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NITROGEN
FRACTIONATION

« “N/*>N = 450 in local ISM

e Ratio is reduced in much of

the solar system
(measured in CN and HCN)

e What is the origin of the
>N enhancement?
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Bockelée-Morvan (2010), Mumma & Charnley (2011)



LOW-T ISOTOPE EXCHANGE

e Zero-point vibrational energy
depends on molecular mass

e At T = 20 K, abundance of 1°NX
enhanced relative to 1*NX
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Terzieva & Herbst (2000), Wirstrom et al. (2012)



LOW-T ISOTOPE EXCHANGE

e Zero-point vibrational energy
depends on molecular mass

A

Is this enough to explain
fractionation in the solar system?
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Terzieva & Herbst (2000), Wirstrom et al. (2012)




CIRCUMSTELLAR DISK MODEL

Dust And Lines: DALI
(Bruderer et al. 2009-2013, details & tests in 2012, 2013)
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HCN / HC'>N

nt M* =25 M@, Mdisk = 10_4 M@

. L 105
Age 10 v A figure with unpublished results
&L 1)1 |.w=00181 has been removed before posting on the web.
* el . ®, LUV — . ®
e Grain populations: Contact rvisser@eso.org for details.

» 99% small (0.005—-1 um)
» 1% large (1-1000 pm)

Enhancement too small and too far out

Visser et al. (in prep.)
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SELF-SHIELDING IN MODELS

e Synthetic UV absorption
spectra based on lab data

e Include H and H

e Use shielding functions:
kpd = ko 0, exp(—yAV)
O depends on N(N), N(H), N(H2), T, ...

e Trivial in 1D geometry, '

much harder in 2D o

Li et al. (2013), Heays et al. (2014), Miotello et al. (2014), Visser et al. (in prep.)



HCN / HC'>N

Without self-shielding With self-shielding

Two figures with unpublished results
have been removed before posting on the web.

Contact rvisser@eso.org for details.

Stronger enhancement, still too far out

Visser et al. (in prep.)



GRAIN GROWTH

With self-shielding, 1% large grains With self-shielding, 99% large grains

Two figures with unpublished results
have been removed before posting on the web.

Contact rvisser@eso.org for details.

Even stronger enhancement, well into planet/comet-forming zone

Visser et al. (in prep.)



CONCLUSIONS

e 1“N/1°N is reduced in much of

the solar system
(measured in CN and HCN)

* N, is prone to isotope-
selective self-shielding

* Produces factor 10-100
enhancement in HC*>N/HCN

in disk models

e Beware: work in progress

www.ruudvisser.com/talks
rvisser@eso.org
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