

Università degli Studi "Aldo Moro" di Bari Chemistry Department INAF – Istituto Nazionale di Astrofisica Osservatorio di Arcetri

UCL – Physics & Astronomy Department

Photodissociation of H₂ and HD in a non-thermal radiation background: application to the early Universe chemistry

Carla Maria Coppola^{1,2,3}

- 1 Università degli Studi "Aldo Moro" di Bari- Chemistry Department
- 2 Osservatorio Astrofisico di Arcetri
- 3- University College London Physics & Astronomy Department

OUTLINE:

- 1. early Universe: the "standard" chemistry
- 2. direct H₂ and HD photodissociation cross-sections: characteristics
- 3. spectral distortions:
 radiation transport in the expanding Universe →
 primordial atomic recombination

4. "modified" rate coefficients \rightarrow chemistry

UNIVERSE HISTORY...

KINETIC MODELS: CHEMICAL SPECIES (I)

H^{+}	D^+	HD^+	
Н	D	HD	
H.	D-	$\mathrm{H_3^+}$	H_2D^+
He ⁺⁺ He	He+	HeH⁺	
Li	Li^+	LiH L	.iH⁺
Li		${\rm H_2^{+}}$	H ₂
e⁻	\mathbf{v}		

KINETIC MODELS: A BRIEF OVERVIEW... (II)

'60s: studies on elementary processes useful in molecular hydrogen formation in the early Universe (Saslaw & Zipoy (1967), Peebles & Dicke (1968))

Chemical kinetics in the early Universe: Dalgarno & Lepp (1987) Black (1990) Shapiro (1992) Puy et al. (1993,1996) Dalgarno & Fox (1994) Lepp, Stancil & Dalgarno (1996), Lepp & Stancil (1998) Bougleux & Galli (1997) Galli & Palla (1998, 2002) Schleicher et al. (2008)

KINETIC MODEL: MATTER AND RADIATION TEMPERATURE (III)

$$\frac{dT_m}{dt} = -2H(t)T_m + \frac{8\sigma_t a T_r^4 (T_r - T_m) x_e}{3m_e c} + (\Gamma - \Lambda)_{\rm mol}$$

$$T_r = 2.7(1+z)$$

RECFAST Wong et al. 2008, MNRAS, **386**, 1023-1028

CosmoRec Rubiño Martín et al. 2010, MNRAS, **403**, 439-452

KINETIC MODEL: ODEs SYSTEM (IV)

 dn_i k_{form} $n_i n$ Kdest Ili dt dn_i $dt dn_i$ dzdt $n(z) = \Omega_{\rm b} n_{\rm cr} (1+z)^3$

KINETIC MODEL: CHEMICAL PROCESSES (V)

KINETIC MODEL: FRACTIONAL ABUNDANCES (VI)

Lepp, Stancil &Dalgarno, 2002, J. Phys. B: At. Mol. Opt. Phys. **35**, R57–R80

THE MECHANISM OF DIRECT PHOTODISSOCIATION

SEARCH FOR CHEMICAL DATA: DIRECT PHOTODISSOCIATION OF H₂ and HD...

Cross-sections: Allison & Dalgarno 1969 Gay et al. 2012

(Cross-sections by Gay et al. 2012)

(Cross-sections by Gay et al. 2012)

Selectivity of efficiency according to the rovibrational level

No a priori comments...calculations needed...

BEYOND THE "STANDARD" KINETICS...

SPECTRAL DISTORTIONS (I)

SPECTRAL DISTORTIONS (II)

- matter/antimatter annihilation
- decaying particles
- interaction with matter
- primordial atomic recombination ($z \sim 1100$) A⁺ + e- \longrightarrow A + hv

• molecular radiative cascade $H_2(v) \longrightarrow H_2(v') + hv$

SPECTRAL DISTORTIONS (III)

$$\frac{1}{c}\frac{dJ_{v}}{dz} = \frac{\kappa_{v}J_{v} - j_{v}}{H_{0}(1+z)^{2}\sqrt{1+\Omega_{0}z}} + \frac{3J_{v}}{c(1+z)}$$

$$\kappa_{v} = \frac{c^{2}}{8\pi v^{2}} n_{1} A_{ul} \frac{g_{u}}{g_{l}} \left(1 - \frac{g_{l} n_{u}}{g_{u} n_{l}} \right) \phi(v - v_{ul})$$

$$j_{v} = \frac{hv}{4\pi} n_{u} A_{ul} \phi(v - v_{ul})$$

$$\frac{\Delta J_{v}}{J_{v}}\Big|_{z=0} = [R(z_{i}) - 1][1 - e^{-\tau(z_{i})}]$$
$$R(z_{i}) = \left[\frac{g_{u}n_{1}(z_{i})}{g_{1}n_{u}(z_{i})} - 1\right]^{-1} \left\{\exp\left[\frac{hv_{ul}}{kT_{r}(z_{i})}\right] - 1\right\}$$

Bougleux, E. & Galli, D. **1997** MNRAS, **288**, 638-648

SPECTRAL DISTORTIONS (IV)

$$j_{\nu_{ij}}(z) = h\nu_{ij}\Delta R_{ij}(z)\phi(\nu(z))$$

$$\Delta R_{ij}(\nu) = A_{ij}N_i \frac{e^{h\nu_{ij}/kT_{\rm r}}}{e^{h\nu_{ij}/kT_{\rm r}} - 1} \left[1 - \frac{N_j}{N_i}e^{-h\nu_{ij}/kT_{\rm r}}\right]$$

$$I_{ij}^{z_{obs}}(\nu) = \frac{c}{4\pi} \int_{z_{em}}^{z_{obs}} \frac{j_{\nu_{ij}}(z)}{(1+z)^3} (1+z_{obs})^3 \left|\frac{dt}{dz}\right| dz$$

$$I_{ij}^{z_{obs}}(\nu) = \frac{ch}{4\pi} \frac{\Delta R_{ij}(z_{em})}{H(z_{em})} \frac{(1+z_{obs})^3}{(1+z_{em})^3}$$

PRIMORDIAL ATOMIC RECOMBINATION

CosmoRec by Jens Chluba

- effective multi-level approach;
- fast and accurate (~1.3 sec)
- solves a detailed radiative transfer problem for Ly-n
- available @ www.Chluba.de/CosmoRec

http://www.cita.utoronto.ca/~jchluba/Science_Jens/Recombination/Welcome.htm

SPECTRAL DISTORTIONS (V)

v=0, j=30

(Cross-sections by Gay et al. 2012)

v=9, j=16

(Cross-sections by Gay et al. 2012)

SPECTRAL DISTORTIONS (I)

SPECTRAL DISTORTIONS

SPECTRAL DISTORTIONS: H₂⁺ photodissociation

SPECTRAL DISTORTIONS: DARK MATTER ANNIHILATION

STATE-TO-STATE APPROACH

- Electronic
- Vibrational
- Rotational

$$\frac{n_j}{dt} = -n_j \sum_{j'} (R_{jj'} + P_{jj'} + C_{jj'}n_{j'}) + \sum_{j'} \sum_{j''} R_{jj'}n_{j'} + \sum_{j'} \sum_{j''} \mathbf{C}_j^{j'j''}n_{j'}n_{j'}n_{j''}$$

KINETIC MODEL: CHEMICAL SPECIES

KINETIC MODEL: CHEMICAL PROCESSES

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

30/46

KINETIC MODEL: STATE-TO-STATE KINETICS

Galli & Palla, 1998, A&A, **335**, 403–420

RESULTS: VDF H_2 (I)

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

RESULTS: VDF H₂ (II)

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

RESULTS: VDF H₂ (III)

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

RESULTS: VDF H_2^+ (I)

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

RESULTS: VDF H_2^+ (II)

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

RESULTS: VDF H_2^+ (III)

Coppola, Longo, Capitelli, Palla, Galli, 2011, ApJS, **193**, 7-18

" MODIFIED" RATE COEFFICIENTS

Coppola, C. M.; D'Introno, R.; Galli, D.; Tennyson, J.; Longo, S., 2012, ApJS, 199, 16

38/46

 $\chi_v \propto \text{Boltzmann} + \gamma \cdot \frac{1}{(1+v)}$

SPECTRAL DISTORTIONS (VIII)

SPECTRAL DISTORTIONS (IX)

" MODIFIED" FRACTIONAL ABUNDANCES

Galli & Palla, Annual Review of Astronomy and Astrophysics, **51**, 163-206, 2013

...CONCLUSIONS...

- rovibrational selectivity
- non equilibrium distributions
- non-thermal photons

more realistic description for the early Universe

(same approach for other molecules, rotational levels etc

→ better description
 for the cooling mechanisms)

...ACKNOWLEDGEMENTS...

Jens Chluba Institute of Astronomy, Cambridge University

Savino Longo Università degli Sutdi di Bari

Daniele Galli-Francesco Palla INAF-Osservatorio di Arcetri

Jonathan Tennyson Physics & Astronomy Department - UCL

...workshop organizers...

...ONGOING PROJECTS... EUROPA: Early Universe: Research on Plasma Astrochemistry International Space Science Institute (Bern) **CORE MEMBERS**

Carla M. Coppola

Kazuvuki Omukai

Dominik Schleicher

Jonathan Tennyson

Francesco Palla Evelyne Roueff

John H. Black Elisabetta Caffau

Jens Chluba

Daniele Galli Savino Longo

Paolo Molaro

Europa Early Universe: Research On Plasma Astrochemistry ISSI International Team

EXTERNAL EXPERTS Vincenzo Aquilanti Dario De Fazio Andrea Ferrara Francesco Gianturco Raffaella Schneider

The present era of high precision cosmology requires a proper treatment of the physical and chemical phenomena occuring in the primordial plasma. For this reason, it is crucial to obtain a description as detailed as possible of the environment of the early universe and to discuss feasible strategies to test theoretical models with present and future observational instrumentation. The basic goals of the project that will be divided into two main areas of interests are

http://www.issibern.ch/teams/europa/EUROPA Overview.html

