

Phillip C. Stancil Department of Physics and Astronomy Center for Simulational Physics University of Georgia

Photodissociation Workshop, Leiden

Feb. 3, 2015

Who Did the Work

UGA

On loan from Institute for Applied Physics and Computational Mathematics (Beijing)

Gang Shen (Visitor)

Funded by UGA Center for Undergraduate Research Opportunities

Brendan McLaughlin (Queen's Univ. Belfast)

Past Funding:

Collaborators

Juan Fontenla (Northwest Research Assoc.)

Main Points

- Photodissociation from excited rovibrational (RV) levels (v,J)
 not just from v=0,J=0
- In ``high density'' environments, photodissociation (PD) from a thermal (LTE) distribution may be most relevant
- Electronic transitions to high-lying electronic states even beyond the Lyman limit
- Photoionization may be important when threshold is near the Lyman Limit (H₂)
- Diatomic PD cross sections are relatively straight-forward

Outline

- Photodissociation processes
- Calculation details
- New cases: NH and SH⁺
- Survey of prior results
- Summary

Photodissociation Processes

- Photodissociation due to UV photons is the primary destruction process for most molecules
- Two processes are usually dominant
- Direct photodissociation:

 $AB + h\nu \rightarrow A + B$

 UV absorption followed by fluorescence to the continuum (Solomon process) - H₂, CO:

 $AB + h\nu \to AB^*$ $AB^* \to A + B + h\nu'$

• The direct photodissociation rate for molecule AB

given by $\Gamma_{AB}(A_V) = 4\pi \int_{\lambda_{min}}^{\lambda_{max}} J_{\lambda}(A_V) \sigma_{AB}(\lambda) d\lambda$

- where J_{λ} is the mean intensity of radiation at depth A_V
- σ_{AB} is the photodissociation cross section given by

 $\sigma_{AB}(E_{ph}) \propto E_{ph} |\langle \chi_{fk'J'}(R) | D_{fi}(R) | \chi_{iv''J''}(R) \rangle|^2$

Our Approach

- Start with accurate molecular potentials and transition dipole moment (TDM) functions: MRCI-Q, if available
- Shift potentials to match experimental asymptotic atomic energies, known dissociation energies, ...
- Obtain accurate rovibrational (RV) energies of the ground electronic state (X) Numerov
- Extend TDMs to separated- and united-atom limits
- Compute matrix elements with 2-channel Fermi Golden rule approximation (neglect nonadiabatic couplings)

Our Approach

- Compute cross sections from all RV levels, from threshold to high photon energies (10-50 nm)
- Repeat for multiple electronic transitions

- Provide RV-resolved and LTE cross sections
- In some cases, pure rovibrational dissociation transition (within X) is important (HeH⁺, LiH, LiH⁺)
- Neglect: spin-splitting, Λ-doubling, fine-structure, vibrational coupling, ...

Applications

 Astrochemistry: molecule destruction process in chemical networks

(III)

- Cool gas, low density → photorates for v=0,J=0
- Warm gas, low density (levels not in LTE) → PD from excited v,J - usually *not* treated (e.g. PDRs)
- Warm gas, high density (levels in LTE) → LTE PD cross sections usually not treated (e.g. PPDs)

H₂ photo-destruction rates

H₂ column density

From Gay et al. 2012, ApJ, 746, 78

Applications

- Continuum opacity (high density): removal of UV photons
 - Cool gas → v=0, J=0 PD cross sections (planetary)

 Warm gas → LTE PD cross sections (solar, stellar)

Fontenla et al. 2015, ApJ, to be submitted

Goldfield & Kirby, 1987, J. Chem. Phys., 94,2

NH Potential Energies

î

Shen et al., 2015, ApJ, to be submitted

NH(v=0,J=0) Cross Sections

Shen et al., 2015, ApJ, to be submitted

 $\langle \rangle$

NH LTE Cross Sections

Fontenla et al. 2015, ApJ, to be submitted

Diatomic LTE Opacities

SH⁺ Photodissociation

McMillan et al., 2015 ApJ, in prep.

SH⁺ Potentials and TDMs

SH⁺ Photodissociation

 5 electronic transitions considered

- Transitions to the 3 ${}^{3}\Sigma^{-}$ and 3 ${}^{3}\Pi$ dominate
- RV-excited and LTE cross sections in progress
- SH⁺ observed in Orion Bar (Nagy et al. 2013, A&A, 550, A96)

McMillan et al., 2015 ApJ, in prep.

SH⁺(v=0,J=0) Cross Sections

H₂ Lyman and Werner Continua

 v=0-14 PD cross sections computed by Allison & Dalgarno (1969, At. Data, 1, 92), only J=0

- We did all 301 RV levels
- Get good agreement with Allison & Dalgarno
- Resolve resonances

Gay et al. 2012, ApJ, 746, 78

H₂ Photodissociation Cross Sections

HeH⁺ Photodissociation

HeH⁺ LTE Cross Sections

HeH⁺ Photodissociation

HeH⁺ LTE Rovibrational in X

Early Universe

HeH⁺ LTE Rovibrational (1000 K)

Early Universe

HeH⁺ Abundance

El-Qadi & Stancil, 2013, ApJ, 779, 970

CN(v=0,J=0) Cross Sections

El-Qadi & Stancil, 2013, ApJ, 779, 970

 $\langle \neg$

CN(v=0,J=0) Cross Sections

î

El-Qadi & Stancil, 2013, ApJ, 779, 970

CN LTE Cross Sections (3000 K)

î

Effect of Photoionization

 H₂(v=0,J=0) photoionization cross section from Yan, Sadeghpour, & Dalgarno (1998, ApJ, 496, 1044)

11

- Dominates photodestruction for A_V<0.1
- PI from excited v,J levels should be considered
- v,J=0 PI cross sections calculated by Tsai & Flannery (1977, PRA, 16, 1124)

H₂ Photo-destruction rates

Database Websites

(II)

Charge Exchange Database for Astrophysics

Targets	Cross Sections				Rate Coefficients			
	Total		State-Selective		Total		State-Selective	
	Data	Fit	Data	Fit	Data	Fit	Data	Fit
Н	Select	Select	Select	Select		Select		Select
He	Select		Select		Select	Select	Select	Select
H ₂	Select	Select	Select	Select		Select		
СО	Select							
H ₂ O	Select							
CO ₂	Select							
N ₂	Select							
СН		Select						
CH ₂		Select						
CH ₃		Select						
CH ₄		Select						
C ₂ H		Select						
C ₂ H ₂		Select						

Last modified: November 25, 2014.

Summary and Future Work

- 2-state Fermi Golden Rule approach can give reliable cross sections relatively ``fast''
- Photodissociation (v,J; LTE) cross sections completed for H₂, HeH⁺, NH, SH⁺, and CN (also H₂⁺, SiH⁺, HD, MgH, LiCl)
- Currently working on : CH, SiO, CS, TiO, CaH, C₂
- Important to consider triatomics and larger

Summary and Future Work

• Other photodissociation databases:

- SWRI: http://amop.space.swri.edu/
- Leiden: http://www.strw.leidenuniv.nl/~ewine/ photo/
- Data formats for continuum processes
- We also do charge exchange and collisional excitation calculations (DBs available soon!)