N₂ IN TITAN'S ATMOSPHERE [OR WHEN HIGH-RESOLUTION IS NEEDED]

PANAYOTIS LAVVAS GROUPE DE SPECTROSCOPIE MOLÉCULAIRE & ATMOSPHÉRIQUE UNIVERSITÉ DE REIMS CNRS

Photodissociation in Astrochemistry - Leiden Feb-2015

Christiaan Huygens 1629-1695

N₂~98% CH₄~2%

Dune Fields

Lakes & Seas

Cassini Composite from IR (red-green) and UV (blue) wavelengths 2005

River Channels

Titan

Earth

Titan

Titan

Lavvas et al. 2013

Lavvas et al. 2013

All this chemical complexity starts from the photodissociation of N₂ & CH₄

High detail spacecraft observations

Need for detailed studies

$N_2 + hv → N + N$ 796.8 A<λ<1000 A Photons $N_2 + hv → N_2^+ + e^-$ λ<796.8 A $N_2 + hv → N^+ + N + e^-$ λ<510 A

 N_2

 CH_4

Lewis et al. 2005 Heays et al. 2014 Neutral Dissociation

 N_2

for more details see Lavvas et al. 2011

Further down the chemical pathways...

Vuitton et al. 2007/8 Lavvas et al. 2008a,b Horst et al. 2008 Yelle et al. 2010

Stevens et al. 2011

Table 1: Average dissociation yields for singlet states. States in boldface characters have pre-dissociation yields less that 95%.

	$< f_{dis} >$					
State	100K	150K	200K			
b(1)	0.634	0.657	0.678			
b(4)	0.994	0.994	0.994			
b(5)	0.979	0.974	0.968			
b(6)	0.957	0.958	0.959			
b(7)	0.969	0.972	0.974			
b'(1)	0.453	0.444	0.440			
b'(4)	0.903	0.920	0.926			
$\mathbf{b}'(5)$	0.683	0.683	0.684			
$\mathbf{b}'(6)$	0.938	0.938	0.938			
b'(7)	0.485	0.531	0.579			
b'(8)	0.930	0.930	0.930			
b'(9)	0.730	0.751	0.768			
b'(10)	0.965	0.965	0.966			
b'(11)	0.946	0.946	0.946			
b'(12)	0.834	0.827	0.819			
b'(13)	0.971	0.971	0.971			
b'(14)	0.981	0.980	0.980			
b'(15)	0.978	0.978	0.978			
b'(16)	0.949	0.950	0.951			
b'(17)	0.988	0.987	0.986			
b'(18)	0.975	0.975	0.975			
b'(19)	0.975	0.976	0.977			
c(0)	0.980	0.979	0.978			
c(1)	0.976	0.980	0.983			
c(2)	0.985	0.985	0.985			
$\mathbf{c}_4'(0)$	0.109	0.133	0.155			
$\mathbf{c}_4'(1)$	0.689	0.694	0.699			
$\mathbf{c}_4'(2)$	0.800	0.797	0.795			
$\mathbf{c}_4'(3)$	0.826	0.826	0.827			
$\mathbf{c}_4'(4)$	0.752	0.779	0.798			
$\mathbf{c}_4'(6)$	0.922	0.924	0.928			
e(0)	0.925	0.927	0.928			
$\mathbf{e}'(0)$	0.491	0.494	0.524			
o(0)	0.951	0.959	0.962			
o(1)	0.989	0.990	0.990			
o(2)	0.991	0.991	0.991			
o(3)	0.990	0.990	0.990			
o(4)	0.712	0.716	0.717			

Pre-dissociation Yields

 $< f_{dis} > = \frac{\int \sigma_{\lambda} f_{dis,\lambda}}{\int \sigma_{\lambda}}$

The $N_2\ Ground\ State$

Ground State

 $k_{CH4} = 10^{-15} \text{ cm}^3 \text{s}^{-1}$ $k_{CH4} = 10^{-14} \text{ cm}^3 \text{s}^{-1}$ $k_{CH4} = 10^{-13} \text{ cm}^3 \text{s}^{-1}$

 $N_2(v) + CH_4 > N_2(v-1) + CH_4^*$

Is this variation consistent with observations?

Stevens et al. 2011

	Observed Peak (R) ^a	Modeled Peak (R) ^b	Model Observed	Observed Peak (km)	Modeled Peak (km)	Model – Observed (km)
N ₂ LBH ^c	136.0 ± 12.5	143.9	1.1	900 ± 55	933	33
$N_2 VK^d$	67.8 ± 7.4	52.0	0.8	900 ± 55	928	28
N I ^e	31.8 ± 4.8	47.4	1.5	900 ± 55	956	56
N II 1085 Å	4.1 ± 0.2	4.5	1.1	900 ± 55	996	96
BH I(1)	2.0 ± 0.3	1.6	0.8	900 ± 55	1009	109
CY(3,4,6)	6.5 ± 0.4	1.4	0.2	1000 ± 55	1014	14
CY(0,1)	1.4 ± 0.2	4.2 ± 1.9^{f}	3.0	1000 ± 55	1120	120
CY(0,2)	0.9 ± 0.2	$0.7\pm0.3^{\rm f}$	0.8	1000 ± 55	1080	80

Table 1. Comparison of Modeled and Observed Titan Limb Airglow Radiances

EFFECTS ON THE ATMOSPHERE

CONCLUSIONS

High resolution N₂ cross sections have major implications for Titan's photochemistry

The high quality observational constraints from Cassini/Huygens mission necessitate the detailed description of the complex processes taking place in Titan's atmosphere.

