Laboratory formation of fullerenes from PAHs: Top-down interstellar chemistry.

Junfeng Zhen, <u>Pablo Castellanos</u>, Daniel Paardekooper, Harold Linnartz & Alexander Tielens

Leiden Observatory

Photodissociation in Astrochemistry February 3, 2015

1 Introduction

2 Top-down Chemistry

3 Set-up

- **4** Samples Properties and Goals
- **5** Results and Future Work

- $\bullet~C_{60}$ (and $C_{70})$ are the largest molecules detected in the ISM.
- Highly stable molecule.
- Its formation is related to other carbon bearing compounds.
- Ubiquitous in the ISM.
- Possible culprit of some DIBs.

Observations

- First confirmed detection (along with C₇₀) in circumstellar environment of PN Tc 1 (Cami et al. 2010).
- Later detections in wide variety of environments and physical conditions: PNe, post-AGB stars, YSOs, Herbig Ae/Be and PDRs associated with RNe and HII regions.

Cami et al. (2010).

Pablo Castellanos (Leiden Obs.)

- Formation in the envelope of AGBs has limited efficiency (Bernard-Salas et al. 2012).
- Berné & Tielens (2012) proposed that PAH dehydrogenation, followed by C₂-losses, can form C₆₀.
- Micelotta et al. (2012) propose a similar mechanism, but starting from HAC.

Sellgren et al. (2010).

Top-down Chemistry

Berné & Tielens (2012).

Pablo Castellanos (Leiden Obs.)

Fullerenes and PAHs

PD in Astrochem.

Pablo Castellanos (Leiden Obs.)

Fullerenes and PAHs

PD in Astrochem.

"Magic Numbers"

- Formation of fullerenes shows peaks with enhanced intensity.
- "Magic numbers": C_{44} , C_{50} and C_{56} .

- C₆₀ has an absorption minimum at \sim 500–600 nm.
- C₇₀ and large PAHs absorb efficiently.
- At shorter wavelengths the absorption becomes comparable for the three.

Tatsuhisa et al. (1991), Malloci et al. (2007)

- Fullerenes follow "cage route" only.
- Irradiation with 266, 355 and 532 nm.
- C₆₀⁺ does not dissociate at 532 nm.

Goals:

- Dehydrogenation and C₂ loss.
- Compare dissociation patterns.
- C₂ loss necessary for isomerization?

Dehydrogenation

Pablo Castellanos (Leiden Obs.)

PD in Astrochem.

$266 \ {\rm and} \ 355 \ {\rm nm}$ Irradiation

ъ

532 nm Irradiation

Pablo Castellanos (Leiden Obs.)

PD in Astrochem.

13 / 15

ъ

$C_{78}H_{26}$ Fragmentation

- C_{60} can be formed from large PAHs efficiently.
- Large PAHs pass through a first step of fast dehydrogenation.
- C₂ losses are a necessary step for isomerization of closed-cage.
- Smaller (and larger) cages can also be formed.

Future Work:

- Confirmation with IR spectroscopy.
- Derive energies involved using synchrotron radiation.