Modeling the irradiated ISM in starburst galaxies and AGN

Rowin Meijerink

Leiden Observatory, Leiden University, The Netherlands

Credits

- Mher Kazandjian (Leiden Observatory)
- Marissa Rosenberg (Leiden Observatory)
- Paul van der Werf (Leiden Observatory)
- The HerCULES team

Outline

- Background: FUV versus X-ray irradiation
- Complicating matters: Cosmic rays and mechanical heating
- Application to Arp 299
- Conclusions

Photon Dominated Regions

• Regions where photons dominate the thermal and chemical balance of the gas

• Examples:

- AGN environments
- OB stars environments
- T Tauri stars and their surrounding proto-planetary disks
- Red giant outflow (AGB stars)
- Planetary nebulae

PDRs and XDRs

Energetics:

- $G_0 = 1.6 \times 10^{-3} \text{ erg cm}^{-2} \text{ s}^{-1}$
- Habing flux: 6-13.6 eV
- $F_x = 84 L_{44} r_2^{-2} \text{ erg cm}^{-2} \text{ s}^{-1}$
- X-ray flux: 1-100 keV
 - Seyfert nucleus at 100 pc (can influence the chemistry up to 500 pc distance)
 - T Tauri star with 10^{32} erg/s at 20 AU

PDRs: $6.0 < E < 13.6 \, eV$

- Heating:
 - Photo-electric heating
 - Cosmic rays
- Cooling:
 - Fine-structure lines [OI] 63, 145; [CII] 158 μm
 - H₂, CO and H₂O rotational-vibrational lines
- FUV photon penetration limited by dust absorption
- Chemical transitions:
 - Chemistry driven by FUV ionization
 - $H \rightarrow H_2; C^+ \rightarrow C \rightarrow CO$

Glassgold & Langer 1975

Tielens & Hollenbach 1985

PDR structure

Meijerink & Spaans (2005)

$XDRs: E > 1 \ keV$

• Heating: X-ray photo-ionization, followed by:

- fast electrons
- H and H₂ excitation
- UV emission: Ly α , Lyman-Werner
- Cooling:
 - [FeII] 1.26, 1.64 μm
 - [OI] 63; [CII] 158; [SiII] 35 μm
 - thermal H_2 v=1-0 S(1)
- Chemistry driven by X-ray ionization:
 - Fast ion-molecule chemistry

XDR energy deposition

Maloney et al. 1996

XDRs: structure

	◀	— XDR—			
	н	$H/H_2 \sim 0.01$	H ₂		
Highly Ionized Region	$\rm T\sim 10^{4} K$	T ~ 2000K	T < 200K		
	C ⁺ ,C	C,C ⁺	CO, C, C ⁺		
	0	0	О, ОН, О ₂ , Н ₂ О		
	$X_e \sim 10^{-2} - 10^{-1}$	$X_e \sim 10^{-3} - 10^{-2}$	X _e < 10 ⁻³		
	Fe ⁺	Fe ⁺	Fe ⁺ , Fe		
	$\operatorname{High} \operatorname{H}_X\!/\!n$		$\mathrm{Low}~\mathrm{H}_X/\mathrm{n}$		

XDR structure

February 5, 2015

Photodissociation in Astrochemistry - Leiden

UV vs. X-rays: CO lines

February 5, 2015

 XDRs produce larger column densities of warmer gas
Identical incident energy densities give very different CO spectra
Very high J CO lines are excellent XDR

tracers

Need good coverage of CO ladder

Meijerink (PhD 2006); Spaans & Meijerink (2008)

Photodissociation in Astrochemistry - Leiden

Warning: the ISM may contain..

- Quiescent molecular (and atomic) gas
- Star-forming molecular gas (PDRs)
- AGN (X-ray) excited gas (XDRs)
- Cosmic ray heated gas
- Shocks
- Mechanically (dissipation of turbulence) heated gas
- Warm very obcured gas (hot cores)

HCN, HNC and HCO⁺ emission in ULIRGs (Loenen et al. 2008)

February 5, 2015 log HNC(1+0)/HC95(1+0) in Astrochemistry - Leiden

Mechanical heating is an important heating source!

Fe

A PDR model grid with mechanical heating Kazandjian, RM et al. 2012, A&A, 542, A65

• Parameters: G_0 , n, Z, Av, Γ_{mech} , cosmic ray rate

Parameterization of Γ_{mech} Kazandjian, RM et al. 2015, A&A , 574, A127

• Based on SPH simulations (Pelupessy 2005; Pelupessy & Papadopoulos): $\Gamma_{mech} = \alpha \Gamma_{phot}$

Februa

Summary of important line ratios

Returning to the ULIRGs in HCN, HNC and HCO+

Febr

Determining the physical parameters

1.5 < HCN1-0/HNC1-0 < 4.0 , 0.6 < HCN1-0/HCO+1-0 < 3.2 0.3 < HNC1-0/HCO+1-0 < 1.0, 0.1 < HCO+4-3/CO1-0 < 0.5

Arp 299

- $D_L = 50.7 \text{ Mpc}$
- $Log(L_{IR}) = 11.88 L_{sun}$
- Merger
- Starburst
- AGN

814 nm image, Neff et al. (2004)

SPIRE + PACS Herschel observations Rosenberg, RM et al. 2014, A&A, 568, A90

HerCULES

OT1 Meijerink + Hailey-Dunsheath

Complemented with ground based CO, ¹³CO, HCN data from IRAM + JCMT + Sliwa et al. (2012), Imanishi & Nakanishi (2006)

CO ladders from SPIRE FTS

February 5, 2015

Photodissociation in Astrochemistry - Leiden

Fits with regular PDRs

Degeneracy plots of PDR fit

PDR fits with additional constraints from ¹³CO and HCN

Component	Density $log(n_H)$	$\log(G)$	log(N _{CO})	$log(N_{H2})$	Ω^a	C_{em}^{b}	C _{Nco} ^c	Mass _{NH2} ^d
	log[cm ⁻³]	G ₀	$\log[cm^{-2}]$	$\log[cm^{-2}]$				M_{\odot}
M_{tot} : 2 × 10 ⁹ M_{\odot}								
PDR I	3.5	2.5	17.1	21.5	1.2	0.11	0.61	2×10^{9}
PDR II	5.0	5.0	18.2	21.9	0.06	0.32	0.39	3×10^{8}
PDR III	6.0	6.0	16.7	21.2	0.006	0.57	< 0.01	6×10^{6}

February 5, 2015

Photodissociation in Astrochemistry - Leiden

Alternative fitting with mCDR, XDR, and mPDR

HerCULES data summary Rosenberg et al. 2014, ApJ, accepted, arXiv:1501.02985

Conclusions

- Mechanical heating and cosmic rays affect the chemical and thermal balance of the ISM in ULIRGs
- High density tracers such as HCN, HNC, and HCO⁺ are essential in constraining parameter space
- NOTE: Revisited nitrogen chemistry and high temperature chemistry need to be implemented, and may alter results.
 - Next steps: It is needed to combine high resolution ALMA observations with
 - Maps from post-processed hydro-simulations or SLEDs obtained from density PDFs.
 - Simulations that allow the mutual feedback of chemistry and dynamics.

NGC 253 (Rosenberg et al. 2014)

- $D_L = 2.5 \text{ Mpc}$
- $Log(L_{IR}) = \overline{10.3 L_{sun}}$
- Starburst

Complemented with ground based CO, ¹³CO, and HCN data + Israel et al. (1995) + Knudsen et al. (2007)

February 5, 2015

Photodissociation in Astrochemistry - Leiden

Fit with regular PDR models

CO ladder fits with various PDR models

Photodissociation in Astrochemistry - Leiden

February 5, 2015

Models parameters of the three fits

Component	Density $log(n_H)$	$\log(G)$	log(N _{CO})	$log(N_{H_2})$	α	Ω^a	C_{em}^{b}	C _{Nco} ^c	Mass _{NH2} ^d
	log[cm ⁻³]	G ₀	log[cm ⁻²]	$log[cm^{-2}]$	%				M₀
Case 1 M_{tot} : $8.4 \times 10^7 M_{\odot}$									
mPDR	3.5	2.5	17.1	21.5	1	6.0	0.17	0.28	5.7×10^{7}
CDR	5.5	1.0	17.8	21.4	0	3.0	0.21	0.71	2.3×10^{7}
mCDR	5.5	5.0	16.8	21.4	1	0.5	0.63	0.01	3.8×10^{6}
Case 2 M_{tot} : $1.1 \times 10^8 M_{\odot}$									
mPDR I	3.5	2.5	17.1	21.5	1	6.0	0.17	0.17	5.7×10^{7}
mPDR II	5.5	1.0	17.8	21.4	5	5.0	0.16	0.83	4.5×10^{7}
mCDR	5.0	4.5	16.2	21.2	10	1.5	0.67	< 0.01	7.1×10^{6}
Case 3 M_{tot} : $1.1 \times 10^8 M_{\odot}$									
mPDR I	3.5	2.5	17.1	21.5	1	6.0	0.16	0.23	5.7×10^{7}
mPDR II	5.0	1.0	17.7	21.4	10	5.0	0.24	0.76	3.8×10^{7}
mPDR III	5.0	5.0	15.5	21.0	10	5.0	0.61	< 0.01	1.5×10^{7}