Photochemical and photoexcitation effects on the gas-phase chemistry in disks

Wing-Fai Thi
Center for AStrochemistry (Paola Caseli)

@ Max Planck Institute for Extraterrestrialphysics

ProDiMo team: P.Woitke, I. Kamp, Ch. Rab, G. Aresu, R. Meijerink, M. Spaans +DIANA team (Ménard, Güdel, Waters, Domink, Min, Carmona, Dionatos, Antonelli, Pinte, Ilee,)+ GASPS team

Low-mass star formation

Low-mass stars

Protoplanetary discs: large range of temperatures and densities 20.0-

T=10-5000K $n=10^5-10^{15}$ cm⁻³

Disc modelling with (MFOST+) ProDiMo

Disks are exposed to stellar UV & X-rays, interstellar UV and cosmic radiation

Modelling the gas in discs with ProDiMo

- 1. 2D dust radiative transfer: grain thermal balance
- 1+1D for the gas cooling using escape probability (checked against 3D Monte-Carlo): atomic and ro-vibrational cooling lines
- 2. Over 71 gas and solid species (including deuteratred species) steady-state+time-dependent. Xray and UV chemistry
- Hydrostatic equilibirum
- 3. Entire disc is modellized

Woitke et al. 2009a, 2009b; Kamp et al. 2009; Thi et al. 2010A, 2011, Aresuetla. 2011, 2014, Meijeink et al. 2012, 2013

Photochemical and photoexcitation effects on the gas-phase chemistry in disks

- Inner disk gas-phase chemistry: hot gas?, state-to-state reactions? Reactions with UV-excited H₂? Chemical effects of differencial photodissociation?
 - Detection of warm HCN, C₂H₂ with Spitzer (Najita+; Pascucci+; ...)
 - Detection and modelling of CH $^+$ in a protoplanetary disks: the role of excited H_2
 - Differential H₂/HD photodissociation as a cause of enhanced HDO/H₂O in hot gas
 - Pumping [OI] optical lines through photodissociation of OH (and H₂O?)
 - CO rovibrational levels pumping of UV (see Inga Kamp's talk)

CH⁺ in HD100546: Herschel-PACS

Thi et al. 201, Fedele et al. 2013 continuum subtracted archival data (Sturm et al. 2010 A&A 518 L129)

CH⁺ chemistry

- C+ + H₂ (v=0) \rightarrow CH+ + H (activation barrier 0.4eV or 4600K), Hierl et al. 1997 J. Chem Phys 106, 10145
- C+ + H₂(v>0) \rightarrow CH+ + H (no barrier) Hierl et al. 1997; see also Agundez et al. 2010 ApJ 713, 662 (H₂* = H₂(v>0)
- C+ + H₂ radiative association rate is vey small (Barinovs & van Hemert 2006 ApJ 636, 923)
- $CH^+ + H_2 \rightarrow CH_2^+ + H$ (CH^+ is very reactive)
- CH+ + e- \rightarrow C + H (electron recombination)
- CH+ + UV → C+ + H (rate calculated using cross-section and stellar+accretion UV)
- + other rates from UDFA: <u>www.udfa.net</u>

How to overcome the activation barrier?

- UV-pumped excited H₂ (e.g., Agundez et al. 2010)
- Shock heated gas (Draine & Katz 1986) but no velocity shifts detected between species as expected (Gredel 1997).
 However recent WISE images show shocked gas structures
- Turbulence heated gas (e.g., Godard et al. 2009) for the ISM gas or acccretion heating for the inner disk midplane.
- Photoelectric heated hot gas: possible for protoplanetary discs and enveloppe around massive young stellar objects (Benz et al. 2010, Bruderer et al. 2010a,b)
- (hot)-electrons excitation to electronic levels followed by decays to high-v levels (Cosmic-Rays, stellar wind, X-ray interaction with the gas)

Standard TTauri disk model

Bouma & Kamp

HD100546 SED fitting with 3D Monte-Carlo code MCFOST

CH⁺ is located at the rim HD100546 model with excited H2 outer disc rim

Water deuterium enrichment at high gas temperature in photodissociation regions

- H2 self-shielding implies that [D]/[H]>>[HD]/[H₂] in photodominated regions
- UV-excited H₂ promotes the (neutral-neutral) reactions H₂* +
 O → OH + H
- The exchange D + OH \rightarrow OD + H is favored
- H₂* + OH → H₂O and H₂* + OD → HDO: in photodominated regions [HDO]/[H₂O] is enhanced even at T=100-500 K

How to deal with all the neutral $-H_2^*$ reactions with activation barriers? (Kamp+ 2015)

Modelling [OI]6300A line in disks

- [OI] optical line flux is too strong to be reproduced by thermally-excited atoms (B. Acke+; van der Plas+; Fedele+)
- O(ID) can be fomed as the photodissocation product of OH (van Dishoeck+ 1983, 1984). Disk models by Gorti+2011; Rigliaco+ 2013
- Another possibilities are UV fluorescence or photodissociation of H_2O onto $O(^1D)$: branching ratio 10% at 1216A
- The excitation model of OI has to incorporate all the electronic levels (maximum UV energy of I3.6 eV) and electron collision rates
- The branching ratio between O(ID) and O(IP) has been computed (vD 1983, 1984; Storzer 2000; Zhou 2003)
- Chemical-pumping has to be included in the population model
- Detailed continuum and line UV-transfer has to be performed Vincente+, in prep.

After Van der Loo & Groenenboom

Bhardwaj and Raghuram 2012 ApJ 748, 13 (Cometary [OI] emission model)

Conclusions

Photodissociation plays an important role in the disk surface chemistry (HDO. CH+, excitation of OI optical lines, ¹⁶O/¹⁷O/¹⁸O).

Photodissociaton cross-sections are needed in combination with

- Detailed treatment of the continuum and line (UV) radiative transfer
- Collision rates (to electronic levels) with electrons are required
- State-to-state chemistry
- UV levels to account for UV pumping

Analysis and Modelling of Multi-wavelength Observational Data from Protoplanetary Discs

St Andrews	Vienna	Amsterdam	Grenoble	Groningen
P. Woitke	M. Güdel	R. Waters	F. Ménard	I. Kamp
			9999	
Greaves Ilee Rigon	Dionatos Rab Liebhart	Min Dominik	Thi Pinte Carmona Anthonioz	Antonellini
sub-mm to cm	X-rays	near-mid IR	near-far IR	near IR - mm
coordination	obs./mod.	mod./obs.	obs./mod.	mod./obs.
JCMT, eMERLIN	XMM, Herschel	VLT, JWST	HST, Herschel	Herschel, JWST
astrobiology	high energy	dust mod.	interferometry	gas mod.

multi- λ data collection X-ray to cm (archival and proprietary) coherent, detailed modelling of gas & dust throughout the disc using disk modelling software ProDiMo, MCMax, MCFOST

aim: disc shape, temperatures, dust properties, chemistry in the birth-places of exoplanets