ISOTOPIC FRACTIONATION OF NITROGEN IN PROTOPLANETARY DISKS

NITROGEN FRACTIONATION

- $^{14}N/^{15}N \approx 450$ in local ISM
- Ratio is reduced in much of the solar system (measured in CN and HCN)
- What is the origin of the ¹⁵N enhancement?

Bockelée-Morvan (2010), Mumma & Charnley (2011)

LOW-T ISOTOPE EXCHANGE

- Zero-point vibrational energy depends on molecular mass
- At $T \leq 20$ K, abundance of ¹⁵NX enhanced relative to ¹⁴NX

Terzieva & Herbst (2000), Wirström et al. (2012)

LOW-T ISOTOPE EXCHANGE

- Zero-point vibrational energy depends on molecular mass
- At $T \leq 20$ K, abundance of ¹⁵NX enhanced relative to ¹⁴NX

Is this enough to explain fractionation in the solar system?

CIRCUMSTELLAR DISK MODEL

Dust And Lines: DALI (Bruderer et al. 2009–2013, details & tests in 2012, 2013)

HCN / HC¹⁵N

•
$$M_{\star} = 2.6 \, M_{\odot}$$
, $M_{disk} = 10^{-4} \, M_{\odot}$

- Age = 10^6 yr
- $L_{\star} = 1.2 L_{\odot}, L_{UV} = 0.018 L_{\odot}$
- Grain populations:
 - 99% small (0.005–1 μm)
 - 1% large (1–1000 μm)

A figure with unpublished results has been removed before posting on the web.

Contact rvisser@eso.org for details.

Enhancement too small and too far out

PHOTODISSOCIATION PROCESSES

cross section

photon frequency

PHOTODISSOCIATION PROCESSES

photon frequency

De

SELF-SHIELDING IN MODELS

- Synthetic UV absorption spectra based on lab data
- Include H and H₂
- Use shielding functions:

 $k_{\rm pd} = k_0 \Theta \exp(-\gamma A_{\rm V})$

- Θ depends on $N(N_2)$, N(H), $N(H_2)$, T, ...
- Trivial in 1D geometry,
 much harder in 2D

HCN / HC¹⁵N

Without self-shielding

With self-shielding

Two figures with unpublished results have been removed before posting on the web.

Contact rvisser@eso.org for details.

Stronger enhancement, still too far out

GRAIN GROWTH

With self-shielding, 1% large grains

With self-shielding, 99% large grains

Two figures with unpublished results have been removed before posting on the web.

Contact rvisser@eso.org for details.

Even stronger enhancement, well into planet/comet-forming zone

Visser et al. (in prep.)

CONCLUSIONS

- ¹⁴N/¹⁵N is reduced in much of the solar system (measured in CN and HCN)
- N₂ is prone to isotopeselective self-shielding
- Produces factor 10–100
 enhancement in HC¹⁵N/HCN
 in disk models
- Beware: work in progress

www.ruudvisser.com/talks rvisser@eso.org

