Photodissociation and ionisation of molecules due to stellar and cosmic-ray-induced radiation

A. N. Heays, A. D. Bosman, and E. F. van Dishoeck

Leiden Observatory, The Netherlands

- Astrochemically relevant molecules, ions, and radicals
- Interstellar photodissociation/ionisation rates
- Circumstellar photodissociation/ionisation rates
- Rates in the cosmic ray ionisation field
- Depth-dependent shielding
- One less thing for astrochemical modellers to worry about

Astrochemistry data sources

The current Leiden database

- Rates, depth-dependence
- Detailed CO and N₂ shielding
- Lee 1984, van Dishoeck 1988, van Dishoeck 2006, van Hemert and van Dishoeck 2008

Diatomic molecules:

- H₂ e.g., Abgrall *et al.*, Sternberg 2014
- CO e.g., Visser 2009
- N₂ e.g., Lewis 2005, Li 2013, Heays 2014

PHIDRATES

- Huebner 2015, 1992
- Rates and product branching
- Solar and planetary focus
- Cosmic ray photodissociation
 - Gredel 1987, 1989
- Subsidiary databases
 - UMIST / UDFA / RATE2012
 - KIDA (+OSU)
 - VAMDC virtual database

- MPI-Mainz UV/VIS spectral atlas
 - Comprehensive measured cross sections
- Leiden database
- PHIDRATES
- MOLAT Paris Observatory
- Harvard CfA molecular database
- The literature

Often broadband low-resolution measurements.

Cross sections – H₂O

Often broadband low-resolution measurements.

Complemented by higher-resolutions.

Widely varying thresholds and peak ranges

photo rate = \int intensity \times cross section $d\lambda$

Photodissociation rates

ISRF photodissociation rates not much changed

Photodissociation rates

Significant dependence on radiation field

Radiation shielding

Considering: Dust, H₂, H, self-shielding Simple model: Single-sided illumination

Dust grain optical properties

Draine et al. dust model

- Mixed carbonaceous and silicate grains according to Draine 2003, Weingartner & Draine 1992, Li & Draine 2001
- Gas:dust mass ratio of 123:1

Shielding by dust – 14 molecules

Self shielding in the ISRF – 14 molecules

N₂ model – potential-energy curves

- ¹Π_u and ¹Σ⁺_u states absorb and emit photons
- ³Π_u and ³Σ⁺_u states have an open dissociation channel
- Spin-orbit coupling leads to predissociation of ¹Π_u and ¹Σ⁺_u states

Modelled N₂ spectrum $b'^{1}\Sigma_{u}^{+}(v'=20) \leftarrow X^{1}\Sigma_{g}^{+}(v''=0)$

- Upper: Model spectrum.
- Lower: Laboratory spectrum (Fourier transform spectroscopy, synchrotron SOLEIL).

Modelled N₂ spectrum

Photoabsorption cross section from X(v'' = 0)

Self-shielding - N₂

Sharply peaked ¹⁴N₂ lines quickly saturate
¹⁴N¹⁵N is unaffected by a saturated ¹⁴N₂ column

Self-shielding - N₂

- Sharply peaked ¹⁴N₂ lines quickly saturate
- ¹⁴N¹⁵N is unaffected by a saturated ¹⁴N₂ column
- Comparable or more important effect than shielding by H₂ and dust

Cosmic-ray induced radiation

Model by Gredel et al.

Photodissociation and ionisation due to cosmic rays

 ζ = ionisation rate of H₂ due to cosmic rays. Rates are ×10⁻⁴ of those in the standard ISRF.

Photodissociation and ionisation due to cosmic rays

Well worth the update

Cosmic-ray induced photodissociation - N₂

Only a handful of H₂ emission lines overlap for species with line-like spectra.

Resulting sensitivity to ortho/para ratio and temperature.

- A review of cross sections, rates, and shielding functions for astrochemically-important molecules
- Full wavelength dependence of cross sections and radiation fields
- Publication on the internet (soon) home.strw.leidenuniv.nl/~ewine/photo

In astrochemistry:

- Characterisation of the remote radiation fields
- Variable optical properties of dust grains
- In chemical physics:
 - Calculation of absolute cross section for radical species
 - Variation of molecular cross sections with temperature and isotopologue
 - Photofragment branching of neutral species

Photofragment branching – CH₄

Very few neutral branching ratios measured. Dissociative-ionisation branching not so bad.

Less sensitive – H₂O

ISRF photodissociation rate

Highest – lowest resolution data = $7.4 - 8.3 \times 10^{-10} \text{ s}^{-1}$

Cosmic-ray induced photodissociation rate ($\times 10^{-16}$ s⁻¹)Shielded by...Highest res.Lowest res.Dust20942250Dust, H219141918Dust, H2, H, self, etc.18901896

Photoionisation rates

Significant dependence on radiation field

1 = unshielded, 0 = no photons