

|V |2 cos2(Φ) (225)

=
|V(νk)|2

2

The expectations happen to be equal.

Now that we have the expectations given νk, we wish to also
average over all photons and their respective optical frequencies.
The likelihood of detecting a photon of optical frequency ν is
proportional to F(ν), the photon spectral density function. Note
that this differs from the actual spectral function describing the
color of the observed object in several ways. In addition to the
power spectral density function of the starlight, F(ν) takes into
account the proportion of starlight that is accepted into a single
mode by the collection optics (expected to vary as ν−5/3, for larger
apertures), the throughput of the optical path, the quantum
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efficiency of the detector, and the relation of photon count to
optical power (obtained by dividing by the photon energy hν.).

Let us call the total detected photon count rate I0. We will
take F(ν) to be normalized so its integral is unity. Then the
probability of detecting a photon of optical frequency ν in a
bandwidth of ∆ν in a time period ∆t is (∆ν)(∆t)I0F(ν). As before,
we will take V(ν) to be a “known” function of ν representing the
(complex) correlation between the two light waves measured at
optical frequency ν. Using these definitions, we can define
several symbols representing “a priori” statistics that we shall
consider to be “known.” The mean squared visibility is denoted:

V2 ∧= E{|V(νk)|2} =
∫ ∞

0
dν F(ν)|V(νk)|2 (226)

Now using this notation, we can write the expectations over all
photons of (224) and (225) as:

E {Re{Lk}} = E
{
(Re{Lk})2

}
=

V2

2
(227)

In a similar way, we wish to introduce the following notation
for expectations that will arise in the course of the following
pages.

ν2V2 ∧= E
{
ν2|V(νk)|2

}
=

∫ ∞

0
dν ν2F(ν)|V(νk)|2 (228)

ν4V2 ∧= E
{
ν4|V(νk)|2

}
=

∫ ∞

0
dν ν4F(ν)|V(νk)|2 (229)
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ν2 ∧= E{ν2} =

∫ ∞

0
dν ν2F(ν) (230)

Let us call the square root of (230) the “average” or nominal
optical frequency, ν0.

ν0
∧
=

√
ν2 (231)

Let us again define the intrinsic signal-to-noise ratio, now that
we have defined ν0. T0 was defined (52) as the time period that it
would take an air mass moving at v0, the hypothetical “wind
velocity” according to the Taylor model, to traverse the distance
of the Fried parameter r0. We will consider T0 relative to the
optical frequency ν0, in which case, using (52) and (51), T0 can be
shown to be given by:

T0 = .53T−1/5
τ ν−6/5

0 (232)

In the time period T0 there are an expected number of photons given
by I0T0. The noise, assuming Poisson statistics, is given by the
square root of that number. The signal is given by I0T0 multiplied
by the magnitude of correlation |V |. Using the root mean squared
value of V , we would therefore define the intrinsic signal-to-noise
ratio as:

S NR ∧
=

√
I0T0V2 (233)

Determination of the Statistics of the Elements of A

As expressed in (180), the elements of A can be found from the
second (partial) derivatives of Λ, the logarithm of a posteriori
probability density. The validity of (180) extends over the volume
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of U in which Λ is dominated by the quadratic expression
which peaks at U(MAP), that is, where the probability density of U
is found to be dominated by the Gaussian probability density which
peaks at U(MAP). We have assumed that the underlying function τ(ACT)

that we are trying to estimate lies in the tails of that Gaussian.
Especially for small estimation errors, it can be said that the
second derivatives of Λ evaluated at U(ACT) will be very close to
the second derivatives of Λ evaluated at U(MAP). As the estimation
error grows larger (due to decreasing signal-to-noise ratio) this
approximation may become less justified, but still adequate for the
purposes of the following analysis.

Thus we shall proceed to evaluate the statistics of the second
derivatives of Λ at U(ACT) (there is no apparent method for finding
these statistics at U(MAP) directly). Writing Λ as given by (171),
and applying (170), (168), and (162), we previously found
expressions determining the diagonal and off-diagonal elements of
A in (182) and (183). We shall rewrite those expressions in terms
of the complex likelihoods Lk.

δ2Λ

δU2
i

= −
1
σ2

i

−

K∑
k=1

(2πνk)2 cos2(
π

T
itk)Re{Lk} (LLA) (234)

δ2Λ

δUiδU j
= −

K∑
k=1

(2πνk)2 cos(
π

T
itk) cos(

π

T
jtk)Re{Lk} (LLA) (235)

First, we will derive the expected values of the diagonal
terms of A using (180) (with i = j) and (234).

E{Aii} = −E
δ2Λ

δU2
i


= E

 K∑
k=1

(2πνk)2 cos2(
π

T
itk)Re{Lk}

 + 1
σ2

i

(236)

We will evaluate this expression at τ(ACT) as discussed. The bottom
expression contains three random variables, each of which are
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uncorrelated. We can take the expectation of the cos2 term, for
random t, to be 1/2. The expectation of the real part of Lk has
been determined in (227). The expected number of photons received
during the time interval T will be denoted:

K̄ ∧
= E{K} = I0T0 (237)

The we can evaluate the expectation of the product in the
summation as the product of the expectations, since the random
variables are uncorrelated. We can also substitute the notation of
(228) and (237).

E{Aii} = E

 K∑
k=1

(2πνk)2 1
2
|V(νk)|2

2

 + 1
σ2

i

= K̄ · E{π2ν2
k |V(νk)|2} +

1
σ2

i

(238)

= π2K̄ν2V2 +
1
σ2

i

We will not go on to evaluate the variance of the diagonal
elements. However it can be easily verified that as K, the number
of photons in the time period being considered, increases, the
magnitude of the variance in relation to the mean of (238) dwindles.
Since we are free to set T to be arbitrarily large, we can cause
the Aii to become virtually deterministic.

No we can similarly look at the expectations of the off-
diagonal elements of A using (235). We find:

E{Ai j} = −E{
δ2Λ

δUiδU j
}

= E

 K∑
k=1

(2πνk)2 cos(
π

T
itk) cos(

π

T
jtk)Re{Lk}

 (239)

= 0
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The expectation is determined to be zero, given that the two cosine
factors are uncorrelated for i , j.

Let us then find the expectation of the square of Ai j,
identical to the variance of Ai j given that its mean is zero.
Since the terms of the summation in (239) are uncorrelated, the
expectation of the square of the sum is the sum of the expectations
of the squares in the terms.

E{A2
i j} = E

 K∑
k=1

[
(2πνk)2 cos(

π

T
itk) cos(

π

T
jtk)Re{Lk}

]2


= K̄E
{
(2πν)4 cos2(

π

T
itk) cos2(

π

T
jtk)(Re{Lk})2

}
= K̄E

{
16π4ν4 1

2
1
2
|V |2

2

}
(240)

= 2π4K̄ν4V2

Inversion of the A Matrix

Using the result in Appendix I, it will be possible to
estimate the diagonal elements of the covariance matrix R applying
to the vector U. The covariance matrix R, as can be seen by (173),
is the inverse of the A matrix.

Application of the formula in Appendix I requires the
evaluation of the diagonal terms of A (as we have found in (238)),
and also determination of the variances of the off-diagonal
elements and ability to express the variance of Ai j in the
following form.

Var{Ai j}

AiiA j j
= gig j (241)

Substituting in the results of (238) and (240), we would require
the definition of the gi to be consistent with:
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gig j =
2π4K̄ν4V2(

1
σ2

i
+ π2K̄ν2V2

) (
1
σ2

j
+ π2K̄ν2V2

) (242)

That condition can be met using the following form for gi:

gi =
π2

√
2K̄ν4V2

1
σ2

i
+ π2K̄ν2V2

(243)

We now substitute in the previously determined value for the σi

given in (69).

gi =
π2

√
2K̄ν4V2

i8/3
α
+ π2K̄ν2V2

=
π2

√
2K̄ν4V2α

i8/3 + β
(244)

where:
β
∧
= απ2K̄ν2V2

(The value of the parameter α was previously determined in (68).)

Now the estimation of the diagonal elements of R, the inverse
of the matrix A, requires the evaluation of the quantity J, formed
by the summation:
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J ∧
=

M∑
i=1

gk

=

M∑
i=1

π2
√

2K̄ν4V2α

i8/3 + β
(245)

For large T , the magnitude of the terms of the summation varies
slowly with i. Thus the summation can be safely transformed into
an integral:

J ≈

∫ M

1
di
π2

√
2K̄ν4V2α

i8/3 + β

≈ π2

√
2K̄ν4V2α

∫ ∞

0
β3/8dx

1
βx8/3 + β

(246)

= π2

√
2K̄ν4V2αβ−5/8

∫ ∞

0

dx
1 + x8/3

where
x ∧

= β−3/8i

Numerical evaluation of the normalized integral yields a value of
1.275. We thus determine the following estimate of the summation
given by J.

J ≈ 1.275π2

√
2K̄ν4V2αβ−5/8 (247)

Now, the formula derived in Appendix I for the expected value
of the diagonal elements of the covariance matrix (equal to the
inverse of A) is evaluated using (238), (244), and (247).
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E{Rii} = E{[A−1]ii} =
1 + giJ

Aii

=
1 + π2

√
2K̄ν4V2α

i8/3+β 1.275π2
√

2K̄ν4V2αβ−5/8

π2K̄ν2V2 + i8/3
α

(248)

=
α/β

1 + i8/3
β

1 + 2.55π4K̄ν4V2α2β−13/8

1 + i8/3
β


It should be pointed out that the fraction inside the parenthesis
is usually much smaller than unit and therefore of little
significance. It only becomes at all significant under low signal-
to-noise ratios. However the term is proportional predicted by the
analysis and will be retained and contribute to the final result
below.

Determination of the Estimation Error

Finally, substitution of (248) into Parseval’s theorem (215)
produces a summation that will yield a mean squared expected
difference (error) between τ(ACT ) (the underlying differential delay
function) and τ(MAP) (the best estimate of τ). We will ignore the
doubling of the power contribution from the i = 0 (zero frequency)
Fourier component towards the estimate of ∆τ; for larger T its
relative significance dwindles.
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τ̃2 ∧= E{∆τ2} =
1
2

∞∑
i=0

E{Rii}

=

∞∑
i=0

α/2β

1 + i8/3
β

+

∞∑
i=0

1.275π4K̄ν4V2α3β−21/8(
1 + i8/3

β

)2 (249)

Now we need only evaluate the summations. The factors in the
numerators will be taken outside the summations. The first
summation has already been performed above, with different factors.
Repeating the derivation, a substitution for the index i allows
transformation of the summation into a standard integral which has
been evaluated numerically.

∞∑
i=0

1

1 + i8/3
β

≈

∫ ∞

0
β3/8 dx

1 + x8/3 ≈ 1.275β3/8

where (250)
x ∧= β−3/8i

Similarly, the second summation is transformed into an integral
which has been evaluated numerically.

∞∑
i=0

1(
1 + i8/3

β

)2 ≈

∫ ∞

0

β3/8 dx
(1 + x8/3)2 ≈ .797β3/8

x ∧= β−3/8i (251)

Now we can insert the values of the summations into (249) and
arrive at the mean squared estimation error.
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τ̃2 =
1.275

2
αβ−5/8 + .797 · 1.275π4K̄ν4V2α3β−9/4

= .637αβ−5/8 + 1.02π2ν
4V2

ν2V2
α2β−5/4 (252)

= .637αβ−5/8

1 + 1.6π2ν
4V2

ν2V2
αβ−5/8


The factor αβ−5/8 occurs twice. We will proceed to simplify the
−8/5 power of that factor, and express it in terms of the intrinsic
signal-to-noise ratio.

βα−8/5 = π2K̄ν2V2α−3/5

=
4.88

T 1/5
τ T

π2K̄ν2V2 (253)

Let’s express Tτ in terms of T0 using (232). Then we shall apply
the definition of the intrinsic signal-to-noise ratio (233)
yielding:

βα−8/5 =
T0(2πν0)6/5

4.82
4.88π2 K̄

T
ν2V2

= 1.88 · 4.88π2ν6/5
0 I0T0ν2V2 (254)

= 90.68ν16/5
0

ν2V2

ν2 V2
S NR2

∴ αβ−5/8 = .0598ν−2
0

 ν2V2

ν2 V2

 S NR−5/4

Substituting this result into (252) produces our ultimate formula
for the r.m.s. estimation error.
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τ̃2 = .038ν−2
0

 ν2V2

ν2 V2

−5/8

S NR−5/4 ·1 + .94
ν4V2

ν2 ν2V2

 ν2V2

ν2 V2

−5/8

S NR−5/4

 (255)

τ̃ =
.195
ν0

 ν2V2

ν2 V2

−5/16

S NR−5/8 ·√√√
1 + .94

ν4V2

ν2 ν2V2

 ν2V2

ν2 V2

−5/8

S NR−5/4 (256)

=
.195
ν0

k−5/16
2 S NR−5/8

√
1 + .94k4k−5/8

2 S NR−5/4

where:

k2
∧
=

ν2V2

ν2 V2

k4
∧
=

ν4V2

ν2 ν2V2
(257)

Note that the combined statistics k2 and k4 are tailored to each be
on the order of unity. In particular, for narrowband light they
both approximate unity, and for observing an unresolved object,
|V | = 1, k2 is always equal to one. Thus we see that estimation
error follows the −5/8 power of signal-to-noise ratio, or, for a
fixed V(ν), follows the −5/16 power of collected optical power,
assuming low-noise detection. At the “nominal” optical frequency
ν0 the above estimation error translates to a phase estimation
error of:

Φ̃ = 2πν0τ̃

= 1.23k−5/16
2 S NR−5/8

√
1 + .94k4k−5/8

2 S NR−5/4 (258)

138



We shall find in the
discussion of the global
estimation problem that
the lowest usable SNR is
around 3.0. In what
could therefore be
termed the “worst case,”
(258) predicts a phase
estimation error of
about 40 degrees r.m.s.
Simulations have
been run at signal-to-
noise ratios between 1
and 10 to verify (258).
Using fully correlated

Figure 22: Average phase estimating error vs. signal-to-
noise ratio, for simulations run with |V | = 1, using LLA,
compared to theory (258).

light with photons uniformly distributed over a 2:1 range of
optical frequency (not a very realistic spectrum), and employing
the time-domain algorithm using the LLA approximation, the r.m.s.
error was computed for a
number of simulations
which were averaged to
reduce the uncertainty
of the result. These
results, converted to
phase error by
multiplying by 2πν0 are
plotted in Figure 22
along with the
theoretical value given
by (258). Agreement
between the data points
and the theoretical
curve is apparent, with
the simulation results

Figure 23: Average phase estimation error vs. signal-to-
noise ratio, for simulations run with |V | = .3, using
LLA, compared to theory (258).

exhibiting a slightly lower than predicted by theory, except
at very low signal-to-noise ratios where the simulations show a
greater errorpredicted. In Figure 23 similar simulations
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were run with photons that were generated with reduced correlation:
V = .3 at all wavelengths. Although the variance of the simulation
results has greatly increased (even after averaging a larger number
of simulation results to produce each plotted point), agreement
with theory is again evident.

Derivation of the Estimation Error using the Exact Logarithm

The above derivation of the r.m.s. estimation error, employed
the LLA approximation (page 71) in order to greatly reduce the
complexity of the mathematics. We shall now repeat the same
derivation using the exact logarithm in the estimation algorithm
and in the analysis of the estimation error. The reader is
reminded that the discrepancy involved in the LLA approximation is
only significant for visibilities of magnitude approaching unity.
In more typical cases of objects that are at least somewhat
resolved, and/or photo-detectors that experience a dark count that
is not very small compared to the photon count, the advantage of
using the exact logarithm will be minuscule.

The use of the LLA approximation in the estimation procedure
and analysis of estimation error first occurred in the use of the
upper expression of (168) for the evaluation of λk, the logarithm
of the conditional probability of receiving photon #k in the
interference phase in which it eventually was detected. The
resultant approximation was propagated into the determination of λ

in (170), Λ in (171), and the derivatives of Λ in (181)–(183),
results which were repeated above in (234) and (235). Using the
lower (exact) expression of (168) for λk, we found the
corresponding second derivatives of Λ to be given by (190) and
(191), repeated below.

δ2Λ

δU2
i

= −
1
σ2

i

−

K∑
k=1

(2πνk)2 cos2(
π

T
itk)
|V |2 + Re{Lk}

(1 + Re{Lk})2 (259)
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δ2Λ

δUiδU j
= −

K∑
k=1

(2πνk)2 cos(
π

T
itk) cos(

π

T
jtk)
|V |2 + Re{LK}

(1 + Re{Lk})2 (260)

We can now go on to rework the mathematics in (236)–(258)
using these more difficult expressions to determine the statistics
of the elements of the A matrix. Again, the diagonal elements of
A are found from the second derivative now given by (259).

E{Aii} = −E{
δ2Λ

δU2
i

}

= E{
K∑

k=1

(2πνk)2 cos2(
π

T
itk)
|V |2 + Re{Lk}

(1 + Re{Lk})2 } +
1
σ2

i

(261)

Evaluating this expression at τ(ACT)now requires the determination
of the expected value of the fraction containing Lk at τ(ACT). This
will be done in two parts. Again we will express Lk as given by
(216) in which φ is defined in (217) with a probability density
given by (218). The first expectation to evaluate is:

E
{

1
1 + Re{Lk}

}
=

∫ 2π

0
P(φ)dφ

1
1 + Re{Lk}

=

∫ 2π

0

1 + |V | cos φ
2π

dφ
1

1 + |V | cos φ
(262)

= 1

The evaluation of the second expectation is not quite as simple.
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E
{

1
(1 + Re{Lk})2

}
=

∫ 2π

0

1 + |V | cos φ
2π

dφ
1

(1 + |V | cos φ)2

=
1

2π

∫ 2π

0

dφ
1 + |V | cos φ

(263)

= (1 − |V |2)−1/2

(A table of integrals has been used in the final step.) The
evaluation of the fraction in (261) can now proceed using these
results.

E
{
|V |2 + Re{Lk}

(1 + Re{Lk})2

}
= E

{
1

1 + Re{Lk}

}
− (1 − |V |2) · E

{
1

(1 + Re{Lk})2

}
(264)

= 1 −
√

1 − |V |2

We have evaluated the expectation over the ensemble of realizations
of photons given the optical frequency νk and the V(ν) at that
wavelength. We have yet to average over all optical frequencies.
Inserting this result into (261) we find:
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E{Aii} =
1
σ2

i

+ K̄(2π)2 1
2

E{ν2(1 −
√

1 − |V(νk)|2)}

=
1
σ2

i

+ π2K̄ν2V2e1 (265)

where

e1
∧
=

E{2ν2(1 −
√

1 − |V(νk)|2)}

ν2V2

(1 ≤ e1 ≤ 2)

We have created the exact logarithm enhancement factor e1 as a
dimensionless quantity which is close to unity for smaller
magnitudes of V , but can attain a value of 2 in the case of |V | = 1
at all wavelengths. Recall that the advantage of using the exact
logarithm only occurs for |V | approaching unity. Note that, except
for the inclusion of the enhancement factor, this expression for
the value of the diagonal elements of A is identical to the
previously determined value (238) using the LLA approximation.

The determination of the expectation of the variance of Ai j,
using the exact algorithm undergoes a similar modification.

E{A2
j j} = E


(
−

δ2Λ

δUiδU j

)2


= E{
K∑

k=1

[(2πνk)2 cos(
π

T
itk) cos(

π

T
jtk)
|V |2 + Re{LK}

(1 + Re{Lk})2 ]2} (266)

= K̄E{(2πνk)4 cos2(
π

T
itk) cos2(

π

T
jtk)

(
|V |2 + Re{LK}

(1 + Re{Lk})2

)2

}

Now we are required to evaluate the expectation of the square of
the same fraction that we addressed in (263). First, the squared
fraction is algebraically decomposed into three terms, each of
which will have its expectation calculated by brute force
integration.
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E


(
|V |2 + Re{Lk}

(1 + Re{Lk})2

)2


= E
{

1
(1 + Re{Lk})2

}
− (1 − |V |2) · E

{
1

(1 + Re{Lk})4

}
(267)

−2(1 − |V |2) · E
{

1
(1 + Re{Lk})3

}
The first expectation has already been found in (263). The
following two are evaluated by integration over φ (again a table of
integrals has been employed).

E
{

1
(1 + Re{Lk})4

}
=

∫ 2π

0

1 + |V | cos φ
2π

dφ
1

(1 + |V | cos φ)4

=
1

2π

∫ 2π

0

dφ
(1 + |V | cos φ)3

=
1

4(1 + |V |2)2
√

1 − |V |2

3
2
+

1 + |V |
1 − |V |

+
3
2

(
1 + |V |
1 − |V |

)2 (268)

=
1 + |V |2

(1 − |V |2)5/2
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E{
1

(1 + Re{Lk})3 } =

∫ 2π

0
P(φ)dφ

1
(1 + |V | cos φ)3

=
1

2π

∫ 2π

0

dφ
(1 + |V | cos φ)2 (269)

=
1

(1 − |V |2)3/2

Substituting these results into (267) we obtain:

E
{

(
|V |2 + Re{Lk}

(1 + Re{Lk})2 )2
}
= (1 − |V |2)−1/2

−(1 − |V |2)2 1 + |V |
2

2

(1 − |V |2)5/2 (270)

−2(1 − |V |2)2(1 − |V |2)−3/2

=
|V |2

2
√

1 − |V |2

Again, the final step involves averaging (270) over all optical
frequency, ν, and substitution into (266) in which the expected
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value of the product of uncorrelated factors is written as the
product of the expected values.

E{A2
i j} = K̄ · 16π4ν4 1

2
1
2

E

 |V |2

2
√

1 − |V |2


= 2π4K̄ν4V2e2 (271)

where :

e2
∧
=

E
{

ν4|V |2√
1−|V |2

}
ν4V2

Again, we have formed an
expression for the
variance of the off-
diagonal terms of A that
is identical to the
determination (240)
using the LLA
approximation, except
for the addition of the
factor e2 which is
approximately unity for
small |V |. Both e1 and
e2 are combined
statistics of V and ν.
For the (unrealistic)
case of constant V over

Figure 24: Enhancement factors e1 and e2 plotted vs. V , for the
special case of constant V for all wavelengths.

wavelength, the behaviors of e1 and e2 are plotted as functions of
V in Figure 24.

We now use the results (265) and (271), derived using the
exact logarithm, to modify the previous determination of the
statistics of the elements of the matrix A. The determination of
gi consistent with (241) will now require the replacement of (244)
with:
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gi =
π2

√
2K̄ν4V2e2

1
σ2

i
+ π2K̄ν2V2e1

=
π2

√
2K̄ν4V2e2α

i8/3 + β
(272)

where
β
∧
= απ2K̄ν2V2e1

Note that we have absorbed the enhancement factor e1 into the
redefinition of β. We go on to form the summation of the gi as in
(245) with the inclusion of the enhancement factors. The result
corresponding to (247) then becomes:

J ≈ 1.275π2
√

2K̄ν4V2e2αβ
−5/8 (273)

Again, we are employing the new definition of β (272). We now
substitute these results into the formula derived in Appendix I for
the expected value of the diagonal elements of the covariance
matrix, as in (248).

E{Rii} = E{[A−1]ii} =
1 + giJ

Aii

=
α/β

1 + i8/3
β

1 + 2.55π4K̄ν4V2e2α
2β−13/8

1 + i8/3
β

 (274)

Again, the major modification due to e1 is buried in the new
definition of β. Propagating the effect of e1 and e2, we produce
a slightly modified version of (256), the expected r.m.s. error in
the estimation of τ(t).
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τ̃ =
.195
ν0

k−5/16
2 e−5/16

1 S NR−5/8
√

1 + .94k4k−5/8
2 e−5/8

1 e2S NR−5/4 (275)

Setting e1 and e2 to unity will simply recover (256), the formula
for estimation error using the estimation procedure in which the
LLA approximation has been employed. The primary difference in
(275) is the e−5/16

1 factor which multiplies the entire expression.
At its maximum, e1 attains a value of 2 when |V | = 1 at all
wavelengths, in which case a 20% decrease in the estimation error
is predicted. This is equivalent to a

√
2 increase in the signal-

to-noise ratio, corresponding to a doubling of the received optical
power (in the case of a quantum noise dominated detector).

The effect of e1 and e2 under the radical in (275) is
relatively minor. Curiously, the effect of the e2 factor alone is
to worsen the estimation error, according to (275). However its
prediction of catastrophic estimation failure as |V | approaches 1
is neither expected on general principles nor borne out by
simulations. We can conjecture that the analysis that introduced
the correction factor failed to observe the breakdown of
approximations which had otherwise been valid. Specifically,
taking the logarithm of a random variable which is allowed to
approach zero (as can occur in the case of the logarithm of
1 + Re{Lk} when |V | = 1) will yield a random variable with an
unexpectedly wide and skewed distribution (as it takes on very
negative values when 1 + Re{Lk} ≈ 0). The Central Limit Theorem can no
longer claim that the summation of several such random variables
will be normally distributed.

As before, simulations have been run in which photons were
randomly generated, with a uniform distribution over a 2:1 range of
optical frequency. The optical correlation, V , was set to .9 at
all wavelengths (setting V to unity was avoided, so that the
anomalous behavior of e2, discussed above, could be avoided, in
plotting the theoretical curve). Again, there is good agreement
between the simulations and theory.
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However it should
be noted that simulation
results using the exact
logarithm tend toward a
slightly higher r.m.s.
estimation error than
predicted by theory,
whereas the results of
simulations using the
LLA approximation showed
a lower figure than
theory (at SNR> 3).
Taken together, we find
that the reduction of
estimation error using
the exact logarithm seen

Figure 25: Phase error vs. SNR of simulations run with
|V | = .9, using the exact logarithm, compared to theory
(275) (multiplied by 2πν0).

in simulations, is only about half of the reduction predicted by
theory. This only goes to make the usefulness of the exact
logarithm (in the few cases that it even applies) even more
questionable.

The Estimation Error using only Prior Data

The determination of the mean squared estimation error
incorporated the factor of 1/2 resulting from Parseval’s theorem
(215). This factor entered into (249) in the determination of the
mean squared estimation error averaged over the interval 0 < t < T .
However suppose we wish to determine the mean squared error at the
endpoints, t = 0 and t = T . Then it can be seen at those
endpoints, the expected value of the power contributed by each
component of U to τ in (214) is no longer 1

2U2
i but rather U2

i . If
we are willing to accept that there is zero average correlation
between Ui and U j, the we could write, for the endpoints of the
time interval, an expression similar to Parseval’s theorem:
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〈∆τ2〉 =

∞∑
i=0

(∆Ui)2 (276)

Substitution of (276) for (215) in the determination of the mean
squared estimation error in (249) will double the value of that
determination. This will result in a

√
2 increase in the r.m.s.

estimation error found in (256).

Therefore a real-time delay-tracking system, using only photon
detections in the past will be capable of a delay-tracking
performance with an estimation error exceeding that of the off-line
estimation system by the factor

√
2. More important, however, is

the reduction in confidence (regarding the global estimation
problem) that use of only prior data entails. This effect can be
easily noticed in the character of the global solutions to be
presented in Figure 32 through Figure 38, in which the confidence
of the interior points is consistently superior to that of the
estimates at t = 100 (or t = 0), at which point only photons in the
past contributed to the estimation of τ(t).
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Analysis of the Confidence of MAP Solutions

Using the MAP path estimation procedure, we can search for all
the various paths which maximize Λ, the logarithm of a posteriori
probability, in a local sense. After normalizing the probability
of these paths, so that the sum of their probabilities is one, we
consider the probability assigned to the path which describes the
actual τ(t) function. We call that probability the confidence of
the correct solution. We are focussing on that quantity because it
can be used as a quantitative measure of the qualitative behavior
of the global solution19 In the following investigation we seek
to analyze the theoretical relationship between signal-to-noise
ratio and the expected confidence of the correct solution. The
qualitative character of the global solution and the concrete
meaning of confidence, will only be described in the following
chapter (which the reader may choose to read first). At this point
we will limit the discussion to a mathematical analysis whose
quantitative results will apply to that problem.

In the ensuing analysis, some rough approximations and
inequalities are invoked. The direction of the inequalities is so
as to put an upper limit on the expected confidence of the correct
solution. Thus we shall produce no guarantee of how high the
confidence will be with a sufficient signal-to-noise ratio; such a
guarantee might be inferred from simulation results. However we
will determine a signal-to-noise ratio below which the confidence
is predicted to rapidly deteriorate. Again, the specifics of that
deterioration can be explored with numerical simulations. However
it will be reassuring to have found analytically the approximate
signal-to-noise ratio at which it occurs.

Consider two time intervals over which τ(t) is estimated. The
first interval is from 0 to T ; the second is from T to 2T . If the
confidence of the correct solution over the first interval is p2

19A closely related quantitative measure of the uncertainty
due to the multitude of local solutions would be the entropy of
that uncertainty. That would be computed as the expected negative
logarithm of the confidence of the correct solution.
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and the confidence of the correct solution over the second interval
is p2, then, especially if T is sufficiently large, the confidence
of the correct solution over the entire interval 0 to 2T will be
approximately p1 p2. The approximation becomes more exact as the
interaction is reduced between the reckoning of confidence of
various paths leading to and starting from time T , the point that
the two time segments are joined. For larger T , the relative
effect of that joining diminishes. Therefore, it is expected that
as T , the time interval considered, grows, the confidence of the
correct solution over the growing interval should decay
exponentially. Thus the logarithm of confidence should decrease
linearly with T . Let us normalize T relative to T0, the fringe
coherence time parameter. Then if C is the confidence of the
correction solution over the interval of time T , we will define the
confidence index, C.I. as:

C.I. ∧= lim
T→∞

− log C
( T

T0
)

(277)

We shall, thus determine a lower limit on the confidence index
(representing an upper limit in confidence) as a function of
signal-to-noise ratio.

To begin the analysis, let us write out the expression given
by Bayes’ theorem for the a posteriori probability density of U
given a set of K photons assembled into a data set D.

P( ~U |D) =
P(D| ~U)P( ~U)

P(D)
=

k1P(D| ~U)P( ~U)∫
all ~U d ~U k1 P(D| ~U)P( ~U)

(278)

In this case, we have normalized the probability density by
dividing the probability density in the numerator by the total
probability of D. We have also multiplied the numerator and
denominator by an arbitrary constant, k1, to show that we can
produce a normalized product by inserting the same unnormalized
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probability into the numerator and denominator integral. That is
useful, since we can identify eΛ as the numerator, for some
possible k1. Λ was defined originally in (159). Thus:

P( ~U |D) =
eΛ∫

all ~U d ~UeΛ
(279)

The direction of the subsequent analysis is as follows. First
we shall place a lower limit on the denominator of (279). Then,
using the second-order expansion for Λ around U(MAP) (172), we can
integrate (279) to find (an upper limit on) the probability mass
contained in the MAP solution, or the confidence of that solution.
All ingredients to the solution will be based on use of the exact
logarithm rather than the LLA approximation, although there is only
one point in the following derivation where an appreciable
difference is manifest, relative to the degree of approximation
tolerated.

The numerator of (278), identical to the integrand of its
denominator, is, as before, given by:

k1P(D, ~U) = k1P(D| ~U)P( ~U) = eΛ = eλe−
χ2

2 (280)

where we have previously defined λ in (170) using (167), and χ2 in
(162). Substituting these into the integral of the denominator of
(279) using (280), we shall proceed to determine a lower limit on
that integral.
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denominator =
∫

all ~U
k1 P(D, ~U) =

∫
all ~U

eλe−
χ2

2

= (2π)M/2

M−1∏
i=0

σi

 ∫ d ~U
e
− 1

2
∑M−1

i=0
U2

i
σ2

i

(2π)M/2 ∏M−1
i=0 σi

eλ (281)

We have multiplied and divided by a factor so that the fraction
inside the integrand is now simply the (normalized) a priori
probability density of U. The value of the integral, is therefore
just the expected value of eλ over the a priori distribution of U
or:

∫
d ~U

e
− 1

2
∑M−1

i=0
U2

i
σ2

i

(2π)M/2 ∏M−1
i=0 σi

eλ =
∫

d ~U P( ~U)eλ = E{eλ}

= E

 K∏
k=1

(1 + Re{Lk})

 = E

 K∏
k=1

(1 + |V(νk)| cos(φk))

 (282)

Using the exact logarithm form for λ, we have expanded eλ into the
product of K factors, each being 1 plus |V | times the cosine of a
random angle. The expected value of each factor is clearly unity.

If the factors were truly independent then the expected value
of the product would be the product of their expected values, or in
this case, 1. However there is some correlation between factors in-
łwhich the tk and the νk are close to each other. This is generally
a positive correlation, since the photons were generated on the
basis of the same underlying τ(t) function. Therefore the
expectation of the product is necessarily greater than the product
of the expected values:
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E{eλ} ≥ 1 (283)

leading to the lower limit on the value of the denominator of
(279):

denominator ≥ (2π)M/2
M−1∏
i=0

σi (284)

Now suppose we have found a solution to the maximization of Λ,
which is the maximum closest to U(ACT), in which Λ can be closely
approximated as a second order polynomial in the Ui as in (172) for
a sufficient distance around U(MAP) so that the bulk of the
probability mass expressed by (279) is included in this
approximation, which therefore, constitutes a jointly Gaussian
distribution in the Ui. The confidence, C, of our solution is the
proportion of probability mass accounted for by (279) given the
quadratic form for Λ around U(MAP). If we call Λ of that solution
Λs and the probability density determined by that solution Ps, then
the confidence would be:

C =
∫

all ~U
d ~U Ps( ~U |D) =

∫
d ~U

eΛs( ~U)

denominator
(285)

where the denominator in the integrand is the same as the
denominator in (279), for which we now have an lower limit. Thus
the confidence is bounded by:

C ≤

∫
d ~UeΛs( ~U)

(2π)M/2 ∏M−1
i=0 σi

(286)

The integral in the numerator is the integral of an
unnormalized Gaussian density. Using the expression for the
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exponent given by (172) we can easily evaluate this integral in
terms of the determinant of the matrix A:∫

all ~U
d ~U eΛs( ~U) = eΛ

(MAP)
∫

all ~U
d ~U e−

1
2 ( ~U− ~U(MAP))tA( ~U− ~U(MAP))

= eΛ
(MAP) (2π)M/2

√
det[A]

(287)

Substituting (287) into (286), we find:

C ≤
eΛ

(MAP)

√
det[A]

∏M−1
i=0 σi

(288)

We shall estimate the value of the determinant of A using a
result obtained in Appendix I. The result for the determinant
parallels the matrix inversion procedure, using the same
characterization of A on which (238) and (240) were based.
According to the analysis of Appendix I, the expected value of the
determinant of A is found from (315) and (325), yielding20:

E {det[A]} ≈ e−
J2
2

[
1 +

H
2

(1 − J2)
] M−1∏

i=0

E{Aii} (289)

The factor inside the brackets is of relatively small significance
and will be ignored. For large T , the variance of Aii and of
the determinant is relatively small, so we will discontinue the
“expected value” notation. Using the square root of (289), we find
the following value for the denominator of (288).

20The index of rows and columns of the M × M determinant has
been arranged to run from 0 to M − 1, rather than the more standard
1 to M. This will assist in the identification of Aii as the
variance of Ui. The first element of the vector U has been
designated U0 for the zero-frequency component of the cosine
transform.
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√
det[A]

M−1∏
i=0

σi ≈ e−
J2
4 ·

√√√M−1∏
i=0

Aiiσ
2
i (290)

Now we will substitute in the expected values of the Aii found in
(265).

√
det[A]

M−1∏
i=0

σi ≈ e−
J2
4 ·

√√√M−1∏
i=0

(1 + π2K̄ν2V2σ2
i )

= e−
J2
4 ·

√√√M−1∏
i=0

(1 + βi−8/3) (291)

We used (69) for the determination of the σ2
i . β was previously

defined in (272).21

Taking the logarithm of (291) conveniently transforms the
product into a summation, which can be closely approximated by a
continuous integral.

log

√det[A]
M−1∏
i=0

σi

 ≈ − J2

4
+

1
2

M−1∑
i=0

log(1 + βi−8/3)

≈ −
J2

4
+

1
2

∫ ∞

0
di log(1 + βi−8/3) (292)

21The lower expression of (291) clearly blows up for i = 0,
making the product infinite. Recall, however, that σ2 for i = 0 is
certainly finite, however we did not wish to complicate our model
with such details. Fortunately, the significant value to be
derived presently is the logarithm of this expression, toward which
any single factor in this product (which therefore becomes a term
in a summation) is not of overwhelming significance (especially as
T grows larger). In fact, when the summation (292) (which also
contains an apparently infinite term) is evaluated using a
continuous integral, the resulting “improper integral” converges
without having to introduce an “exception” for the case of i = 0.
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Using the substitution:
x ∧= β−3/8i (293)

the integral is transformed into a standard form which has been
evaluated numerically.∫ ∞

0
di log(1 + βi−8/3) = β3/8

∫ ∞

0
dx log(1 + x−8/3)

= 3.40 β3/8 (294)

J in the leading term in (292) has previously been evaluated
in (273). Using the definitions for β in (272), k2 and k4 in
(257), and the intrinsic signal-to-noise ratio in (233), this term
can be shown to be equivalent to the following form.

J2

4
= β3/8

.48
k4

k5/8
2

e2

e5/8
1

S NR−5/4

 (295)

The quantity inside the parenthesis can be seen to be equal to 1
2 of

the second term under the radical of the correction factor in
(275).

Substituting this result and (294) into (292) yields:

log(
√

det[A]
M−1∏
i=0

σi) ≈ β3/8
(
1.70 − .48k4k−5/8

2 e−5/8
1 e2 S NR−5/4

)
(296)

The leading factor can be expressed in the following form, by
applying the definitions of β (272), intrinsic signal-to-noise
ratio (233), Tτ (51), T0 (52), and k2 (257).

β3/8 = .59
T
T0

k3/8
2 e3/8

1 S NR3/4 (297)

Substituting this into (296) produces:
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log(
√

det[A]
M−1∏
i=0

σi)

≈ .59
T
T0

k3/8
2 e3/8

1 S NR3/4(1.70 − .48k4k−5/8
2 e−5/8

1 e2 S NR−5/4) (298)

Taking the logarithm of confidence in (288) and applying (298),
leads to the following upper limit.

log(C) ≤ Λ(MAP)−.59
T
T0

k3/8
2 e3/8

1 S NR3/4(1.70−.48k4k−5/8
2 e−5/8

1 e2 S NR−5/4) (299)

It can be shown that the expected value of Λ(MAP) is (especially for
|V | not close to zero) close to, but less than, the expected value
of λ evaluated at τ(ACT). The expected contribution of each λk at
τ(ACT) was determined in (224) in the case that the LLA
approximation had been used. However using the exact logarithm,
the expected value of λ at τ(ACT) is approximately cut in half, and
is given by:

E{λk} =
|V(νk)|2

4
e3 (300)

where

e3 = 1 +
|V |2

8
+
|V |4

24
+ . . .

The e3 factor is appreciable only for |V | >> 0, and reaches a maximum
value of 1.23 when |V | = 1. So for a time period T in which the
expected number of photons is I0T , we would expect the value of
Λ(MAP) to be:
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E{Λ(MAP)} < E
{
λ|τ(ACT)

}
= E

 K∑
k=1

λk


≈ K

V2

4
e3 = I0T

V2

4
e3 =

T
T0

S NR2

4
e3 (301)

We have introduced the intrinsic signal-to-noise ratio according to
its definition (233).

Substituting (301) into (299), we obtain:

log(C) ≤
T
T0

S NR3/4
(
S NR5/4

4
e3 − k3/8

2 e3/8
1 + .28 k4k−1/4

2 e−5/8
1 e2 S NR5/4

)
(302)

The confidence C, being a probability, cannot be greater than one;
log(C) must thus be negative. However the right hand side of the
inequality (302) is positive for a signal-to-noise ratio higher
than a particular value that we shall call S NR(CRIT). For signal-
to-noise ratios higher than that number, therefore, the above
inequality assures us of nothing. We are assured, however, that as
the signal-to-noise ratio falls below that number, the confidence
will certainly deteriorate; that is the qualitative result we have
sought. We can solve for S NR(CRIT) by setting the expression inside
the parenthesis equal to zero, resulting in:

S NR(CRIT) = 1.74 k3/10
2

e3/10
1

e4/5
3

1 +
√

1 − .28
k4

k2

e2e3

e11/8
1


4/5

(303)

k2 and k4 were defined in (257). They both take on the value of 1
in the narrowband case. e1, e2, and e3 are all close to 1 except
as |V | approaches unity. For the case of k4 = k2 = 1, and e1 = e2 = e3 = 1,
we find the critical signal-to-noise ratio is approximately 3.0.
This is consistent with the results of simulations which find a
rapid disintegration of the a posteriori probability mass as the
signal-to-noise ratio falls much below about 4.
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To make a somewhat more quantitative statement we can look at
the expected behaviour of C as the signal-to-noise ratio is
decreased below SNR(CRIT) according to (302). We shall write the
result in terms of the confidence index, defined in (277) as the
asymptotic ratio between the negative logarithm of confidence and
T/T0. Using the result of (302) we can write the following
prediction for a lower limit on the confidence index for signal-to-
noise ratios below SNR(CRIT):

C.I. ≥ S NR3/4
(
k3/8

2 e3/8
1 −

S NR5/4

4
e3 − .28k4k−1/4

2 e−5/8
1 e2S NR−5/4

)
(304)

In 20 simulations,
using various signal-to-
noise ratios between 2.8
and 6.5, there was a
fairly exhaustive search
for local maxima of Λ.
Using the total
probability found during
that search to normalize
the probability
(confidence) of each
individual path, and
identifying the correct
path among those found,
the confidence of that
correct path was

Figure 26: Plot of the lower limit on the confidence
index according to (304) vs. SNR, and data points
from 20 simulation runs.

ascertained. Dividing the negative logarithm of that confidence by
T/T0, the resulting estimates of the confidence index were plotted
versus signal-to-noise ratio in Figure 26. Simulations in which
|V | = 1 are each plotted with an “x” while simulations in which there
was much less than full optical correlation are each plotted an
“o.” the theoretical lower limit (304) is plotted on the left of
the graph for e1 = e2 = e3 = k2 = 1. k4 has been set to 1.14 to reflect the
model used in the simulations in which photons were uniformly
distributed over a 2:1 range of optical frequency. The curve
plotted with a dashed line reflects the modification to e1, e2, and
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e3 appropriate for |V | = .9 (|V | = 1 was avoided because of the
unacceptable behavior of e2 as |V | approaches unity, discussed on
page 148). The dashed curve is thus more applicable to the points
plotted as “x” while the solid curve applies to the points plotted
as “o.”

In considering Figure 26 it should be remembered that (304)
only claims to be a lower limit on the confidence index. Any
discrepancy between the observed behavior and theory can probably
be traced to the weak inequality introduced in (283). One might
conjecture, looking at Figure 26, that the slope of the data points
appears similar to that of the theoretical curve; such a
determination would be premature based upon limited data having
such large variance. However it is gratifying that there is
evidently a relationship between the prediction of a rapidly
growing confidence index below a certain signal-to-noise ratio, and
results showing such behavior relative to a signal-to-noise ratio
which is reasonably close to the predicted S NRCRIT.
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Characteristics of Global MAP Solutions

We now wish to present the results of investigation into the
nature of the total MAP solution, in which the global problem is
addressed. Recall that the a posteriori probability density of
solutions of τ(t) over the range of 0 < t < T is represented by Λ, the
logarithm of (unnormalized) a posteriori probability density,
approximated as a function in an M dimensional space. The value of
M should be chosen to accommodate the highest frequency components
in which there is appreciable energy; M must necessarily increase
with T , the time length of the τ function being considered. The M
dimensions have previously been referred to as the axes
representing the amplitude of the M components of the discrete
cosine transform U0 through UM−1. However the axes could just as
well correspond to the values of τ at M points in time; the same
function would result. Since the Fourier transform (if properly
normalized) is a linear orthonormal transform, this corresponds to
a simple rotation of the coordinate system. The shape of Λ remains
unchanged.

Λ will be a smooth rolling function throughout the M
dimensional space, with multiple peaks. Around each peak Λ can be
well approximated as a quadratic function. However a quadratic
function around a peak is exactly the logarithm of a Gaussian
probability density whose mean is the position of that peak. The
volume contained under any one peak corresponds to the net
a posteriori probability (or confidence) of that Gaussian function
containing the point corresponding to τ(ACT), the actual function
that we are attempting to estimate. Then, in order to insure, for
instance, no more than a 1% change of estimating failure, we would
need to account for 99% of the probability mass of eΛ by
identifying the N highest peaks of Λ. With a high signal-to-noise
ratio, N = 1 might suffice, in which case the solution consists of a
single path which, with 99% confidence, describes τ(ACT). With a
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lower signal-to-noise ratio, there will be a number of such peaks
corresponding to multiple paths. The solution must then consist of
the probabilistic union of N paths, each of which is characterized
by a net probability or confidence, a mean path (at which Λ is
maximized in a local sense), and a covariance structure (expected
error) which we have already examined in detail (see (248)). We
shall describe the net probability density as poly-Gaussian,, or the
union of Gaussian solutions.

The Poly-Gaussian Probability Distribution

To illustrate the concept of a poly-Gaussian a posteriori
probability density, consider the following one-dimensional
estimation problem. We wish to estimate a temperature T whose
a priori probability is considered to be uniform over −∞ to +∞ (to
simplify the estimation problem). The temperature is measured
using a thermometer that is known to have a Gaussian error with a
standard deviation of σ = 5 degrees. Then a coin is tossed. The coin
has a probability p of landing heads, and 1 − p of landing tails. If
it lands heads then a particular number, ∆T is added to the
measured temperature; if tails, it is subtracted. The result, Y ,
would then have a probability p of coming from the Gaussian
distribution µ = T + ∆T , σ = 5, and a probability of 1 − p of coming from
the Gaussian distribution µ = T − ∆T , σ = 5. The resulting probability
density of Y would clearly be:

P(Y) =
p

5
√

2π
e−

(Y−(T+∆T ))2

50 +
1 − p

5
√

2π
e−

(Y−(T−∆T ))2

50 (305)

Such a density is what we call poly-Gaussian.
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Now assume that an observer is aware of the above model,
including the values of the parameters p and ∆T . Receiving the
value of Y , the observer is required to estimate T . It can easily
be seen (or proved using Bayes’ Theorem) that, given Y , the
a posteriori probability of T would also be poly-Gaussian,
characterized as having a probability of p of belonging to the
Gaussian distribution µ = Y − ∆T , σ = 5, and a probability of 1 − p of
belonging to the Gaussian distribution µ = Y + ∆T , σ = 5.

P(T |Y) =
p

5
√

2π
e−

(T−(Y−∆T ))2

50 +
1 − p

5
√

2π
e−

(T−(Y+∆T ))2

50

∴ E{T |Y} = p(Y − ∆T ) + (1 − p)(Y + ∆T ) (306)
= Y − (2p − 1)∆T

If the object were to find a single estimate of T which minimized
the mean squared estimation error, then the proper estimator would
simply be the mean value of the a posteriori distribution, shown in
(306).

However suppose we need to estimate T subject to a different
criterion. For instance, suppose that it will snow if and only if
T < 0. Now we would like to know the probability of it snowing given
Y . In this case, the mean of the a posteriori distribution would
be of little use. Instead, we would like to use the a posteriori
density itself. Integrating P(T |Y), above, from −∞ to 0 would
determine the probability of snow. Equivalently, the error
function for each of the two Gaussians that comprise P(T |Y) could
be evaluated at the correct points, and combined by multiplying by
p and 1 − p, respectively. The point is that in such cases it is
often not adequate to determine only the mean and variance of the
a posteriori distribution. Rather, we would like to be supplied
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with the probability density itself. In the case of a poly-
Gaussian distribution, that density can be summarized by supplying,
for each individual Gaussian component, the mean, variance, and
probability of that Gaussian applying.

Plots of the a posteriori density (306) for Y = 20, are shown in
Figure 27 for various values of p and ∆T . In A and B, the
individual Gaussians comprising the probability density are clearly
separated. However in C there is a large overlap between the tails
of the two. In D, the overlap has reached the point that the
resultant density is again unimodal. In the latter two cases, some
likely values of T will not clearly be assigned to one Gaussian or
the other. However, we shall see that this is a situation that
will not occur, to any extent, in the global solution of the
a posteriori probability of τ, except at signal-to-noise ratios so
low that the results produced would be useless.

One feature of Figure 27 A and B that should be noted is that
the area under each of
the two distinct
Gaussians is
proportional to its peak
value. That occurs only
because we have set up
the problem so that the
two Gaussians have the
same variance. That
characteristic, it so
happens, applies also to
the τ estimation problem
(approximately). Since
the determinant of the
covariance matrix of
Gaussians corresponding

Figure 27: Poly-Gaussian a posteriori probability density for
example in text. A: ∆T = 10, p = .5. B: ∆T = 6, p = .3; C:
∆T = 5, p = .5; D: ∆T = 4, p = .7.
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to different peaks of Λ is approximately equal, we can say that the
probability mass belonging to any individual Gaussian which is part
of the total poly-Gaussian distribution of eΛ will be approximately
proportional to the exponential function of the local peak value of
Λ. Using that fact, we can find the probabilities (or confidence)
of each of N individual Gaussians of the a posteriori distribution
using the following normalization procedure. If the peak Λ found
for each of N local peaks is denoted Λ(i) for i = 1 to N, then the
probability of Gaussian #i applying, denoted P(i), would be:

P(i) = eΛ
(i)−Λ(full)

where : (307)

Λ(full) ∧= log
N∑

i=1

eΛ
(i)

For this procedure to work it is first necessary to find the N
highest peaks of Λ which account for almost all of the total
a posteriori probability of τ. In other words, N must be
sufficiently large so that increasing it will not appreciably
affect the value of Λ(full) in (307). In that case, (307) will
allow us to normalize the probabilities assigned to the N paths.
This determination is one element of the global algorithm, the
operation of which will be discussed starting on page 189. However
we will immediately find useful the graphical output of that
algorithm.
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The Global Solution in the Narrowband Case

To begin the discussion of how a multiple path (or poly-
Gaussian) solution to the global problem might present itself, let
us consider the solution to the maximization of Λ in the case of
narrowband reception. We recall that if νk is the same for all
photons, then adding 1/ν to all points of τ will produce a function
which does not alter the phase angle supplied to every complex
likelihood (80), thus producing the same λ. Using the strict −8/3
power low for the a priori statistics of the atmospheric path delay
τ, there is no penalty whatsoever for the addition of a constant
(d.c.) term, thus χ2 will not be altered. Therefore in the
narrowband case, there will be an infinite number of such solutions
producing the same Λ. So even with a very high signal-to-nose
ratio, we obtain an ambiguous result due to the lack of wavelength
diversity. In Figure 28 the signal-to-noise ratio was set to 6.0,
but due to the photons all being of the same wavelength, the
algorithm has found repeated solutions separated by 1/ν (in this
case equal to 2.2 femtoseconds). The 4 solutions all reported
value of Λ which were
quite close (although
not identical, due to
idiosyncrasies of the
algorithm). The
remainder of the
infinite number of
possible solutions were
not found by the
algorithm which was
based on a limited
search space, roughly
corresponding to the
extent of the τ axis of
Figure 28. Figure 28: Result of global algorithm estimating paths based

on narrowband reception at S NR = .6. Vertical axis is τ in
femtoseconds; horizontal axis is time in milliseconds.
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To illustrate the
differentiating role
that can be played by
using a sizeable
bandwidth, the algorithm
was run using the same
underlying τ function
(shown in Figure 29),
but with a set of
photons whose wavelength
varied over a 10%
bandwidth. In Figure 30

Figure 29: The actual τ(t) function used in the ex-
amples of the global solutions shown in Figure 28
through Figure 40.

the result of that simulation is plotted with a posteriori
probability, in percent, printed at each nodal point. In this case
it can be seen that the inclusion of multi-spectral information has
enabled the algorithm to fairly well differentiate between the
correct path, shown as having a 92% confidence, and the two first-
order “sidelobe” solutions, whose probabilities are reported to be
8% and .2% (the very bottom solution from Figure 28 had such a poor
Λ in the new simulation that it was eliminated by the algorithm
according to the criterion that had been set). There also appear
in Figure 30 a few, albeit improbable, paths connecting parts of
the adjacent solutions. As we shall see, these are a natural part
of the global solution, and were not included in Figure 28 only
because that simulation had been performed with a tighter criterion
on the basis of which paths were discarded (in Figure 30 it was
necessary to relax that criterion so that the lower sidelobe, of
a posteriori probability = .2%, would survive).
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The Effect of Signal-to-
Noise Ratio

Such erroneous
paths, however, become
more prominent as the
signal-to-noise ratio is
reduced and the
algorithm is required to
evaluate the
a posteriori probability
of various paths on the
basis of far fewer
photons. In Figure 31
for instance, the photon

Figure 30: Simulation similar to Figure 28 except that the
same number of photons have been produced over a 10%
bandwidht. Numbers in boxes are the a posteriori probabil-
ities in precent.

level is 45% of that used in Figure 30, lowering the signal-to
noise ratio to 4. The relative likelihood of several such paths
has markedly increased. Another feature that might be noted is
that with fewer photons, the probable identification of the correct
path, achieved in Figure 30,has become quite tenuous. For
instance in the region t = 0 − 30, the correct solution is only
assigned a probability of 39%, with the first higher sidelobe
receiving a probability of 46% form t = 0 − 10 and 15% from t = 10 − 65.
It might be noted that part of the problem stems from the limited
range of time t, over which photons were considered in order to
determine the a posteriori probabilities of the paths shown. If
the time series had extended further in both directions then it is
likely that the (correct) 51% path a tthe left would have received
a much stronger rating, substantially raising the confidence of the
correct solution. However with a still relatively narrowband set
of photons, it can be seen that differentiation between adjacent
sidelobes remains problematic, especially at lower signal levels.
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This can be seen
clearly by contrasting
Figure 31 with the
result of a simulation
of the same underlying τ

function at the same
signal-to-noise ratio,
but in which the same
number of photons now
are spread over a 2:1
range of optical
frequency (with the same
r.m.s. optical frequency
ν0 = .458 × 1015 Hz), shown
in Figure 32. In this

Figure 31: Simulation run identical to Figure 30, except that
the signal-to-noise ratio has been cut to 4.

case it can be seen that the confidence of the correct path has
risen to 99% (the algorithm has assigned a 1% probability of an
erroneous path at t = 0 − 5, and 9% probability for the erroneous path
at t = 80 − 100. The abundance of such erroneous paths, having
nothing to do with the misidentification of sidelobes in the
narrowband case, is
rather typical (although
somewhat better than
average) for this
signal-to-noise ratio
(=4.0). Simply raising
the signal-to-noise
ratio to 5.0, as seen in
Figure 33, has raised
the confidence of the
correct path to
virtually 100% with no
erroneous paths shown
(paths of probability

Figure 32: Simulation run on same underlying τ func-
tion using wideband reception with the same signal level
(SNR=4.0) as in Figure 31.
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less than about .001
would have been
discarded by the
algorithm.

On the other hand,
the rapid disintegration
of the a posteriori
probability mass, as the
signal-to-noise ratio is
reduced to 3.0 and below
is clearly seen in
Figure 34 through
Figure 39. This is

Figure 33: Simulation identical to Figure 32, but in which the
signal-to-noise ratio has been increased to 5.

precisely the behavior predicted by (302) and depicted in
Figure 26. As the signal level decreases, the resulting estimate
becomes almost useless for the purpose of allowing the
determination of optical correlation on the basis of the off-line
estimate of τ. However it can still be seen that the concentration
of paths still appears in the vicinity of τ(ACT). Thus even at
these very marginal
signal-to-noise ratios,
we maintain the ability
to use the envelope of
the resulting scattered
estimation result, in
order to perform some
form of medium-coarse
delay-tracking. In
other words, if the
algorithm shown were
capable of operating in
real-time, then we would
be able to use the

Figure 34: Simulation identical to Figure 32, but with reduced
photon level. SNR=3.0.
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envelope of the result
to enable the delay-line
to correct atmospheric
delay to within a few
wavelengths. Such a use
of the global algorithm
would probably duplicate
the performance of the
group delay method,
which would require only
a tiny fraction of the
computational power
employed to produce
similarly useful

Figure 35: Simulation identical to Figure 32 but with re-
duced photon level. SNR=2.75.

results. However a performance comparison between the two has not
been attempted.

In Figure 40 the simulation has been run using the exact
logarithm. The set of photons used is identical to that of
Figure 35, and the topology of the resulting solution is similar.
However there is a
significant increase in
the confidence of the
correct solution using
the exact logarithm (in
these examples, V = 1,
providing the largest
potential performance
enhancement). Using the
exact logarithm, we
found, in the discussion
of the local problem,
that the decrease in the
estimation error of the Figure 36: Simulation identical to Figure 32 but with re-

duced photon level. SNR=2.5.
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correct solution was
quite modest. However
we can see that the
increase in the
confidence enabling
identification of that
correct solution, may
make the use of the
algorithm employing the
exact logarithm
advantageous after all.

Figure 37: Simulation identical to Figure 32 but with re-
duced photon level. SNR=2.25.

Topology of Multiple Path Solutions

We would now, without specific reference to the operation of
the global MAP algorithm itself, like to clarify the meaning and
basis of the type of results depicted in Figure 31 – Figure 40.
These figures consist of a number of nodal points (or “nodes”) and
a number of partial
paths (or simply
“paths”). The places
where the computer drew
a box around a number,
are the positions of the
nodes. These are not
part of any path per se,
but comprise the
endpoints of the
(partial) paths. The
partial paths are just
that: paths over a
limited range of time. Figure 38: Simulation identical to Figure 32 but with re-

duced photon level. SNR=2..
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That period of time is
defined by the nodes to
which the path is
connected. The shape of
the path is determined
by the maximization of Λ

over that interval, as
we have discussed
regarding the local
problem (in some cases
there may be more than
one path connected
between the same two
nodes, each path being a

Figure 39: Simulation identical to Figure 32 but with re-
duced photon level. SNR=1.75.

local maximum of Λ). The values of τ at the endpoints of a path
are required to match the τ value of the node, however that should
more be viewed as a constraint on the position of the node rather
than a constraint on the path (although, computationally, there is
some element of each).

Now, it is
important to understand
that these partial paths
do not constitute
solutions to the global
problem themselves. In
the first place, it’s
unlikely for two such
paths to run over the
same exact period of
time, thus paths cannot
be simply compared to
each other on the basis
of their individual Λ.

Figure 40: Simulation identical to Figure 35, also with
SNR=2.75, but with the estimation algorithm employ-
ing the exact logarithm.
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What’s more, a partial path which (by pure chance) happens to have
a particularly large Λ, but which is not part of a longer structure
consisting of partial paths of sufficient Λ, is not part of a
likely solution to the global problem. So let us see what
constitutes a total path solution of the global problem, and how
the determination of partial paths seen in the above figures,
provide a way of describing that solution.

In Figure 41 a set
of photons and a
solution using the
global algorithm has
been generated to
produce a figure of the
type we have already
seen, to be used for
illustrative
purposes22. Between
the 100% node at t = 0 and
the 100% node at t = 27,
there are two partial
paths we shall consider

Figure 41: Illustrative example discussed in text regard-
ing the topology of the multiple path solutions to the
global problem.

(actually, according to the computer, each consists of two partial
paths with an intervening node; let us ignore the presence of that
node). Then between t = 27 and t = 45, there are, again, two
significant paths shown.

The correct interpretation of such a diagram is as follows.
There are altogether four total paths indicated by Figure 41.

22Figure 41 has been produced by a computer using a set of
randomly produced photons, as in the previous examples. However
the numbers shown in Figure 42 and quoted in the text are somewhat
contrived. From the standpoint of the reader, however, the numbers
are consistent and typical and serve to illustrate the principles
for which this example has been created.
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These four paths are
shown individually in
Figure 42, along with
their a posteriori
probabilities (or
confidences. As can be
seen, the set of total
paths consists of every
possible progression,
starting at t = 0, from a
node to a path starting
at that node, to the
node ending that path,
and so on to another
path, continued on until
we reach a node at t = 45.

Figure 42: The four total paths implicit in the nodal dia-
gram of Figure 41. The probability of each total path is
shown, as might be computed using the figures shown
in Figure 41.

In the case of Figure 41 there were only two choices for the
beginning path and two for the latter path, resulting in 2*2=4
total paths. In a solution of somewhat greater complexity, such
multiplications will quickly produce a large number of total paths.
For instance, the solution shown in Figure 34 indicates the
existence of 55 total paths. Recall that this result is typical
for 100 milliseconds of global estimation using typical parameters,
for the indicated signal-to-noise ratio (3.0). Since the quantity
of total paths derived from non-overlapping partial paths is
multiplicative, it is not hard to see that the quantity of total
paths present in global solutions grows exponentially with the time
period considered. Thus it is not only for aesthetic reasons that
one would seek to condense the solution in terms of partial paths
and nodal points!
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The Calculation of Λ for Multiple Path Solutions

There is a particular calculus for the determination of the
a posteriori probabilities shown in Figure 30 through Figure 42
which is not obvious. What should be understood is that the
fundamental determination of the a posteriori probability (or its
logarithm, Λ) is on the basis of analysis of the total path. Such
total paths are, for the time period t = 0–45, shown in Figure 42.
Let us start by ignoring the numbers printed in Figure 41 and
Figure 42, and the way in which these illustrations were obtained.
Imagine that we had simply been seeking solutions of local maxima
of Λ using the iterative procedure depicted in Figure 18. Imagine
that we had run the algorithm starting with a variety of initial
τ(t) functions, as suggested in Figure 20, and noted the Λ figures
produced by each maximization. Suppose that we found the four most
likely solutions to be those shown in Figure 42. These were
reported as having: upper left, Λ = 20.09; upper right, Λ = 24.69;
lower left, Λ = 18.58; lower right, Λ = 23.18. Then using (307) we
would find Λ(full) = 24.90, providing the normalization necessary to
form the a posteriori probabilities written at the lower left
corner of each solution in Figure 42, as can be verified by
applying (307). The sum of these probabilities is, of course,
unity.

Now among these four possibilities, the top left and top right
of Figure 42 share the same partial path from t = 0 to t = 27. Then we
would say that the marginal probability of that partial path is
given by the probability of the union of the total paths that
include that partial path. Since the events shown in the top left
and top right of Figure 42 are disjoint23, the probability of

23At first glance, terming two paths whose values are
identical over a long region (t = 0–27) as “disjoint” may seem odd.
We have to remember, however, that the domain of events to which we
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the event consisting of their union is given by the sum of the
probabilities of the constituent events. In this case we would
find the probability of the partial path from t = 0–27 to be
p = 0.008 + .812 or 82%. This, we can see, is te humber printed on
that partial path in Figure 41. This is the meaning of all the
probability percentages printed in Figure 30 through Figure 42: the
marginal probability of that point, calculated as the sum of the
probabilities of all total paths which include that point.

At any one point in time, t′, there will be one or more
partial paths whose extend includes t′. The sum of the marginal
probabilities of those paths must be unity. Let us take the value
of τ for each of those paths at time t′, use it as a mean for a
Gaussian, and weight that Gaussian by the marginal probability of
that path. The union of these weighted Gaussians will form a poly-
Gaussian probability distribution for τ(t′) as we created in
Figure 27. That is the resulting estimate for τ given the multiple
path solutions such as depicted in Figure 30 through Figure 42.

23are assigning probability consists of the set of all possible
functions τ(t) running from 0 to T . The paths we are drawing on
the graphs are each a mean path, around which a Gaussian
distribution of possible paths is implied. Although a Gaussian
density, technically, goes out to infinity, we know that 95% of its
probability mass will occur within ±2σ of the mean. In this case,
σ, the r.m.s. distance of a probable path from the mean path, was
computed in (275), and it can be seen that 2σ is small compared to
the typical spacing between paths, except near to where they
converge in on a node. So even if two total paths are coincident
over a large stretch of time, their divergence in excess of 2σ over
a finite period of time, qualifies them as being disjoint.

Another way of looking at this relies directly on the
definition of “disjoint.” Two events, A and B, are disjoint if the
probability of the event “A and B” is zero. Clearly, the
probability of τ following path A and following path B is zero
(impossible) if A and B are not the same total path (even if they
are coincident over a period of time), unless the mean paths A and
B only differ by such a small amount that a sample path could very
well belong to either distribution, as in Figure 27 C or D.
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For instance, the
multiple path solution
shown in Figure 43
implies an a posteriori
density of τ shown in
Figure 44, plotted for
the full range of t.
Note that the
probability function
depicted as a function
of two variables is not
at all a joint
probability, p(τ, t), but
must be viewed as a

Figure 43: Multiple path plot obtained with SNR=2.5,
the probability of which is plotted in Figure 44.

probability in τ only: p(τ(t)). After all, time is not a random
variable but an independent variable. The integral over τ, at any
time t, of the function depicted in Figure 44 is necessarily equal
to one.

While we have explained the mathematical significance of
the probabilities determined in the computer printouts above, the
actual process by which the result have been obtained is really
opposite that described. We conjectured that the marginal
probabilities found in Figure 41 may have been obtained by a search
for MAP solutions over the entire range of time, in which the four
total path solutions shown in Figure 42 were then discovered. Such
an approach, however, becomes less feasible considering the 55
total paths comprising Figure 34, not to mention the thousands of
total paths present, for instant, in Figure 39. Remember, also,
that these simulations only represent the solution over a time
period of .1 seconds; the number of total paths grows exponentially
with time. The truth is that only the partial paths were
individually determined by the algorithm, and only from that set of
nodal points and partial paths, was the existence of a larger number
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Figure 44: Plot of a posteriori probability vs. τ and t, implied by the multiple path solution shown
in Figure 43. May be compared to Figure 15 (using optimum weighting).

of total paths inferred. Let us see how that works, and more
importantly, why.

Consider the first part of Figure 41, from t = 0 to t = 27, in
which 2 partial paths are depicted. The marginal probabilities of
the upper and lower path are listed as 82% and 18%, respectively.
In the second part of Figure 41, from t = 27 to t = 45, the marginal
probabilities of the two partial paths found were 1% and 99%. If
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we consider the choice of a path in the t = 0–27 region and the
t = 27–45 region to be independent events, then, for instance, the
total path shown in the upper left of Figure 42 which combines the
upper path of t = 0–27 and the upper path of t = 27–45, would have a
probability given by the product of the probabilities of the
partial paths24, or .82 ∗ .01 = .0082. And, in fact, that is exactly
how the probabilities printed in Figure 42 were arrived at.

The determination of net probability of a product, in this
case, was predicted upon the characterization of past events and
future events as being independent, given that τ(27) = −.7 (which, in
this example, was certainty: p = 100%). Let us scrutinize this
assumption. Two events are said to be independent if and only if
their joint probability is equal to the product of their individual
probabilities. In this case we are dealing with a posteriori
probabilities, and the “intuitive” concept of independence hardly
applies. Let us examine the assumption of independence based on
the criterion of probability theory.

Consider a nodal point at time t. In the past, leading up to
time t, there is path #1; in the future is path #2. We have
calculated the Λ of each path using (171). We could similarly
calculate the Λ of the joint path, that is, the path that follows

24More generally, the total probability, p12, of a net path
consisting of path 1 before time t, and path 2 after time t, both
connected to node A at time t, is calculated as follows. We must
assume in this case, that the choice of path 1 and the choice of
path 2 are characterized as independent events given the passage of
the solution through node A. Then if p1 is the marginal
probability of path 1 and p2 is the marginal probability of path 2,
then the probability of path 1 given node A is p1/pA, where pA is
the marginal probability of node A. Likewise the probability of
path 2 given node A is p2/pA. Then, the probability of the net
path given node A is the product (p1/pA) ∗ (p2/pA). The overall
probability is that probability times the probability of node A
itself, thus p12 = p1 p2/pA. In the example discussed above, the
connecting node had a probability of 1, thus simplifying the
problem.
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path #1 in the past and path #2 in the future. Let us call the Λ
of path #1, path #2, and the joint path as Λ(1), Λ(2), and Λ(1, 2),
respectively. Then we could break down these Λ as follows:

Λ(1) = λ(1) −
1
2
χ2(1)

Λ(2) = λ(1) −
1
2
χ2(1) (308)

Λ(1, 2) = λ(1, 2) −
1
2
χ2(1, 2)

Then the condition of independence will be met if we can express
Λ(1, 2) as the sum of Λ(1) and Λ(2). It is easy to see, by the
definition of λ in (170), that the value of λ for the net path is
the sum of λk for all the photons in path #1 using τ(t) of path #1,
plus the λk for each photon in path #2 using its τ(t). This is
equal to the sum of the λ of paths #1 and #2:

λ(1, 2) = λ(1) + λ(2) (309)

This solves half the problem. Now if we could only make a
similar statement concerning the χ2 of paths #1 and #2 summing to
that of the net path (plus a constant), then independence would be
proved.

However recall that χ2 is equal to the logarithm of the
a priori probability of a τ(t) function (plus a constant).
Therefore the condition that we seek, in order to establish the
independence of path #1 and path #2, is identical to the
determination of the a priori independence of a path in the past,
and a path in the future, given that they both contain the nodal
point τ(t). In probability theory, a stochastic process whose past
and future are independent, given its present value, is said to be
(first order) Markov. Technically, the characterization of τ(t) we
have adopted is not Markov.
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However it is “almost” Markov. Consider the range of
stochastic processes, x(t), whose power spectra are given by a
power law of the form S xx( f ) = f −γ. This is the spectrum of so-called
1/ f noise, especially for γ between 1 and 2. Except for one
special case, these processes are not strictly first order Markov.
For instance, suppose that we know that x(t) in the immediate past
has been increasing in value. If γ < 2, then we would find it more
likely than not for the future of x(t) to reverse direction and
decrease in value. However if γ > 2 (as it is for τ(t)), then we
would find it more likely to continue increasing. The limiting
case, γ = 2, corresponds to the spectrum of the Weiner-Lévy process
(random walk) which is Markov. However we can see that the
exponent for the characterization of τ(t) we have used, γ = 8/3, does
not differ too greatly from that of the Weiner-Lévy process, and
introducing the approximation of independence between the past nd
future given the present, will not lead to large numerical
inaccuracies. Numerical simulations, in which the Λ of total paths
(such as in Figure 42) was determined, and compared to the sum of
the Λ of the constituent partial paths (as in Figure 41), finds the
approximation of Markovian behavior to be well-founded.

The actual calculations of a posteriori probability that are
performed are based on the addition of logarithms. The logarithm
of the product of the probabilities of the two ostensibly
independent events was formed by summing the logarithms of their
probabilities. Recall that the logarithm of probability is given
by Λ plus a normalizing constant. Thus we found the Λ for the
solution in the upper left of Figure 42 by summing Λ for the 82%
path in Figure 41 (Λ = 15.20) and that of the 1% path in Figure 41
(Λ = 4.89) to find the total path Λ = 20.09. Having found the
normalization, Λ(full) = 24.90, using (307) we can convert this Λ to
normalized probability: e(20.09−24.90) = .008.
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As suggested above, Λ(full) may be determined by summing the
exponentials of the Λ of each total path. We shall show that
enumeration of the possibly large number of total paths will not be
necessary. In fact, the determination of Λ(full) will be shown to
be a special case of the summation of disjoint probabilities.

The general rules on which our calculus is based are as
follows:

1) The probability of the event including one or more paths in the
pas and one or more paths in the future is obtained by
multiplying the past probability and the future probability. Thus
the Λ of that event is determined by adding the past Λ and the
future Λ.

2) The probability of the event consisting of the union of several
paths converging in on a node, all from the past, or all from the
future, is given by the sum of their probabilities. Thus the Λ of
that inclusive event is found by logarithmically summing (as in
(307)) the Λ of the disjoint events..

3) The probability of the event that includes all possible paths
over an interval of time, must be unity. Thus the Λ computed for
an event that includes all possible paths over some interval of
time, must equal Λ(full) for that time interval. Using the
generalization of principle (2) above, this implies that the
logarithmic sum of the Λ of N disjoint events whose union includes
all possible paths, must equal Λ(full).

The application of those principles, and the basis on which
the computer algorithm determined probabilities of the complex
solutions we saw earlier, will now be illustrated with an example
that is somewhat more general than that of Figure 41. A solution
containing 15 total paths is shown in Figure 45 and Figure 46.

185



However we will never need to examine any such total path: the
procedure to be described is based only on assigning numbers to the
nodes and the partial paths.

Figure 45: A multiple path solution showing: upper left, Λ of partial paths; upper right, Λ per
photon; lower left, Λ− of each node; lower right, Λ+ of each node.

Each partial path has been “optimized” using the maximization
procedure discussed in relation to the local problem. Over its
extent in time, a number of photons have contributed to the λ

component of its Λ. Its frequency spectrum has been computed to
determine the χ2 term penalizing the resultant value of Λ. That
figure, hereafter denoted Λ(PATH), is printed, for each partial
path, in the upper left of Figure 45. While properly being
referred to as a figure of merit for each partial path, it is not
possible, in most cases, to directly compare the values of Λ of
different paths, since they generally contain a different number of
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photons (there are two pairs and a triplet of paths in Figure 45
which do contain the same photons).

A slightly better comparison figure is the path’s Λ divided by
the number of photons in the path. In this case (|V | = 1) we expect
an average value near .5. That figure, for each path, is plotted
in the upper right of Figure 45. However it will still prove to be
a very inadequate figure of merit. Note that in the time period
t = 10–30, the top path (of three) shows a figure of Λ = .41 per
photon, whereas that figure for the bottom path is .46. However,
even with the lower figure of merit, the top path is over 10 times
more likely than the bottom path. That determination, however, is
only made on the basis of an integrated analysis in which the
paths’ Λ values (in the upper left of Figure 45) are considered in
the context of the topology of nodes and partial paths on the basis
of which 15 total paths are defined.

Figure 46: Graphs of the multiple path solution of Figure 45: left, net Λ of each node; right, the
resultant net probabilities of each node and each partial path.

We shall now define two numbers for each node. Λ+ is called
the future Λ; Λ− is the past Λ. Consider the two higher paths from
t = 0 to t = 9, both of which converge on the same node at t = 9, τ = −.5.
The past of that node is the logarithmic sum of the past Λ of
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each path connecting to the node from the past. Each of those is
defined as the Λ of the path plus (multiplying the probability) the
past Λ of the node in the past of the path. Since these paths both
begin at t = 0, we arbitrarily label that past Λ as zero. Thus we
form the logarithmic sum of these paths’ Λ:

Λ− = log
∑
all

past
paths

e(Λ(PATH+Λ−(previous node))

= log(e5.3 + e6.2) = 6.6 (310)

That figure is plotted, for that node, in the lower left of
Figure 45. Likewise the two paths connecting that node to the node
at t = 32, τ = −.8, each contribute to the Λ− of that node,
6.6 + 8.7 = 15.3 and 6.6 + 6.6 = 13.2. Additionally the very lowest path
contributes 12.9 + 0 toward the Λ− of that node. Summing these
number logarithmically yields a net Λ− = 15.5 for that node, and so
on. While none of these numbers indicates probability in any
absolute sense, the following interpretation may be appreciated.
Given that τ(t) passes through the node at t = 32 (which in this
particular case, happens to be a certainty), then the probabilities
of the past τ including the upper, middle, or lower paths leading
to that node, are given by e15.3−15.5, e13.2−15.15, and e12.9−15.5,
respectively.

Now, the Λ+ assigned to each node refers to the (logarithmic)
sum of the net paths’ Λ looking into the future. For instance, the
three paths between t = 42 and t = 50, whose Λ are 8.6, 11.1, and 5.6
(as seen in the upper left of Figure 45) logarithmically sum to
11.2 as plotted in the lower right of Figure 45.
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Now, the net Λ denoted Λ(NODE) for each node, equal to the
logarithm of the (unnormalized) probability of τ(t) passing through
that node, is proportional to the probability of all paths in the
past (which end in that node) times the probability of all paths in
the future (which start at that node). Thus we add Λ− and Λ+ for
that node to form the net Λ(NODE), plotted in the left side of
Figure 46. With the normalization Λ(full) = 33.65, these numbers can
be converted to probability using (307), as seen in the right side
of Figure 46. This figure also shows probabilities reflecting the
net Λ of the paths (not to be confused with the path Λ shown in the
upper left of Figure 45). The net Λ of a path is computed as the
path Λ plus the Λ− of its past node plus the Λ+ of its future node.

Note that Λ(full) can be found logarithmically summing the
Λ+ of all nodes at t = 0. The same figure would be obtained by
logarithmically summing the Λ− of all nodes at t = 60. It can also,
in the case of Figure 46, be directly read as the value of Λ(NODE)

at any node that includes all possible total paths, such as the
node at t = 31 or the node at t = 43.

Description of the Algorithm

We will now briefly describe the operation of an algorithm
which has been successful in searching for the multiple MAP
solutions displayed in this chapter. No claim is made regarding
the computational efficiency of the algorithm to be described; such
concerns are not within the scope of this work, and there is little
doubt that substantial improvements in the computational aspect of
the τ estimation problem could be achieved in future work.

The key to the ability of the algorithm to find all MAP
solutions, rests upon initially considering a dense combination of
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partial paths, so that any
ultimate solution is certain
to have at least one such
initial path in the tails of
its Gaussian probability
distribution. The initial set
of partial paths consists of a
dense grid pattern of nodes
and connecting paths as shown
in Figure 47. The coverage of
the range of possible
solutions achieved by the
initial set of paths is

Figure 47: The initial set of nodes and paths from which
the global algorithm proceeded to generate the solution
stages of which are shown in Figure 48 – Figure 52.

critical. If the grid spacing in Figure 47 had been doubled, for
instance, then it is likely that a partial path that should be
contained in the final solution would never be found. Instead
weaker MAP solutions would be found which, after the determination
of Λ(full), would of course have overall probabilities just as high
(summing to unity!), but would be blissfully unaware of the
potential Λ of the paths we missed.

We shall follow the operation of the algorithm in the
determination of the global solution using the exact set of photons
as in Figure 32. The underlying τ(t) function is plotted
underneath the initial paths in Figure 47. The process begins with
the “processing” of each initial path shown in Figure 47. That
“processing” simply amounts to running several iterations of the Λ

maximization algorithm discussed under the “local problem,” using
as a starting path each of the partial paths shown in Figure 47.
Each path is tied at its initial and final points to two specific
nodes. The initial and end point values of the path are weakly
constrained by the τ values of these two nodes. Each resultant
path is evaluated to determine its Λ(PATH), and the path itself,
τ(t), is stored. Also stored, is the extent to which the path
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“wanted” the
initial and final
nodes, to which its
value at those
points was weakly
constrained, to
have higher or
lower τ values.

The set of
paths following
processing is shown
in Figure 48.
Because of the good
initial coverage we
established, there
are often two or
even three paths of
the algorithm which
have each found

Figure 48: Result of processing each path shown in Figure 47 to max-
imize the Λ of each path. The resultant net Λ is written in the box of
each node.

substantially the same path to maximize Λ, even though they are
tied to different nodes. So although it may not be apparent at
first sight, there is the same number of paths in Figure 48 as we
had in Figure 47, tied to the same nodes to which they had been
tied in Figure 47.

Following the processing of the paths to maximize each Λ(PATH),
the algorithm used the determined values of Λ(PATH) to determine the
Λ+ and Λ− for each node, using the mathematics described earlier.
Similarly, Λ(full) was calculated, and found to be 105.82. The net
Λ for each node, determined as Λ(NODE) = Λ− + Λ+, is plotted on each
node in Figure 48.
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Following the
processing of the paths
and the calculation of
Λ, comes the process of
“tugging on the nodes.”
Using data that was
accumulated during the
“processing” phase, the
τ position of nodes is
adjusted in response to
the consensus (if any)
of the “tugs” applied to
it by the paths to which
it is connected. In the
not uncommon case that
two future paths (or two
past paths) are

Figure 49: The same set of paths as in Figure 48 after the posi-
tions of the nodes have been tugged to the preferred positions.
The underlying τ function is visible in the background.

“tugging” in opposite directions, then the response is to shift the
time t of that node away from the conflicting paths, thus giving
them a chance to converge. Of course in the worst case there will
be paths tugging τ up and down from both the past and the future.
The tugs of these paths will have to go unanswered.

The new positions of the nodes following the “tugging”
process, are shown in Figure 49. Next, the large quantity of paths
is sized down by eliminating paths whose net Λ fails to meet a
criterion specified as Λ(full) minus 12. Why 12? After all, we
will not be wishing to wind up with solutions of probability less
than .001, which corresponds to Λ(full) − 6.9. However at this stage
of the processing we have to be very careful not to discard paths
which appear to be improbable, but which may, after further
processing, prove to have been worth keeping. Also, it should be
noted that the Λ(full) that has been calculated, is based on a
significant number of, what amounts to, duplicate paths (although
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not connected to the same two
nodes) which has exaggerated
the calculated value of the
total probability. For
instance, two identical paths
would, if undetected, increase
the Λ of the total paths
containing them by log(2) = .69.
So we proceed cautiously in
setting thresholds which will
cause the discarding of paths
that may never be recovered!
Still, a great deal of clutter
has been eliminated following

Figure 50: The result of “trimming” paths and nodes of
Figure 49 not meeting a criterion described in the text.
Nearby nodes have been merged and redundant paths
have been eliminated.

the “trimming” of paths not meeting the above threshold, as seen in
Figure 50.

Eliminating weak paths will often leave nodes which have no
paths in the past or no paths in the future. Such nodes include no
possible total paths; their Λ(NODE) = −∞ and are destroyed by the
algorithm. Any paths connected to the other side of a such a node
are also impossible, and are eliminated.

The next operation consists of the merging of nearby nodes.
If two nodes have been “tugged” to positions very close to each
other, then they are effectively redundant (except for the
congregation of paths to which each is connected). One node is
destroyed, and the paths connected to it are re-linked to the
surviving node.

The merging of nodes invariably creates redundant paths. That
is because a local MAP solution, especially a strong solution,
would generally “attract” more than one nearby path. Those paths
were unique only because they were not connected to the same two
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nodes. After
merging nearby
nodes, many of
these paths could
be identified as
redundant, due to
the closeness of
their τ(t) for most
t. Based upon
circumstantial
criteria, it can be
inferred that the
maximization of Λ

for each of these
paths would almost
surely lead to the
same τ(t). Pairs
of paths thus
deemed redundant

Figure 51: The set of surviving nodes and paths following the sec-
ond overall iteration of the algorithm described in the test. Value of
each net node Λ are shown inside the boxes at each node.

have one member destroyed.

Finally, the entire process described above, is repeated a
total of 3 to 6 times. The result of the second overall iteration
for our example is shown in Figure 51 with the net Λ of each node
shown in the boxes. With each new iteration, parameters are
adjusted. For instance, the exactness to which the maximization of
Λ for each local path proceeds, is increased each time. That
reflects the need to more accurately quantify the likelihood of
partial paths as we home in on the total solution. Also the
criterion for eliminating “unlikely” paths is adjusted to destroy
more paths. That is something that we can afford to do when we are
nearer the final solution and the determination of the eventual
values of Λ is more certain. In addition, the parameters allowing
the “tugging” of nodes in τ or t are decreased so as to eventually
fix the positions of all nodes for the final iterations. Otherwise
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there could be
interactions between the
processing of paths and
the tugging on nodes,
causing a non-convergent
“dithering” around the
solution.

After 6 iterations
of the total process
described above, the
final multiple path
solution is shown in
Figure 52, with net
probabilities in percent

Figure 52: The final solution determined following 6 iterations
of the global algorithm. Marginal probabilities in percent are
written inside boxes at each node.

plotted at each node. Comparison of Figure 52 to Figure 32 (which
used the exact same set of photons) shows strong similarity but not
exact replication of the resultant solution. The discrepancies
illustrate certain sensitivities of the evaluation processes of the
algorithm to, what should be, irrelevant considerations, such as
the exact position in time of a node. Discrepancies in results
from the same data set may also reflect sensitivity to changes in
the initial path structure (Figure 47), propagating irrelevant
attributes such as the number of nodes within a total path.
However it is generally found that the identification of the
underlying τ(t) function as the dominant solution (at sufficient
signal-to-noise ratios) is relatively unaffected by such
idiosyncracies of the present implementation of the algorithm.
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Conclusion

We have seen that a long-baseline optical stellar
interferometer may be operated in one of three modes as regards the
estimation of differential atmospheric delay for the purpose of
integrating measurements of optical correlation. An incoherently
averaged interferometer requires only coarse delay-tracking in
order to allow interference to be measured over a non-zero
bandwidth. Reducing the maximum untracked delay in such a case
will enable operation at wider bandwidths per detector. However
even with light levels so low that no delay-tracking feedback can
be produced, operation is still possible using detector bandwidths
sufficiently small so that the maximum excursions of atmospheric
delay will not destroy the detection of interference.

Real-time tracking of the atmospheric delay to well within an
optical wavelength has a number of advantages over incoherently
averaged interferometry. In this case, a feedback signal derived
from the optical detection, controls a rapidly responding optical
delay-line in order to cancel the differential delay as closely as
possible. Keeping the physical path delay to within a fraction of
a wavelength relaxes the bandwidth requirements on the optical
detection system. This is a strong advantage in the infrared.
Additionally, having provided a stabilized phase, the measurement
of optical correlation, may now be integrated coherently, enabling
the estimation of that quantity using much shorter observation
times. Simultaneous coherent integration of interference using
separate detection of multiple wavelengths, enables the measurement
of the phase of the optical correlation function, information that
would be lost in a narrowband system. Also, the identification of
the white-light fringe in conjunction with a laser-monitored delay-
line, makes possible astrometric measurements limited only by the
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diffraction limit of the synthetic aperture defined by the
instrument’s baseline(s).

Unfortunately at signal levels below a certain point, it
becomes more and more difficult for a real-time delay-tracker to
follow the white-light fringe that defines zero delay error. There
will inevitably be periods in which tracking fails, or in which the
control system inadvertently locks into a sidelobe of the central
fringe. In this tenuous regime there is still enough information
in the correlation of the received light to enable some reasonable
estimation of the atmospheric delay process. However that cannot
necessarily be accomplished in real-time. Instead it is necessary
to base the estimation of delay at a time t, on measurements taken
not only before, but after time t. The detection hardware must
also be capable of tolerating delay errors of at least several
wavelengths, since the instantaneous untracked delay error cannot
be guaranteed to stay within a small amount, as in the previous
configuration. This then requires a spectrally dispersed detection
system.

Operation as such, in which there is only coarse tracking of
the hardware delay-line, but the ability to eventually produce a
close estimate (within a fraction of a wavelength) of the delay
function for the purpose of coherent integration of optical
correlation (as would have been achieved using the real-time delay-
tracking system), is termed off-line delay-tracking. Employment of
such a system is advocated on the basis of its performance at light
levels below which real-time tracking would be possible. The
hardware requirements for the off-line delay-tracking system
include the implementation of spectrally-dispersed detection, and
the availability of a data processing system capable of performing
thousands of arithmetic operations for every received photon (at
the lower light levels). However if that computation cannot be
performed at the rate that the data is acquired, it will still be

197



possible to employ the eventual results of that computation in
order to extract information from the raw data stream which as
been stored for off-line processing.

We analyzed the operation of point estimation techniques, in
which the problem considers only the estimation of the differential
path delay function τ(t), evaluated at a particular time, t′. Even
employing a weighting scheme (see (147) and (148)) which is shown
to be optimum (given a particular model of atmospheric path delay),
the procedure still relies on an approximation (144), and does not
necessarily produce a set of estimates of τ at different points in
time which are mutually consistent relative to the expected large-
scale structure of the τ(t) function. A superior estimate can be
achieved using the path estimation procedure. In path estimation,
the domain of solutions consists not of τ(t′), the differential
delay function evaluated at a particular point in time, but rather
the set of possible functions τ(t) over a range of time, 0 < t < T .

Path estimation involves the search for paths, τ(t), based
upon a figure of merit, Λ. Λ is simply defined (159) as the
logarithm of unnormalized a posteriori probability. Thus by
maximizing the value of Λ, we find solutions which meet the MAP, or
Maximum A Posteriory Probability criterion. There are two aspects
to path estimation. The local problem involves the maximization of
Λ starting from one τ function and leading to the closest τ

function at which there is a local maximum of Λ. The global
problem addresses the global search for one or more maxima of Λ in
order to account for nearly all of the a posteriori probability
mass described by k1eΛ where k1 is an unknown normalization
constant.

There are two ingredients to the determination of an
a posteriori probability density according to Bayes’ theorem (158).
One ingredient is the likelihood function, given by the probability
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of the instrument having produced a certain data set given a
function τ(t). The logarithm of the likelihood (170) is simply
denoted λ. The other component contributing to the determination
of the a posteriori probability density, or its logarithm Λ, is the
a priori probability of τ(t). τ(t) has been characterized as
Gaussian colored noise, with a power spectrum following the −8/3
power of frequency. The logarithm of its (unnormalized) a priori
probability is denoted −χ2/2. Adding this quantity to λ, the
logarithm of the likelihood function, yields Λ. The determination
(162) of χ2 is based upon the Fourier decomposition of τ using the
cosine transform (53), and the expected energy contained in the
components, Ui, of the cosine transform, given by (69).

Convergence toward the local MAP estimate, denoted τ(MAP), and
analysis of the maximization process, is based upon Λ being
approximated as a quadratic function in the vicinity of its
maximum. Characterizing Λ, the logarithm of a posteriori
probability, as a quadratic function, describes a Gaussian
probability density function. Determination of the first and
second derivatives of Λ, found in (181)–(183), in principle
allows the solution of the maximization problem, through the
inversion of a large matrix. However setting the off-diagonal
elements of that matrix to zero, and replacement of the diagonal
elements with the expected values of those numbers, will result in
a far simpler procedure (186) which, if performed iteratively, will
converge toward the MAP solution as shown in Figure 18. Although
this procedure was performed on the Fourier coefficients of the
function τ(t), it was shown that the identical result could be
achieved using an algorithm in the time-domain (Figure 21) in which
a properly designed time-domain filter (208) is employed.

The expected r.m.s. error of this estimation procedure can be
determined analytically. The coefficients, Ai j, which describe the
quadratic expansion of Λ around its peak (172), are assembled into
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a matrix A. The covariance matrix applying to the a posteriori
density of τ, is given by the inverse of the matrix A. Some
statistics of the elements of A have been determined in (238) –
(240). Using these determinations, and a formula derived in
Appendix I that applies to the inversion of a matrix of a
particular form, the expected values of the diagonal elements of
the covariance matrix R, are estimated in (248). Using Parseval’s
theorem (215), the magnitude of the variances of the frequency
components of τ, given by the diagonal elements of R will yields the
r.m.s. estimation of error of τ itself. The resultant formula (275)
for the estimation error, shows that the r.m.s. error approximately
follows the −5/8 power of signal-to-noise ratio. Since, when using
low-noise detectors, the signal-to-noise ratio (233) follows the
square root of photon flux, we find that the estimation error will
follow the −5/16 power of the optical signal level. Simulation
results plotted in Figure 22, Figure 23, and Figure 25, clearly
verify the performance predicted by theory.

The character of the total MAP solution, consisting of a
number of possible paths, has been investigated in simulations
addressing the global problem. The enumeration of the multitude of
paths that would be present over an extended time period, has been
simplified by the invention of a topology of partial paths
connected in between nodal points. Thanks to the “almost Markov”
nature of the statistical characterization of τ, it is possible to
approximate the unnormalized (a posteriori) probability of any
total path as the product of the probabilities of its constituent
partial paths. These probabilities, again, are expressed in terms
of their logarithms Λ, which are therefore produced as the sums of
the Λ(PATH) corresponding to each constituent partial path. Through
a procedure in which the probabilities of disjoint paths connecting
to a node from one direction are summed, the evaluation of the
marginal probabilities assigned to a node or a partial path can be
evaluated. Using the same principle, the sum of probabilities
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of all disjoint paths can be determined, providing the normalizing
factor by which the unnormalized probabilities can be interpreted.

As viewed at a particular point in time, then, we can form a
marginal density which consists of a set of N estimates of τ for
that point in time based upon the N partial paths that exist at
that point in time. Each of the N possibilities is characterized
as a Gaussian probability distribution for τ with a mean, a
variance (that is approximately the same for all possibilities),
and a confidence (the probability of that Gaussian applying).
Given such a characterization of the multiple path solution, it is
possible, at least in principle, to use that estimate, albeit
ambiguous, to coherently integrate the optical correlation that we
have sought to measure. However the estimation of coherence may be
less prone to error, if it is based only on the fortuitous time
segments in which there is near 100% confidence in a partial path.
Even for signal-to-noise ratios as low as 3, simulations have found
that periods of high confidence will occur with sufficient
frequency for correlation to be integrated in this manner.

Using our algorithm to search for and quantify the multiple
path solution of the global path estimation problem, it has been
observed that as the signal-to-noise ratio falls below 3 or 4,
there is rapid disintegration of the a posteriori probability
density as can be seen in Figure 32 through Figure 39. One
quantification of this phenomenon is possible by identifying the
confidence of the correct solution. An analysis has been performed
which places an upper limit on the expected value of the
normalization constant k1 applicable to the a posteriori
probability k1eΛ of multiple solutions. For signal-to-noise ratios
below a certain level denoted SNR(CRIT) (approximately equal to 3),
the analysis predicts a rapidly decreasing confidence for the
correct solution. Comparison of that prediction to simulation
results is plotted in Figure 26.
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Appendix I:

Determination of the Statistics of a Covariance Matrix

Consider a jointly Gaussian random vector U of dimension M
with a mean given by µ. Then the probability density of U is given
by:

P( ~U) =
det[A]
(2π)M/2 e−

1
2 ( ~U−~µ)T A( ~U−~µ) (311)

where A is the inverse of the covariance matrix R.

As is well known, A is a symmetric positive-definite matrix,
as is R. We would like to determine two expectations, given only
statistical knowledge concerning A. First we would like to
estimate the determinant of A. Secondly, we would like to
determine the expected value of the diagonal elements of R, the
covariance matrix given by the inverse of A.

To start with, we shall multiply the rows and columns of A by
a suitable diagonal matrix to obtain a matrix a whose diagonal
elements are unity:

a =


1 a12 a13 · · ·

a21 1 a31 · · ·

a31 a32 1 · · ·

· · · · · · · · · · · ·

 (312)

A is then related to a by:
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A = KaK (313)

where:

K =


√

A11 0 0 . . .

0
√

A22 0 . . .

0 0
√

A33 . . .
...

...
... . . .

 (314)

Then the determinant of A will clearly be related to the
determinant of a according to:

det[A] = det[a] ·
M∏

i=1

Aii (315)

If we are able to determine the diagonal elements of the inverse of
a, then finding the diagonal elements of R, the inverse of A, is
trivial:

Rii = A−1
ii =

a−1
ii

Aii
(316)

Now, let us make the following restrictive assumptions
concerning A and a which will make the subsequent analysis
possible. Although the diagonal elements of A are random, we will
assume that their expectations have been determined and that their
variances are relatively small. This is important, since division
by Aii in (316) is equivalent to multiplication by the reciprocal
of a random variable. The expected value of a reciprocal is the
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reciprocal of the expected value only under the condition of a
small variance.

Secondly we will wish to restrict the off-diagonal elements of
A. The off-diagonal elements of a are necessarily less than unity
since a is positive-definite; in fact they will be much less than
one. Suppose they are the result of a random process and can be
approximately characterized as zero-mean Gaussian random variables
whose variance takes the special form:

Var{ai j} = E{a2
i j} = gig j (317)

where gi is some function of i. Furthermore, we must insist that
the ai j are uncorrelated. This condition on the off-diagonal
elements of a is equivalent to the following condition on the off-
diagonal elements of A.

Var{ai j} =
Var{Ai j}

AiiA j j
= gig j

∴ Var{Ai j} ≈ E{Aii}E{A j j}gig j (318)

So if we can supply the expected values of the diagonal elements of
A with relatively small variances, and choose a function gi such
that the off-diagonal elements of A are characterized as
uncorrelated zero-mean random variables with variances given by
(318), then the following analysis is applicable.

The determinant of the matrix a is the sum of M! terms:
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det[a] =
∑

i1,i2,...iM

±a1i1a2i2 . . . aMiM (319)

where the sum is taken over all sets of indices i1 through im which
are permutations of 1, 2, 3 . . . M. The + or − is selected
depending on whether that is an even or odd permutation,
respectively. The expected value of the determinant will be given
by the sum of the expected values of these terms. There are three
types of terms to consider. The dominant term, due to the product
of the diagonal elements, will be +1. Then there are terms which
contain only one or more of the ai j squared, present because of the
symmetry of the matrix (ai j = a ji). Third, there are terms which have
one or more ai j in the first degree. These terms have zero
expectation value and will be ignored.

Since the ai j are small compared to unity, it makes sense to
write the summation in increasing order of the ai j:

det[a] = 1 −
∑
i, j

No Duplicity

a2
i j +

∑
i, j, k, l

No Duplicity

a2
i ja

2
kl

−
∑

i, j, k, l,m, n
NoDuplicity

a2
i ja

2
kla

2
mn + . . . terms in a1

i j (320)

The sums are restricted both so that no two indices are the same,
and also so that no term gets duplicated due to interchange of
indices. We shall now take the expectation value of each term
using (320) Also we will allow each index to now run over the full
range of 1 to M. Therefore we must subtract out terms we have
thereby introduced which have two (or more) equal indices. We must
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also divide by the number of times we have caused the term to be
duplicated.

E{det[a]} = 1 −
1
2

 M∑
i=1

M∑
j=1

gig j −

M∑
i=1

g2
i


+

1
8

 M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

gig jgkgl − 6
M∑

i=1

M∑
k=1

M∑
l=1

g2
i gkgl

 (321)

− . . .

=

M/2∑
N=0

(−1)N

N!2N

[ M∑
i1=1

M∑
i2=1

· · ·

M∑
i2N=1

gi1gi2 · · · gi2N

−N(2N − 1)
M∑

i1=1

M∑
i3=1

M∑
i4=1

· · ·

M∑
i2N=1

g2
i1gi3gi4 · · · gi2N

]
(322)

Now that each index runs over all values of 1 to M
independently, we can use the separability of the terms of these
summations to convert the multiple sums into the products of single
sums. To simplify, let us assign the following notation to the
sums of the gi and of g2

i :

J ∧
=

M∑
i=1

gi

G ∧
=

J2

2
=

1
2

[∑
gi

]2
(323)

H ∧
=

M∑
i=1

g2
i
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Then we can rewrite (321) as:

E {det[a]} =
[
1 −G +

G2

2!
− . . . + (−1)N GN

N!
+ . . .

]
+

H
2

[
1 − 3G + . . . + (−1)N−1 2N − 1

(N − 1)!
GN−1 + . . .

]
(324)

=

M/2∑
N=0

(−1)N GN

N!
+

H
2


M
2 −1∑
N=0

(−1)N GN

N!
− 2G

M
2 −2∑
N=0

(−1)N GN

N!


Assuming M is sufficiently large so that the alternating power
series have converged to the exponential function of −G, we obtain
the result:

E{det[a]} ≈ e−G +
H
2

e−G − HGe−G

= e−
J2
2

[
1 +

H
2

(1 − J2)
]

(325)

Determination of the Diagonal Elements of the Inverse Matrix

Recall that a, the matrix whose determinant we have analyzed,
is a column and row scaled version of the matrix A according to
(313). We seek the diagonal elements of R, the covariance matrix
which is the inverse of A. We shall proceed by first providing
estimates of the diagonal elements of the inverse of a. Given a−1,
the determination of the diagonal elements of R was given by (316).
Because we have stipulated that we will be supplied the expected
values of the Aii and that their relative variances will be small,
we can write the expected values of the Rii accordingly.
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E{Rii} ≈
E{a−1

ii }

E{A−1
ii }

(326)

We shall now proceed to evaluate the diagonal elements of a−1 using
the above formula for the determinant of such a matrix.

The i-th diagonal term of the inverse of a is given by the
formula:

[a−2]ii =
det[a(ii)]
det[a]

(327)

where a(ii) denotes the matrix formed when the i-th row and the i-th
column of a are deleted. That leaves a matrix of the same form as
a, with (317) still applying. However the summations J and H
defined in (323) have each been reduced by the non-inclusion of the
i-th term. Let us only consider the change to the summation J,
since the role of H in (325) is of far less consequence.

Call J′ the evaluation of J for the matrix a(ii) in which the
i-th row and i-th column have been removed. Then clearly:

J′ = J − gi

∴
(J′)2

2
=

J2

2
− Jgi +

g2
i

2
(328)

We can now use (325) to estimate the determinant of a(ii). We will
ignore the g2

i term in (328) which is of relatively small
consequence, and will likewise ignore the change to H and J2

which it multiplies in (325).
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E
{
det[a(ii)]

}
≈ e−

(J′)2

2

[
1 +

H
2

(1 − J2)
]

≈ e−
J2
2 eJgi

[
1 +

H
2

(1 − J2)
]

(329)

Now we will find the expected value of the diagonal element of
a−1 using (327) by crudely dividing the expectation of the numerator
by the expected value of the denominator. This is generally an
unsound procedure for determining the expected value of a quotient,
except in the case of the denominator having a very small variance.
We will continue, however, noting that the variability of the
numerator and denominator, in this case, largely track each other,
since most of the low-order terms in either determinant using (320)
would be identical. The following analysis focuses on the change
to the determinant due to the elimination of terms included only as
a result of elements in row #1 and column #i.

Substituting the result (329) and (325) into (327), we find:

E
{
[a−1]ii

}
≈

E{det[a(ii)]}
E{det[a]}

≈
e−

J2
2 eJgi[1 + H

2 (1 − J2)]

e−
J2
2 [1 + H

2 (1 − J2)]
(330)

= eJgi

≈ 1 + Jgi
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(For the purposes to which we will be applying this formula, the
exponent in the third line will be small compared to one,
justifying the final approximation.) Applying this result to (326)
we find for the expected value of the i-th diagonal term of the
covariance R (which specifies the variance of the i-th
element of the vector U):

E{Rii} ≈
1 + Jgi

E{Aii}
(331)
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Appendix II:

Coherent Integration of Optical Correlation (Fringe Visibility)
using Inexact Determination of τ(t)

Although separate from the stated subject of this work
(estimation of τ), the case for off-line delay-tracking system
may seem incomplete without an explanation of the ultimate use for
which the off-line estimation of τ(t) would be employed. The
following procedures equally apply to the estimation of V(ν) given
the estimate τ(t) and the applied correction to the delay-line
τc(t), whether the delay correction most closely followed the real-
time estimate of τ(t) (real-time delay tracking), or is
identically zero. In each case we will assume that the record of
photon events has been saved, along with the estimate of τ, and
knowledge of the expected r.m.s. error of that estimate of τ.

In order to keep the discussion manageable we will proceed on
the basis of three levels of approximation regarding τ(t). First
we will consider estimation of V(ν) given exact knowledge of τ(ACT),
the actual differential atmospheric delay function. We will derive
an equation whose solution yields the maximum likelihood estimate
of V . However we will see that that solution does not have a
closed-form solution, and its basis of operation is hardly
transparent.

Then we will form a more “natural” average which appears to
proved a nearly optimum estimate, and is computationally
efficient, That solution will then be extended to the case of
employing estimates of τ(t) which have a Gaussian error structure
with a variance specified, for instance, by the analysis pertaining
to the local estimation problem. We will also determine a
correction to take into account the finite bandwidth of the
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spectral channel in which photons for the determination of V(ν) are
detected. Finally, we will consider estimation of V(ν) using the
poly-Gaussian estimates of τ(t) that we found to result at lower
signal-to-noise ratios in our study of the global problem.

The Maximum Likelihood Estimate of V(ν)

If some ingredients of the following derivation look like
those for the τ estimation problem, that is because they are the
same. We will again be forming an estimate to maximize the
probability of having received the set of photons that had been
detected. However the job, in this case, is easier in two ways.
Unlike the τ estimation problem in which the Maximum A Posteriori
Probability criterion was used for estimation of the random process
τ(t), the estimation in this case is of a non-random parameter.
Thus we do not need to consider the a posteriori probability of the
unknown, removing the χ2 component from the determination of the
figure of merit (171) driving the estimation.

Secondly, the estimation of V(ν1) and V(ν2) are independent.
This is in contrast to the estimation of τ expressed in terms of
its Fourier coefficients Ui. The solution of the M Fourier
coefficients would have required the simultaneous solution of M
coupled equations, expressed by the dense matrix A in (178). In
the estimation of V , it is as if we had instead been presented with
a diagonal matrix, implying a set of uncoupled equations.

To form the maximum likelihood estimate, we will again write
the logarithm of the likelihood due to photon #k as λk in the same
form that we had previously used this notation in (167) and (166).
However in (166), V is considered to be “known” while τ is an
unknown. In the present case, however, we will initially assume
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that τ is known exactly, but V will be treated as the unknown, over
which, the likelihood is to be maximized. So we can write the
logarithm of the likelihood of photon #k, having been detected at
time tk at optical frequency νk in an interference channel with
photomixing phase angle θk as:

λk(V ′)
∧
= log

P(θk|V = V ′)
P(θk|V = 0)

= log(1 + Re{V ′e jθke j2πνk(τ(tk)−τc(tk))}) (332)

Then λ,the logarithm of the net likelihood of V(ν′) is, as in
(170), given by the sum of the contributing λk. However in order
to estimate V as evaluated at the optical frequency ν′, we shall
include only photons whose ν is the same as ν′. How large a
difference in ν we are willing to tolerate in order to include a
photon, is immaterial at this point; it might simply amount to all
photons counted in a spectral detection element given a specific
hardware configuration. So λ is given by:

λ(V ′, ν′) =
∑

Photons
whose
νk = ν

′

λk(V ′) (333)

Now the estimation of V ′ is based on maximization of λ

over V ′. That maximization may be performed, as usual, by setting
the first derivative to zero. In this case, we must be careful,
because V ′ is a complex variable, but λ is not an analytic function
in V ′. Thus the derivative of λ with respect to V ′ is not defined.
We must, instead, write V ′ = x + jy, where x and y are real. Then we
can write two equations setting equal to zero the derivatives of λ

with respect to x and with respect to y.
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0 =
dλ
dx
=

∑
k

Re{e jθke j2πν′(τ(tk)−τc(tk))}

1 + Re{V ′e jθke j2πν′(τ(tk)−τc(tk))}
(334)

0 =
dλ
dy
=

∑
k

−Im{e jθke j2πν′(τ(tk)−τc(tk))}

1 + Re{V ′e jθke j2πν′(τ(tk)−τc(tk))}
(335)

These simultaneous equations can be combined in the more compact
complex equations:

0 =
dλ
dx
− j

dλ
dy
=

∑
k

e jθke j2πν′(τ(tk)−τc(tk))

1 + Re{V ′e jθke j2πν′(τ(tk)−τc(tk))}
(336)

While the solution of this equation correctly yields the
maximum likelihood estimate of V(ν′), it does not have a closed-
form solution since the unknown appears in unlike denominators of
the terms of a large summation. However we will instead proceed with a
very different approach in order to produce a closed-form estimate
whose genesis is more transparent.
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Estimation of V(ν) using the Detection Phasor

Let us define the detection phasor D(τ, ν, θ, t) as:

D(τ, ν, θ, t) ∧= e jθe j2πν(τ−τc(t)) (337)

The we shall define the absolute detection phasor for photon #k,
simply denoted Dk with no arguments, as:

Dk
∧
= D(τ(ACT)(tk), ν

(ACT)
k , θk, tk)

= e jθke j2πν(ACT)
k (τ(ACT)(tk)−τc(tk)) (338)

Note that Dk contains the same factors as Lk, the complex
likelihood for photon #k, except for the non-inclusion of V(νk)
(the quantity we presently wish to estimate). Also, unlike the
complex likelihood in which τ(tk) was considered an unknown, in
(338) we are employing for τ the actual value of atmospheric delay,
as if we had been able to estimate that quantity with no
uncertainty (corrections for the estimation error of τ will be
dealt with below). ν(ACT)

k denotes the actual optical frequency of
that photon, regardless of the precision to which that wavelength
was measured.

Then the expected value of the absolute detection phasor can
be shown to be proportional to the complex conjugate of the optical
correlation V(νk). If there is no real-time delay-tracking being
preformed, so that the second complex exponential in (338) is a
truly random phase, then the following result will be true.
Another sufficient condition for the following result, is use of a
balanced discrete beam photomixer with equally separated mixing
phases as described by (18) except for the case of N = 2. Under
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either of these conditions the expected value of the absolute
detection phasor is:

E{Dk} =
V∗(νk)

2
(339)

Proof:

Depending on whether we are considering a continuum output or
discrete beam photomixer, the expected value of Dk will be
expressed as an integral or summation, respectively. We will
simply write the integral from, with the corresponding summation
being obvious.

Let P0(θ) denote the probability density of a photon entering the
photomixer outputting the photomixer in a position or channel whose
photomixing phase is θ, under the condition of no optical
correlation, |V | = 0. In the case of a discrete beam photomixer
obeying (16), P0(θ) would be written as the sum of N Dirac delta
functions, each of strength pi at θ = θi, for i = 1, 2, . . .N. Then given
that photon #k was detected at optical frequency νk at time tk, we
can write the probability density of that photon being found in the
photomixer’s output channel at photomixing phase θ in terms of the
complex likelihood evaluated at τ(ACT)(tk), the actual atmospheric
delay function at time tk.

P(θ) = P0(θ)(1 + Re{Lk(τ(ACT)(tk))})
= P0(θ)(1 + |V | cos(arg(V) + θ + 2πνk(τ(ACT)(tk) − τc)))
= P0(θ)(1 + |V | cos(φ + θ))

= P0(θ)(1 +
|V |
2

e jφe jθ +
|V |
2

e− jφe− jθ) (340)

where
φ
∧
= arg(V) + 2πνk(τ(ACT)(tk) − τc(tk))

The expectation of Dk is required. First, its expectation over all
θ is found by integrating over θ.
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E{Dk} =

∫ 2π

0
dθ P(θ)e jθe j2πνk(τ(ACT)(tk)−τc(tk))

= e− j arg(V)
∫ 2π

0
dθ P(θ)e jθe jφ (341)

Substitution of (340) for P(θ) results in the formation of three
integrals:

= e− j arg(V)
∫ 2π

0
dθ P0(θ)(e jθe jφ +

|V |
2

e2 jθe2 jφ +
|V |
2

)

= e j2πν(τ(ACT)−τc)
∫

dθ P0(θ)e jθ (342)

+
V
2

e j2πν(τ(ACT)−τc)
∫

dθ P0(θ)e j2θ

+
V∗

2

∫
dθ P0(θ)

Note that we have combined phase factors involving ± arg(V) with |V |
to obtain V and V∗ in the second and third integrals. Now the
first integral simply amounts to the integral form of the left-hand
side of (17), which we have shown must be equal to zero for any
lossless photomixer.

The second integral is a little more tricky. It can be thought of
as the Fourier series transform of the periodic function P0

evaluated at the frequency of 2 cycles (per 2π radians). If we
have chosen a balanced photomixer with equally spaced phases as in
(18), then P0, consisting of N equally spaced delta functions on
the unit circle, will only contain frequency components of N and
its harmonics. Therefore unless N = 2, the second integral will be
equal to zero for a photomixer satisfying (18).

Even if the integral itself cannot be shown to be zero, we should
still look at the leading factor multiplying the integral. We must
still evaluate the expectation of the product over τ(ACT) − τc, the
uncorrected component of delay error. If we can be certain that τ

is not being closely tracked in real-time hardware, then it can be
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presumed that this phase factor would be totally random, thus
uniformly distributed over the unit circle. The expectation of an
expression containing such a quantity (and none other correlated
with it) is clearly zero. So we have identified two individually
sufficient conditions for the second term to vanish.

Finally, the third integral in (342), being the integral of a
probability density only, over the entire domain of that density,
is clearly unity. In the discrete case, this integral is identical
to the left hand side of (15), which we have shown to be unity for
any lossless photomixer. So, assuming at least one of the
conditions has been met to insure that the second term will vanish,
the determination of (342) reduces to the leading factor
multiplying the third integral, thus proving (339).

Having shown the absolute detection phasor to be proportional
to the complex conjugate of the optical correlation, it is a simple
matter to form an estimate of V(ν′) using the Dk for photons whose
νk = ν′. If, during the course of an observation we can identify K
photons at the desired optical frequency ν′, the estimate of V(ν′)
would clearly be:

V̂ =
2
K

∑
k

D∗k (343)

Unfortunately determination of the absolute detection phasor
requires, among other things, exact knowledge of the underlying
atmospheric delay, τ(ACT)(t). So let us instead look at the
estimation of V using inexact estimates of τ that may have been
obtained using one or another procedure.
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The Corrupted Detection Phasor

Using the concept of the absolute detection phasor as defined
in (338), and the estimate (343) of V(ν′) based on it, we shall now
attempt to formulate a similar estimate using a comparable
quantity, but one which is actually observable. We will do this by
retaining the result (339) we found for the expected value of the
absolute detection phasor. Then, analyzing the corrupted detection
phasor, we will calculate an applicable correction factor.

Let τ̂ represent our best estimate of τ. We shall assume, as
we found in the discussion of MAP path estimation of τ, that the
a posteriori density of τ around its mean is Gaussian. Let the
r.m.s. error of the estimate be denoted στ. Using the MPA path
estimation procedure, for instance, στ would be given by (275).
The we shall form (one version of) the corrupted detection phasor
by applying (337) as we did for the absolute detection phasor, but
this time using the estimated value of τ, rather than the actual
value of τ, which we would have no way of knowing.

D̃k
∧
= D(τ̂(tk), ν

(ACT)
k , θk, tk)

= e jθke j2πνk(τ̂(tk)−τ(ACT)(tk)) (344)

It is a simple matter to express this corrupted detection phasor in
terms of the absolute detection phasor.

D̃k = Dke j2πνk(τ̂(tk)−τ(ACT)(tk)) (345)

We would like to determine the expected value of the corrupted
detection phasor. The expectation of the product in (345) is given
by the product of the expected values since the two quantities are
uncorrelated. Note that the difference inside of the parenthesis
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of the exponent of the phase factor of (345) is simply the
estimation error of τ, having zero mean and an r.m.s. magnitude of
στ. We can then use a standard result to determine the expected
value of the phase factor.

E{D̃k} = E{Dk}E{e j2πνk(τ̂(tk)−τ(ACT)(tk))}

=
V∗

2
e−2π2ν2

kσ
2
τ (346)

Again, we are assuming that at least one of the two conditions
enabling the determination of (339) has been met. Then, assuming
that during an observation there has been no substantial change in
the statistics of the atmosphere or in the equipment, so that στ
has remained constant, we can form a corrected estimate of V as in
(343), using, this time, the corrupted detection phasor.

V̂ =
2
K

e2π2ν2σ2
τ

∑
k

D̃∗k (347)

Now let us look at a second way in which a naive measurement
of the detection phasor could introduce an inaccuracy in the
estimation of V . We have assumed that the photomixer outputs have
been spectrally dispersed, and that only photons whose optical
frequency ν(ACT)

k = ν′ are used in the summations (343) and (347), for
the estimation of V(ν′). Of course, for any specified ν′ we will
never find a photon of that exact wavelength, but we will detect
many photons in the spectrometer channel which includes ν′. Let us
assume that the spectrometer channel is centered at ν′ and is of
spectral width ∆ν. Then we will use all photons detected in that
spectral channel as if each had an optical frequency of exactly ν′.
Since they are actually spread about ν′, there would be an
inaccuracy introduced into the estimation of V using (343).
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Let us assume that the spectral width of the channel is
relatively small, and that the received light has a continuum
spectrum which does not fluctuate significantly over the spectral
width of the detection channel. Then we can calculate the expected
value of this new corrupted detection phasor, in which we will
focus on the effect of the finite bandwidth of the spectral
channel, and ignore the perturbation, already calculated, due to
inexact estimation of τ.

Let us consider all photons whose detected νk = ν′, whereas the
actual optical frequency of each such photon is denoted ν(ACT)

k .
For these selected photons, ν(ACT)

k is uniformly distributed from
ν′ − ∆ν/2 to ν′ + ∆ν/2. The corrupted detection phasor, in this case,
is what would be found by applying (337), but inserting for the
optical frequency in (337), the center optical frequency of the
spectral channel, ν′. Then we can express this corrupted detection
phasor in terms of the absolute detection phasor:

D̃k = D(τ(ACT), ν′, θk, tk)
= e jθke j2πν′(τ(ACT)(tk)−τc(tk)) (348)
= Dke j2π(ν′−ν(ACT)

k )(τ(ACT)(tk)−τc(tk))

The expectation of a phasor of zero mean phase uniformly
distributed over an interval, is, as usual, given by a sinc
function. Again assuming that one of the two conditions enabling
the validity of (339) has been met, we can determine the expected
value of this corrupted detection phasor.
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E{D̃k} = E{Dk}E{e j2π(ν′−ν(ACT)
k )(τ(ACT)(tk)−τc(tk))}

= E

V∗(ν(ACT
k )
2

 sinc
(
(τ(ACT)(tk) − τc(tk))∆ν

)
(349)

≈
V∗(ν′)

2
sinc ((τ̂(tk) − τc(tk))∆ν)

In the final step, the average of V over the optical frequency
interval has been approximated by its value at the center of that
interval. Note that this is totally consistent with a slope in the
function V; a discrepancy would only occur in the case of V having
a large curvature over the interval. We have also replaced the
actual τ inside the argument of the sinc function, with the
estimated τ. Since the error in τ is symmetric about zero, the
expected value of the sinc of a slightly random argument would be
virtually identical to its value at the mean value of that random
quantity.

Again, using this determination for the expectation of the
corrupted detection phasor, we can, as in (374), write the estimate
for V(ν′) as a corrected average over the detection phasors of all
photons detected in the spectral channel centered about ν′.
However in this case, the correction for different photons will be
unalike, thus we must apply the correction photon-by-photon25.

25To form the estimate with the absolutely smallest estimation
error, we would really want to weight the contribution of the
photons differently depending on the value of the sinc function
associated with each one. That weighting will be included in the
next level of analysis. For the present discussion, however, we
will note that practically speaking, in a spectrally dispersed
detection system with good spectral resolution, the sinc function
will be near unity for all photons, and such a weighting will add
little to the quality of the estimate. Non-inclusion of optimum
weighting does not contribute any bias to the estimation; only the
expected estimation error is affected.
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Including the previous correction due to the estimation error of τ, we would obtain
for the estimate of V:

V̂ =
2
K

e2π2ν2σ2
τ

∑
k

D̃∗k
sinc ((τ̂(tk) − τc(tk))∆ν)

(350)

Again, this summation is taken over the K photons found in the
spectral channel centered about ν′.

The degradation of the expected magnitude of the corrupted
detection phasor caused by the detection of the interfered spectra
in a limited number of discrete channels, has implications
regarding the optimum mode of operation. Given absolutely
noiseless detectors, the effect of the degradation due to the sinc
function in (349) can be arbitrarily reduced by increasing the
spectral resolution of the spectrally-dispersed detection hardware,
thus decreasing ∆ν. However using detectors with a finite dark
count, there will be a limit beyond which further dividing the
light among detectors reduces the signal-to-noise ratio obtained
when observing dim objects.

An alternative means of mitigating the effect of the sinc
function in (349) is to reduce the uncorrected component of delay
error, ∆τ, by adjusting τc, the hardware correction delay, to
follow, as closely as possible, τ(ACT)(t) in real-time. While the
emphasis has been on the off-line estimation of τ, we have noted
that, even for signals too weak to successfully track closely in
real-time, there is still the possibility of performing medium-
coarse real-time delay-tracking in order to reduce the peak
uncorrected delay excursions from, perhaps, a hundred wavelengths,
to, perhaps, only several wavelengths.
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One may ask why even bother reducing ∆τ = τ − τc in real-time,
when the degradation predicted by (349) can be perfectly
compensated in the estimation of V using (350). There are two good
reasons to reduce ∆τ if possible. First, even though we will,
following the off-line estimation of τ, quantify the degradation
predicted by (349) and correct for it, it is always preferable to
require a small correction rather than a large one! Secondly, the
degradation of detected interference amplitude due to the sinc
function in (349) affects not only the measurement of V , but also
the detection of interference for the sake of estimating τ itself
(using any estimation procedure). We did not include any
correction for this effect in the τ estimation algorithm discussed
because it does not bias the estimators, and, for ∆τ∆ν not
approaching unity, a modification to the estimator’s operating
parameters would hardly be required. However it can be shown that
the effective signal-to-noise ratio determining the performance of
the estimation of τ(t) (for instance, as used in (256)) will be
reduced by the sinc function shown in (349).

Estimation of V using the Poly-Gaussian Estimate of τ

We have seen that the measurable quantity that we have called
the corrupted detection phasor can be used to form an estimate of
V(ν′) by taking into account the degree to which inexactness in the
estimation of τ, and the combining of a range of optical
wavelengths into a single spectral channel, have attenuated the
measurement of V using the measured detection phasor. If we had
considered the use of the delay-dispersed photomixer with detector
elements covering a range of interference phase, we similarly could
have estimated an additional correction factor.
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Now, however, we would like to consider estimation of V using
the results of the global MAP solution, as depicted, for instance,
in Figure 41. Integration of V using photons around t = 0 or t = 25 is
straight forward, since the estimate of τ at these times is
characterized as a mean estimate with an expected r.m.s. error, the
ingredients determining the corrupted detection phasor according to
(344), from which we have derived an unbiased estimate of V in
(350). However we would like to know how to employ the photons
occurring, for instance, during the time period t = 10–20, during
which the estimate of τ consists of the union of two distinct
solutions, one of which has a confidence of 82%, the other 18%.

Let τ̂1, τ̂2,. . . denote the mean estimates of τ(tk), with
a posteriori probabilities of p1, p2,. . . according to the results
of the global MAP solution. In this case we will define the
corrupted detection phasor for photon #k, for estimation V(ν′),
as the weighted average of the detection phasor for photon #k
evaluated at ν′ at each mean estimate of τ, weighted according to
the confidence of each solution. We will also further attenuate
terms in the average according to the degradation that they would
already suffer due to ∆ν, given each mean estimate of τ(tk).26

D̃k
∧
=

∑
i

pisinc((τ̂i − τc)∆ν)D(τ̂i, ν
′, θk, tk) (351)

We can analyze this corrupted detection phasor as follows:
26Note that this is the weighting that we neglected to perform

earlier, and for which we noted there would be only a small
degradation in the efficiency of the estimate of V , and no bias
introduced. In the present derivation, however, failure to include
this weighting would eventually lead to a less symmetric result
which we can easily avoid by simply introducing this factor at this
point, without further explanation.
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D̃k = D(τ, ν(ACT)
k )

∑
i

[
pi sinc((τ̂i − τc)∆ν) ·

e j2πν′(τ̂i−τ)e j2π(τ−τc)(ν′−ν(ACT)
k )

]
(352)

τ in this expression is at this point simply an arbitrary variable.
However let us suppose that it represents our estimate of τ(ACT).
Now let us determine the expected value of (352). In this case,
the new feature we have included is the multiplicity of estimates
of τ(tk). We will thus treat τ as being characterized by the poly-
Gaussian a posteriori density derived from the results of the
multiple path MAP solutions. Thus we will average over each such
solution weighted by the confidence of that solution.

E{D̃k} =
∑

j

p jE{D̃k|τ ∼ N(τ̃ j, σ
2
τ)}

=
∑

j

p jE{D(τ, ν(ACT)
k , θk, tk)|τ ∼ N(τ̃ j, σ

2
τ)} · (353)∑

i

pi sinc((τ̂i − τc)∆ν)e j2πν′(τ̂i−τ̂ j)e−2π2ν2σ2
τ sinc((τ̂ j − τc)∆ν)

Taking the expectation of the product of the terms in (351) has
recovered the degradation factors due to στ and ∆ν that we have
previously calculated (the similar appearing weighting factor
containing ∆ν has also been propagated into this expression). Now
careful examination will reveal that the detection phasor inside
the conditional expectation of the lower expression of (353), is
none other than the absolute detection phasor (338). That is
because it is evaluated conditionally on τ being the actual τ

function that generated the photon, the specified probability of
that τ then being irrelevant. Therefore we have already determined
a value for this expectation. Continuing:
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=
V∗

2
e−2π2ν2σ2

τ

∑
j

p j

∑
i

[pisinc((τ̂i − τc)∆ν) ·

e j2πν′(τ̂i−τ̂ j)sinc((τ̂ j − τc)∆ν)] (354)

=
V∗

2
S k

S k is the strength of photon #k toward the estimation of V(νk).
Observing that the summations in (354) are separable, and that the
separate sums are complex conjugates of each other, we can write S k

as:

S k
∧
= e−2π2ν2σ2

τ

∣∣∣∣∣∣∣∑i

pisinc((τ̂i − τc)∆ν)e j2πνkτ̂i

∣∣∣∣∣∣∣
2

(355)

Having found the expected value of this corrupted detection
phasor, it is possible to apply the proper normalization to any
average involving such quantities to determine V(ν′). However we
may choose to weight each detection phasor in order to form a more
reliable average. Let us apply a weight of wk to photon #k and
form the weighted average called Q, from which the formation of the
estimate of V is trivial.
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Q ∧
=

∑
k

wkD̃∗k

E{Q} =
V(ν′)

2

∑
k

wkS k (356)

∴ V̂(ν′) = 2
∑

k wkD̃∗k∑
k wkS k

It appears that a constant weighting in (356) would form the
estimate with the smallest r.m.s. error. That is because, as
analysis would reveal, the expected value of the signal in each
corrupted detection phasor is proportional to S k. However the
expected r.m.s. noise in each corrupted detection phasor is
proportional to

√
S k. This, it turns out, already implements the

optimum weighting, mathematically speaking.

Practically speaking, however, we may wish to apply a
weighting function in order to eliminate or attenuate the
contribution of photons which, for any reason, we don’t trust. For
instance, it may be found that, at points in multiple path
solutions where the a posteriori probability is spread among
several paths, the reported a posteriori probabilities of those
solutions are in error. If that error has a systematic character
(such as consistently exaggerating the difference in a posteriori
probability between likely and unlikely solutions), then a bias
could be introduced into the estimation of V using the reported
a posteriori probabilities. A possible remedy would be to assign
zero weight to photons occurring at times at which the reported
a posteriori probability of the dominant path does not, say, exceed
90%. Again, whatever weighting rule is chosen, there will be no
bias introduced into the estimation of V using (356); the only
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deleterious effect will be a certain increase in the r.m.s. error
of that estimation.

Estimator Bias Caused by the Dual Use of Photons

We previously saw that the corrupted detection phasor in which
we used not the actual atmospheric delay function, but rather an
estimate of τ(t), responded to V(ν) with an attenuation factor
quantified in (346). There is one more way in which the use of an
estimate of τ can affect the accuracy of the estimation of V using
the corrupted detection phasor. That occurs when the estimate of
V is based on the corrupted detection phasors of photons which were
also used in the estimation of τ.

Consider the estimation of τ(t) based upon the maximization of
Λ. The maximization of Λ given by (171) involves the maximization
of (170) or (168), and thus the maximization of the real part of
the photons’ complex likelihoods given by (166). This will produce
an unbiased estimate of τ. However the specific errors in the
resultant estimate of τ will generally be so as to increase the
real part of the complex likelihoods. If that estimate of τ is
then also used to form the corrupted detection phasor for the same
photons, then the estimate of V(ν) will be biased in the direction
of the initially assumed value of V(ν) used in (166).

This is simply a result of the randomness of photon detections
being inseparable from the information contained in those photons
For instance, the upper left and upper right of Figure 19 in each
depict MAP estimates of τ using different sets of 50 randomly
generated photons. Around t = 15, the upper left estimate of τ is
lower than the actual τ function, whereas the upper right estimate
of τ is greater than the actual τ. If the estimate of τ in the
upper left of Figure 19 were used to form the corrupted detection
phasor for the photons used in the upper right figure (or any other
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realization of photons based on the same underlying τ(ACT) function)
then the effect of the estimation error seen in the upper left
figure would simply be to attenuate the magnitude of the corrupted
detection phasor according to (346). Based on our knowledge of the
r.m.s. error of the estimation procedure, this effect can be
corrected using (347). However, the effect of the specific
estimation error seen in the upper left figure, if applied to the
same photons used in that estimation, would be to increase the
resultant estimate of V .

The expected resulting bias could be quantified. However a
more direct strategy for eliminating this nuisance effect is to
compute the corrupted detection phasor for photon #k using an
estimate of τ in which photon #k has not been used. Rather than
performing a complete re-estimation of τ for each photon to be used
in the estimation of V , it would be more practical to, perhaps,
eliminate a certain portion of the set of photons, re-estimate τ

using the reduced set of photons, and use that estimate of τ to
compute the detection phasors for only the photons that had been
ignored in that estimation of τ. Performing this procedure several
times on different portions of the entire set of photons, could
then produce corrupted detection phasors for all photons in which
this bias has been prevented. Simulations using this method have
produced estimates of V in which any such bias appears to have been
avoided.

The Expected Error in the Estimation of V(ν)

Let us briefly examine the expected r.m.s. estimation error of
V(ν′) using estimates based upon averaging the detection phasors of
K photons whose νk = ν′. For simplicity, let us look at the error of
the estimate (343) based on the averaging of the (unobservable)
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absolute detection phasor (338). To simplify the problem, let us
assume that |V | � 1. This yields the “worst-case” estimation error
(but not much worse than for large |V |).

In order to employ the following mathematics, we must deal not
with Dk and V(ν), but rather with the real and imaginary parts of
these complex quantities separately. Let us denote the real part
of Dk as dk, and denote the real part of V(ν′) as v. Then clearly,
from (343), the estimation of v from dk would be given by:

V̂ =
2
K

∑
k

dk (357)

where again the summation includes K photons whose νk is
(approximately) the same as ν′. We have previously calculated the
expected value of Dk in (339) which justified the estimator (343)
(or (357)). Now let us look at the variance of dk.

We specified that |V | would be regarded as being small
compared to unity, for the sake of this analysis. In the case that
it is exactly zero, then clearly the net phase factors in (338)
would be totally random, with the expected value of the phasor
therefore being zero (as it should be according to (339) for V = 0).
dk, the real part of Dk, would clearly be given by cos(φ) where φ

is a totally random phase. Then the mean squared value of dk would
be the mean squared value of the cosine of a random angle, or 1

2 .
That is also the variance of dk, given that its mean value is zero.
The variance of the summation in (357) is given by the sum of the
variances, or K/2. Then the r.m.s. estimation error is determined
as:
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ṽ ∧=
√

E{V̂2} =

√√
4

K2 Var

∑
k

dk

 =
√

2
K

(358)

It is obvious that the estimate of the imaginary part of V(ν′)
using (343) would be subject to an error of the same magnitude.

To present a numerical example, suppose that we wish to
estimate V(ν′) with an expected error of no more than .01 in both
the real and imaginary components. That would require, according
to (358), a total of 20000 photons to be included in the average
toward V for the optical frequency ν′. If the spectrally-dispersed
detection system included 100 wavelength channels, one of which was
used for the estimation of each of 100 points of V , then a total of
approximately 2 million photons would be required to achieve this
accuracy in each wavelength channel. The faintest objects for
which delay-tracking is possible, provide on the order of 1000
detected photons per second in the interferometer. Thus in this
very worst case, an observation time of about half an hour would be
required to achieve the specified accuracy in the estimation of V .

More typically, the estimation of V in 100 wavelength
channels, each having an individual estimation error of .01, would
probably not be required. Typical functions of V(ν) (in which the
specification of ν implies not only the result of imaging in
different colors, but more importantly, the correlation
corresponding to different spatial frequency components of the
object) are relatively smooth, so that a curve of V specified at
100 points with a larger estimation error at each point, could
reasonably be smoothed to extract the underlying curve with an
accuracy well in excess of the accuracy of each data point on the
curve. In any case, it can be seen that required observation
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periods using delay-tracking and coherent integration of optical
correlation, will generally be on the order of minutes, not hours.
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Glossary

Symbols:

α Parameter defining the magnitude of the a posteriori variances
of the components of the cosine transform of τ, according to
(69), page 62.

β An intermediate parameter which is proportional to the square
of the signal-to-noise ratio and to T . Given by (244), page
133. In the case of determinations using the exact
logarithm, β is slightly modified: see (272), page 147.

κ The dimensionless parameter (see page 29) expressing the
range of delay presented in the fringe pattern of the delay-
dispersed photomixer (Figure 5). For a two-slit
interferometer, κ is defined as the ratio of slit separation
to slit width, as measured at the plane of the beam’s waists
(where the beams are afocal).

θ Phase by which the signal from input channel 1 is delayed
relative to the signal from input channel 2 in the production
of a particular output channel of a photomixer. θi refers to
the phase for output channel i. See (16), page 22.

λ An ingredient in the expression for Λ in (171). Defined as
a constant plus the logarithm of the likelihood of τ(t) given
a set of received data. See (170), page 102. Equal to the
sum of the λk (each given by (167)) for each photon.

Λ Defined as a constant plus the logarithm of the a posteriori
probability density of τ(t) given a set of received data.
See (159), page 99.
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Λ(PATH) The value of Λ determined for a partial path, based on the
limited period of time over which that path is defined.
These values, for each path, are the ingredients on
which the calculation of the Λ+, Λ−, Λ(NODE), Λ(( f ull)), and
all marginal probabilities in the global solution, are
based. Refer to the discussion starting on page 186.

ν Optical frequency. Note that frequency references to
directly observable time-scales (such as the responses of
electronic or digital filters) are instead given by ω.

νk Optical frequency of photon #k.

ν0 The “nominal” optical frequency, defined as the root-mean-
squared optical frequency averaged over all photons. See
(231), page 129.

ν̄2 The mean-squared optical frequency averaged over all photons.
See (230), page 129.

ν2V2 The expected value of ν2|V(ν)|2 averaged over all detected
photons according to F(ν). See (228), page 128.

ν4V2 The expected value of ν4|V(ν)|2 averaged over all detected
photons according to F(ν). See (228), page 128.

σ2
i The variance of Ui, the i-th frequency component of the

cosine transform of τ(t), according to its a priori
characterization. Since the i-th frequency component occurs
at the (radian) frequency ω = nT/i, and the frequency spacing
between i and i + 1 is also a function of T , the variance σ2

i
is dependent upon T , the time period over which the cosine
transform is performed. See (53), (54), and (69), page 59.
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τ(t) The difference in the optical delay between the light
received by two arms of an interferometer due to atmospheric
effects and/or other random process, but excluding the
geometrical delay due to the position of the object in the
sky and the location of the telescopes on earth. Since this
is the quantity that we wish to estimate, τ(t) more often
refers not to a definite function, but rather represents a
test function, that is an independent variable (of high
dimension), from which a figure of merit (Λ in the case of
path estimation) is obtained.

τ(ACT) The actual underlying differential delay function that the
delay-tracker is attempting to estimate.

τ(MAP) The estimate of τ based upon the maximization of Λ or the
a posteriori probability function. Whether this represents
the global maximization of Λ or only a local maximum, is
determined by the context of its use.

τ0(t) The one-way atmospheric optical delay affecting the
transmission of starlight received at a given location on
earth. τ, the differential atmospheric delay, is defined as
the difference between τ0 at two different points on earth.

τc The (optional) correction delay introduced by the delay line
(in addition to τg, the geometric delay) in response to the
estimation of τ. See Figure 1.

τg The geometric delay affecting the received light received by
telescope 2 relative to telescope 1. Since this delay is
deterministic, it is not considered as part of the estimation
problem. See Figure 1.
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∆τ The uncorrected component of τ(t) when real-time control of
the delay line is used to partially compensate for
atmospheric delay fluctuations. ∆τ = τ − τc. See (3), page 15.
Not to be confused with ∆τ, below.

∆τ Used following page 123 to denote the difference between an
arbitrary function τ(t), and τ(MAP), the function which
maximizes Λ. Not to be confused with ∆τ, above.

τ̃ The expected r.m.s. error in the estimation of τ using one
or another procedure.

Φ̃ The expected r.m.s. phase error in the estimation of the
atmospheric delay, given by 2πν0τ̃, using one or another
procedure.

χ2 Defined as −1
2 of the logarithm of the a priori probability

density for τ(t) over the interval 0 < t < T , based upon the
expansion of τ using the cosine transform truncated to M
terms (see (161), (162), page 100). In the path estimation
procedure, therefore, χ2 acts as a penalty term in the figure
of merit Λ (see (171), page 103), so that smoother solutions
are favored. As suggested by its symbol, our χ2 has an
a priori probability density which is χ2 with M degrees of
freedom.

ω Radian frequency. Applies to directly observable time scales
(Hertz, Kilo-Hertz). Note that optical frequency is instead
denoted by ν.

ω0 The −6 dB cutoff frequency of the filter H(ω) (see below)
used in the time-domain algorithm. See (210), (211), page
122.
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A The matrix contained in the exponential of the expression for
the a posteriori probability of τ(t) expressed in U space
(see (173), (172), page 104). A is the inverse of R, the
covariance matrix describing the a posteriori statistics of
the vector U.

b The supplementary gain parameter affecting the stability and
rate of convergence of the time-domain algorithm shown in
Figure 21. See (203), page 119.

C See Confidence, below.

C.I. See Confidence Index, below.

D See Structure Function, below.

Dk The absolute detection phasor (338) (page 215) includes all
of the ingredients of the complex likelihood function (see
Lk below) except for the optical correlation, V(νk). Since
the real part of the complex likelihood is proportional to
the probability of a photon detection, the expected value of
the absolute detection phasor in which V has been excluded,
is proportional to V∗. Based upon that determination,
averaging of the absolute detection phasor (338), or one of
its relatives (344), (348), (351), yields an estimate of V(ν)
using (343), (347), (350) or (356).

e1 The first (and more important) enhancement factors that enters
into the formula for expected estimation error only when
using the exact logarithm (and not the LLA approximation) to
perform estimation of τ. e1 is always between 1 and 2.
It only approaches 2 for an unresolved object (|V | = 1) with
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a low rate of dark counts. When using the LLA approximation,
the formulae require setting e1 = 1. See (265), page 143.
Plotted vs. constant |V | in Figure 24.

e2 The second “enhancement factor” involved in the formula for
expected estimation error when using the exact logarithm.
Compared to e1, e2 has a very minor effect, and actually acts
to worsen the expected estimation error. Although for |V | = 1
it approaches infinity, the expected estimation error does
not suffer according to the prediction of e2, and thus its
inclusion in the formula for estimation error is questionable
at best. See (271), page 146. Plotted vs. constant |V | in
Figure 24.

e3 When using the exact logarithm only, the expected value of
λk at τ(ACT) is equal to |V |2/4 times e3 (see (300)). At low
|V |, e3 is 1, but can reach a value as high as 1.23, when
|V | = 1.

F(ν) The photon spectral density. Normalized so that its integral
over ν is unity. Defined so that the probability of
detection (in one or another detector channel) a photon of
optical frequency between ν and ν + ∆ν in a time period ∆t is
(∆t)I0(∆ν)F(ν).

G An intermediate result used in Appendix I. See (323), page
206.

gi A function of the discrete frequency index i, which, if
correctly chosen, will allow the expression of the variance
of the off-diagonal elements of A or a to be of the form of
(318) (see page 204). If gi can be found to satisfy (318),
then the conclusions of Appendix I are applicable.
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Gτ A parameter expressing the magnitude of the variance of the
random atmospheric delay field τ0. Gτ contains the same
information as r0, the Fried parameter, but unlike r0, Gτ is
not a function of wavelength (optical frequency). Gτ

includes no information regarding the dynamics of τ0. See
(42), (43), page 54.

H An intermediate result used in Appendix I. See (323), page
206.

H(ω) The frequency response of the smoothing filter which is used
in the time-domain algorithm for maximizing Λ, shown in
Figure 21. See (208), page 121.

I0 The total photon detection rate, in counts per second. See
page 128.

J An intermediate result used in Appendix I. Defined as the
sum of the gi (see above) over all i. See (323), page 206.

K The total number of detected photons being considered in the
time interval of length T .

k2 See (257), page 138. A correction factor based upon a
combination of source statistics. Defined to be on the order
of unity. Exactly equal to 1 in the narrowband case, or when
|V | is not a function of ν.

k4 See (257), page 138. A correction factor based upon a
combination of source statistics. Defined to be on the order
of unity. Exactly equal to 1 in the narrowband case.

Lk The complex likelihood function for photon #k. An analytic
function of τ, the complex likelihood is defined so that 1
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plus its real part will yield the likelihood function itself.
Using the LLA approximation, the log-likelihood λk is exactly
given by the real part of Lk. See (80), page 70.

LΣ The net complex likelihood function, formed as the (possibly
weighted) sum of the complex likelihoods of a number of
photons. See (93), page 75; (129), page 82. Using the LLA
approximation, the net log-likelihood λ is exactly given by
the real part of LΣ. See (92), page 74.

pi The portion of power form either photomixer input channel
routed to output channel i. See (14), page 21.

p(t) The series of photon impulses which is used in the time
domain algorithm for maximizing Λ, shown in Figure 21. See
(199), page 117.

Pi The Fourier cosine transform of p(t), above. See (195), page
116.

R The covariance matrix of the estimated vector U, the cosine
transform of the estimated τ(t) function. Parseval’s theorem
asserts that the trace of R yields (with proper
normalization) the mean squared error of τ.

ro The Fried Parameter. According to the widely accepted model
introduced by D. L. Fried [1], the structure function of
atmospheric turbulence varies as the 5/3 power of baseline
separation. r0 specifies the separation at which the mean
squared phase error due to atmospheric turbulence is 6.88
radians2. r0 varies with wavelength according to λ6/5, as can
be seen from (43), page 54.
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SNR The intrinsic signal-to-noise ratio (233) is defined on the
basis of the number of photons received in the standard time
period T0 as evaluated at the nominal optical frequency ν0.
Since quantum noise is given by the square root of photon
flux, the signal-to-noise ratio increases according to the
square root of photon flux, in the case of photon noise being
dominant. See page 129.

SNR(b) The signal-to-noise ratio especially defined for the case
of estimation using time bins. See (125), page 81.
Because this figure is proportional to T which may be
chosen, it is not simply a characteristic of the physical
circumstances, but is specific to the binning estimation
procedure. However it is analogous to the intrinsic
signal-to-noise ratio (see above) which is determined only
on the basis of the statistics of the received photons.

SNR(CRIT) The critical level of intrinsic signal-to-noise ratio,
below which, the confidence of the correct solution is
predicted to deteriorate. See (303), page 160.

T The time period over which the Fourier transform of τ(t) is
performed (see (53), page 59), and/or over which photons are
considered in the estimation problem. See page 99; also
(75), page 66.

Tτ The single parameter controlling the dynamics of τ(t), the
differential atmospheric delay, according to the simplified
model proposed in (50). Combines the information on Gτ (or
r0) and V0. See (51), page 56.

T0 Simply defined as r0/V0, and thus a function of optical
wavelength. Often referred to as the “atmospheric coherence
time” or the “speckle lifetime.” T0 is best viewed as a time
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constant expressing the time period over which the phase of
interference subject to the random process τ(t) is expected
to vary by an r.m.s. phase angle of 3.7 radians. Note that
different authors have defined similar time periods which
differ by a constant factor. See (52) and footnote 9 on page
57.

V “Fringe Visibility” or normalized cross-correlation between
two light sources. A function of optical frequency ν. In
most contexts, V(ν) refers to the cross-correlation of A1 and
A2, the light that would be observed prior to entering the
earth’s atmosphere, and not subject to atmospheric or
geometrical delays, but reduced in magnitude by dark counts,
photomixer mode impurity, or other instrumental effects.

V2 Shorthand for the expectation of the squared magnitude of V
(fringe visibility) averaged over all detected photons. See
(225), page 128.

V0 The (hypothetical) wind velocity which, acting upon τ0(x, y),
the random field of atmospheric delay as a function of
position, would account for the temporal characteristics of
τ0 evaluated at a fixed position. See page 55.

x1,x2 The field amplitudes of the light entering the photomixer
after having passed through the delay line. See (10), (2),
page 15.

X1,X2 The field amplitudes of the light entering the telescopes.
See Figure 1.
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Terms:

Baseline The vector separating the two telescopes
receiving the light to be interfered.

Complex Likelihood The complex likelihood is an analytic function
of τ. It is defined so that 1 plus its real
part will yield the likelihood function
itself. It has the special property that the
derivative of likelihood can be obtained
directly from its imaginary part scaled by ν.
See (80), page 70. See Lk, LΣ above.

Confidence Suppose some estimation procedure produces an
estimate, a claimed maximum estimation error,
and a figure of merit called Q. The
confidence of the estimate is the a priori
probability that an estimate using this
procedure which yielded a figure of merit
equal to Q, would in fact have an error no
larger than claimed. In the case of the
global path estimation problem for τ(t) in
which the a posteriori probability consists of
a number of possibilities, each of which is
characterized as a mean path with a Gaussian
covariance structure, then the confidence of
any individual possibility is identical to the
total a posteriori probability contained in
that solution.

Confidence Index As T grows, the confidence of the correct
solution is expected to decay exponentially.
The confidence index is a measure of the rate
of this decay. See (277), page 152.
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Exact Logarithm Used to indicate derivations in which the LLA
approximation (see below) has not been
employed in the determination of λ and similar
quantities. See, for instance, (168), page
102.

Fried Parameter See r0, above.

Likelihood If x is an underlying process to be estimated
and y is an observation on the basis of which
x is to be estimated, then P(y|x) is the
instrumental response function. However given
an observation y, then we call P(y|x) viewed
as a function of x, the likelihood of x given
y. Multiplying the likelihood by the a priori
density of x, yields the (un-normalized)
a posteriori probability density of x given y,
k1P(x|y) (see (78), page 68). The likelihood
function itself, however, is blind to the
a priori characterization of x.

Linear-Log
Approximation (LLA)

See (84), page 71. The approximation:
log(1 + x) ≈ x, which is accurate for |x| � 1.
See Figure 12. Used throughout this work to
evaluate the logarithm of probabilities in a
simplified but reasonably accurate form.
Equations in which the LLA approximation is
employed are punctuated with “(LLA).”
Equations not using the LLA approximation are
punctuated with “(EL)” for exact logarithm.
Using the exact logarithm enhances the
estimation performance by a modest amount only
when |V | is close to unity.
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MAP Maximum a posteriori probability. The MAP
estimate refers to the estimation of an
unknown quantity from observed data, based
upon the maximization of the a posteriori
probability density for the unknown quantity
given the observation. The latter is
determined by Bayes’ Theorem (78) given the
a priori probability of the unknown, the
probabilistic model connecting the observable
data to the unknown, and the observation
itself.

Photomixer A passive linear optical network with two (or
more) input modes and at least as many output
modes. A balanced lossless 2-input photomixer
can be described by (16), page 22. One with
output modes of equal power and equally
separated phase is given by (18).

Scattering Matrix See (10), page 20.

Signal-to-Noise Ratio
(intrinsic) See SNR, above.

Structure Function The structure function Dx(∆t) characterizes a
stochastic process x(t), where x(t) must be
incrementally stationary. Dx(∆t) is defined as
the mean squared difference between x(t) and
x(t + ∆t). Note that Dx contains the same
information embraced by the autocorrelation
function Rxx, when the latter exists (see (49),
page 56.
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White Light Fringe Also Central Fringe. In an interferometer
processing white (wideband) light, at the
point where the net differential delay is
zero, all wavelengths of light interfere in
phase and reinforce the peak at that special
point. As the bandwidth is decreased, then
the prominence of the white light fringe
decreases compared to the sidelobes. In a
delay-dispersed photomixer, the position of
the white light fringe is directly
proportional to the temporal delay affecting
the correlation between the two optical
fields, τ.
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