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The galaxy correlation function as a

constraint on galaxy formation physics

Semi-analytical models of galaxy formation are generally successful in reproducing
the number densities of galaxies as a function of mass. In order to remove possible
degeneracies and improve the model, having additional orthogonal constraints like
clustering data while exploring parameter space would be useful. However, this
is challenging due to the two-point nature of such quantities, which makes using
them as a constraint computationally very expensive, as the model would have to
be run on the full halo catalogue at every step. Here, we present a fast estimator
for the projected galaxy correlation function that produces ∼ 10% accurate results
using only a very small subsample of haloes. As a first application, we incorporate
it in a recent version of the Munich semi-analytical model and find a set of galaxy
formation parameters that simultaneously reproduces the observed z = 0 stellar
mass function and clustering data from SDSS.

Marcel P. van Daalen, Bruno M. B. Henriques,
Raul E. Angulo and Simon D. M. White

In preparation



Constraining galaxy formation through clustering

6.1 Introduction

Galaxy formation is currently an unsolved problem. Because of this, any model of
galaxy formation – be it hydrodynamical, analytical or semi-analytical in nature
– has to rely on some set of observations in order to constrain the parameters of
the physical processes that cannot be derived from first principles, or be simulated
directly.

Hydrodynamical simulations can simulate baryonic processes directly on large
scales while relying on sub-grid recipes to model relevant processes below the res-
olution limit. As such simulations are relatively expensive computationally, the
values of the parameters in the sub-grid formulations usually have to be informed
by comparing a set of simulations run at lower resolution or in smaller volumes to
some observational quantity, though these numerical settings themselves may im-
pact which parameter values are “right” for it. Still, as the available computational
resources are ever growing, the number of processes which cannot be simulated
directly is slowly decreasing (e.g. Hopkins et al., 2013), and valiant efforts are
currently being made to improve the accuracy of direct cosmological simulations
(e.g. EAGLE, Schaye et al., in preparation).

Semi-analytical models (hereafter SAMs), on the other hand, necessarily in-
clude more physical parameters to calibrate, as baryonic processes are not simu-
lated directly on any scale. However, once the high-resolution collisionless simu-
lations that they are based on have been run a single time, they can be repeated
many times with different parameter values at low computational cost. Coupled
with a method to efficiently explore parameter space such as Monte Carlo Markov
Chains (MCMC, for a review on this and similar methods see Trotta, 2008), this
allows one to find the highest-likelihood set of parameters for any given model,
based on a set of observational constraints.

Typically, SAMs use observational data sets of one-point functions, such as stel-
lar mass or luminosity functions, as constraints for their model parameters (e.g.
Kauffmann, White & Guiderdoni 1993; Baugh, Cole & Frenk 1996; Somerville &
Primack 1998; Kauffmann et al. 1999; Cole et al. 2000; Croton et al. 2006; Bower
et al. 2006; Monaco, Fontanot & Taffoni 2007; Somerville et al. 2008; Henriques
et al. 2009; Guo et al. 2011; Henriques et al. 2013, see Baugh 2006 for a review on
the general methodology). The resulting models of galaxy formation can then be
tested against other observables (i.e. observables that are independent of those used
as constraints) and be used to make predictions for these. A delicate balance must
be maintained here: if the model has too many free parameters, prior regions that
are too wide, or if there are too few (independent) observational constraints, de-
generacies may occur (i.e. separate regions of high likelihood in parameter space),
while too little freedom or failing to include some relevant physical process may
leave the model unable to match several observables at once.

SAMs generally have trouble matching the small-scale clustering of galaxies
while simultaneously matching other observational constraints such as the lumi-
nosity function (e.g. Kauffmann et al. 1999; Springel et al. 2005; Li et al. 2007; Guo
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et al. 2011; Kang et al. 2012; but see e.g. Kang 2014). In order to determine the
cause of this discrepancy, and to test whether the models retain enough freedom to
match the observed clustering at all, it would be instructive to use clustering mea-
surements as constraints while exploring parameter space. As galaxy clustering is
determined by how galaxies with different properties populate haloes of different
mass, it directly constrains galaxy formation, in a way that is complementary to,
for example, the luminosity function.

However, this presents a problem: while one-point functions such as the stellar
mass function can be quickly estimated with known uncertainty by running the
model on only a small sample of representative haloes, allowing large regions of
parameter space to be rejected without having to run the model on the full dark
matter simulation, the same cannot be done simply for two-point functions such
as the correlation function. In principle, any observable that relies on spatial
correlations between galaxies can only be calculated by running the model on the
full simulation, which is computationally infeasible when thousands of models need
to be explored. While running the SAM on a small sub-volume may allow one to
measure small-scale correlations to some degree, cosmic variance will be an issue.
Additionally, if one aims to compare to observations, where clustering is viewed
in projection (unless line-of-sight velocities are used), one still has to account for
large-scale correlations, even at small separations.

Here, we present a method to quickly estimate the projected correlation func-
tion, w(rp), to some known uncertainty from a small sample of haloes using a
halo model based approach, and apply it to constrain the recent version of the
Munich semi-analytical model presented in Guo et al. (2013, , hereafter G13). By
measuring the properties of galaxies within individual haloes and making informed
assumptions about the distribution of these haloes, we are able to circumvent the
aforementioned problems, greatly reducing the CPU time needed to predict their
two-point clustering.

This chapter is organised as follows. In Section 6.2, we present our method
for estimating w(rp) and briefly describe the semi-analytical model we apply it
to. Next, in Section 6.3, we show the results of using clustering as an additional
constraint on parameter space, on top of the often-used z = 0 stellar mass func-
tion. Finally, in Section 6.4 we present a summary of our work and discuss future
improvements and applications.

6.2 Method

6.2.1 Estimating the correlation function
Our approach is slightly different to that of most previous works constructing a
correlation function estimator based on the halo model, where the aim is typically
to reproduce observations given some halo occupation distribution (HOD). Here,
our goal is instead to reproduce the results of the semi-analytical model run on
the full dark matter simulation to within some given accuracy, given the galaxy
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properties for a small sample of haloes. As we will show, we are able to reproduce
the projected correlation function of the full galaxy sample to within about 20%,
using the properties of semi-analytical galaxies occupying less than 0.04% of the
full halo sample (0.14% of the subhalo sample).

6.2.1.1 The backbone of the model

Our starting point is the linear halo model, introduced independently by Seljak
(2000), Ma & Fry (2000) and Peacock & Smith (2000). In what follows, we will
adhere to the terminology of Cooray & Sheth (2002). In the analytical halo model
the power spectrum, P (k), is written as the sum of two terms:

P (k) = P 1h(k) + P 2h(k). (6.1)

Here P 1h(k) is the 1-halo term, describing the two-point clustering contribution
of points within the same halo, and P 2h(k) is the 2-halo term, describing the
contribution of points within separate haloes. For the clustering of matter, these
are given by:

P 1h
dm(k) =

∫
n(M)

(
M

ρ̄

)2

|u(k|M)|2dM

P 2h
dm(k) =

∫ ∫
n(M1)

(
M1

ρ̄

)
u(k|M1)n(M2)

(
M2

ρ̄

)
u(k|M2)×

Phh(k|M1,M2)dM1dM2. (6.2)

Here M = M200mean is the halo mass definition1 we will be using throughout,
n(M) is the halo mass function, ρ̄ is the mean matter density of the Universe,
u(k|M) is the normalised Fourier transform of the density profile of a halo of mass
M , and Phh(k|M1,M2) is the halo-halo power contributed by two haloes of masses
M1 and M2 on a Fourier scale k. We can rewrite the latter term assuming a linear
scale-independent bias relation, Phh(k|M1,M2) = b(M1)b(M2)Plin(k), where b(M)
is the halo bias and Plin the linear theory matter power spectrum. We then obtain:

P 2h
dm(k) = Plin(k)

[∫
n(M)b(M)

(
M

ρ̄

)
u(k|M)dM

]2
. (6.3)

From these expressions, one can easily derive a model for the galaxy power spec-
trum. For this we assume that the number of galaxies scales with the halo mass
M ; specifically, M ∝ 〈Ngal|M〉 and M2 ∝ 〈Ngal(Ngal − 1)|M〉, leading to:

P 1h
gal(k) =

∫
n(M)

〈Ngal(Ngal − 1)|M〉
n̄2
gal

|ugal(k|M)|pdM

P 2h
gal(k) = Plin(k)

[∫
n(M)b(M)

〈Ngal|M〉
n̄gal

ugal(k|M)dM

]2
. (6.4)

1M200mean is the mass within a spherical region with radius R200mean and internal density
200× ρ̄ = 200× Ωmρcrit.
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6.2.1 Estimating the correlation function

Here the mean number density of galaxies is given by ngal =
∫
n(M) 〈Ngal|M〉dM .

Note that we have followed Cooray & Sheth (2002) in replacing the normalised
Fourier transform of the halo density profile, u(k|M), by one describing the distri-
bution of (satellite) galaxies, ugal(k|M), and subsequently in changing the power-
law index on this term in the 1-halo term by p. This is often done in the literature
in order to be able to differentiate between contributions from central-satellite and
satellite-satellite terms, with p = 1 for the former and p = 2 for the latter, based
on the value of 〈Ngal(Ngal − 1)〉. 〈Ngal|M〉 – the most common form of the HOD –
is often separated into contributions from centrals and satellites as well, with the
former (Ncen) following a roughly lognormal distribution with respect to M , and
the latter (Nsat) being very well approximated by a (linear) power law (e.g. Guzik
& Seljak, 2002; Kravtsov et al., 2004; Zehavi et al., 2005; Tinker et al., 2005; Zheng
et al., 2005). From this approximate expressions for 〈Ngal(Ngal − 1)〉 in terms of
Ncen and Nsat can be derived as well.

However, as our aim is to reproduce the results of the semi-analytical model,
for which information on the HOD and the galaxy type is much more readily
available than for observations, we can explicitly separate the contributions from
central and satellite galaxies to the galaxy power spectrum without approxima-
tion. Keeping in mind that a halo will contain at most one central, meaning that
〈Ncen(Ncen − 1)|M〉 = 0, that 〈NcenNsat|M〉 = 〈NsatNcen|M〉, and using that cen-
tral galaxies reside in the centre of the halo and should therefore not be weighted
by the profile, we derive:

P 1h
gal(k) = 2

∫
n(M)

〈NcenNsat|M〉
n̄2
gal

[ugal(k|M)−W (kR)] dM +

∫
n(M)

〈Nsat(Nsat − 1)|M〉
n̄2
gal

[
|ugal(k|M)|2 −W (kR)2

]
dM

P 2h
gal(k) = Plin(k)

[∫
n(M)b(M)

〈Ncen|M〉
n̄gal

dM +

∫
n(M)b(M)

〈Nsat|M〉
n̄gal

ugal(k|M)dM

]2
. (6.5)

Note that we have followed Valageas & Nishimichi (2011) in adding a counterterm
to the halo profiles in the 1-halo term, which ensures the 1-halo term goes to zero
for k → 0. Here W (kR) is the Fourier transform of a spherical top-hat of radius
R(M) = [3M/(4πρ̄)]1/3, given by:

W (kR) = 3

(
sin(kR)

(kR)3
− cos(kR)

(kR)2

)
. (6.6)

In our model, we take Plin(k) to be the realised linear input power spectrum
from the dark matter initial conditions. We calculate the halo mass function,
n(M), directly from the dark matter simulation as well and spline-fit the results.
Furthermore, we use the fit for the M200mean halo bias function provided by Tinker
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et al. (2010) for b(M), and compute each of the four HOD terms directly from the
SAM run on our halo subsample, spline-fitting these results as well.

6.2.1.2 The galaxy distribution

The normalised Fourier transform of the galaxy distribution, ugal(k|M), is often
derived from the dark matter mass profile of the halo. This in turn is usually
assumed to be equal to the Navarro, Frenk & White (1997, , NFW) profile, cut off
at the virial radius rvir = R200mean, with some concentration-mass relation c(M):

ρNFW(r) =
ρ0

(r/rs)(1 + r/rs)2
, (6.7)

where rs = rvir/c is the scale radius. The main advantage of using the one-
parameter NFW profile is that this leads to an analytic expression for u(k|M).
However, many authors have shown that the Einasto (1965) profile provides a more
accurate fit to the mean profile of haloes of a given mass, and to the distribution
of dark matter substructure (e.g. Navarro et al., 2004; Merritt et al., 2005, 2006;
Gao et al., 2008; Springel et al., 2008; Stadel et al., 2009; Navarro et al., 2010;
Reed, Koushiappas & Gao, 2011; Dutton & Macciò, 2014). The two-parameter
Einasto density profile is given by:

ρEin(r) = ρ0 exp

{
− 2

α

[(
r

rs

)α

− 1

]}
, (6.8)

where the shape parameter α allows additional freedom in the slope of the profile.
This function does not have an analytic Fourier transform, and an extra numerical
integration step is therefore needed when replacing the NFW profile by an Einasto
one. The larger degeneracies in fitting a two-parameter model also mean more data
points are needed to obtain a reliable fit. Still, when the computational expense
is acceptable and enough information on the measured profile is available, the
increased accuracy may be worth the cost.

We find that the Einasto profile provides an excellent fit to the distribution
of satellite galaxies in the inner parts of haloes in our simulation. But even the
Einasto profile over-predicts the number of galaxies at large radii, r ! 0.7rvir.
Additionally, standard practice is to cut off the profile at the virial radius, while
we find that ∼ 10% of the satellite galaxies in our simulation are found at distances
1 < r/rvir < 3. Note that these galaxies are not necessarily outside the virialised
region, as haloes are typically not spherical objects. We therefore seek a profile
with the same small-scale behaviour as the Einasto profile, while simultaneously
fitting the galaxy distribution out to ∼ 3rvir.

We find that the following functional form, which we refer to here as the
“gamma” profile, is capable of providing an excellent match to the galaxy dis-
tribution over the full range of scales we consider, and at any halo mass:

ng(r) = n0

(r
b

)ac−3
exp

{
−
(r
b

)c}
. (6.9)
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6.2.1 Estimating the correlation function

Figure 6.1: Galaxy number density profiles for all Guo et al. (2011) galaxies with stellar masses
10.27 < log10(M∗/M") < 10.77, for five different halo mass bins (shown in different colours).
The legend shows the mean logarithmic mass in each of the bins. Solid lines indicate the measured
profiles, while dashed lines show the best-fit gamma profiles (see equation 6.12). The halo mass
bins are dynamically chosen such that each contains roughly the same number of galaxies, and
the fits are performed using 30 radial bins spaced equally in log-space between log10 x = −2.5
and log10 x = 0.5.

This fitting function has three parameters, a, b and c. Note that the role of b is
similar to that of rs in the Einasto profile. Both the Einasto and gamma profiles
are near universal if defined in terms of x ≡ r/rvir. If we rewrite both profiles in
terms of x and integrate them to obtain N(< r), the similarities and differences
between the profiles are most easily appreciated. For the Einasto profile:

NEin(< r) = Ntot

γ
[
3
α ,

2
α

(
x
rs

)α]

γ
[
3
α ,

2
α

(
xmax
rs

)α] , (6.10)

while for the gamma profile:

Ng(< r) = Ntot
γ
[
a,
(
x
b

)c]

γ
[
a,
(
xmax
b

)c] . (6.11)

Here γ(a, b) is the lower incomplete gamma function, and we have assumed the
profiles cut off at some xmax. The similarities in the two profiles are clear, and the
main difference is that the two parameters of the gamma function are independent
for the gamma profile, which effectively allows for a steeper profile at large x and
consequently a better match to the galaxy distribution around the virial radius.
In practice, we fit a normalised number density profile ng(r)/ 〈Ng〉 to the galaxy
distribution before numerically Fourier transforming this to obtain ugal(k|M). For
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completeness, ng(r)/ 〈Ng〉 is given by:

ng(r)

〈Ng〉
=

c

4πb3r3virγ
[
a,
(
xmax
b

)c]
(x
b

)ac−3
exp

{
−
(x
b

)c}
. (6.12)

In our model we set xmax = 3, as > 99.9% of satellites in our fiducial model are
found inside this radius. Even for small halo samples, the three parameters of the
fit are independent enough to ensure degeneracies are not a problem. An example
is given in Figure 6.1, where we show the best-fit model for all galaxies with stellar
masses 10.27 < log10(M∗/M)) < 10.77 in the Guo et al. (2011) semi-analytical
model, for five different halo mass bins. The solid lines show the measured number
density profiles, while the dashed lines show the best-fit gamma profiles. The halo
mass bins are dynamically chosen inside the code such that each contains roughly
the same number of galaxies. We use 30 radial bins spaced equally in log-space
between log10 x = −2.5 and log10 x = 0.5, and fit an Akima spline through each of
the three parameters as a function of halo mass to obtain smooth functions that
are stable to outliers.

6.2.1.3 Correction for non-sphericity

As is common, we have assumed a spherical distribution of satellite galaxies around
each central. In reality, haloes and consequently their galaxy populations are
triaxial. van Daalen, Angulo & White (2012) investigated the effect of assuming
a spherical distribution on the two-point correlation function and galaxy power
spectrum, and found that the effects can be quite large, with the true power being
underestimated by 1% around k = 0.2 hMpc−1 to 10% around k = 25 hMpc−1,
increasing even more towards smaller scales (see the right panel of their Figure 3,
or Figure 4.3 in Chapter 4 of this thesis). We have repeated their analysis and
found that the functional shape of this underestimation of the power appears to
be completely independent of the mass of the galaxies. We therefore fit a function
e(k) through these results and use this to correct our halo model power spectra
for the combined effects of non-sphericity. The final galaxy power spectrum that
comes out of our model for a given set of galaxies is therefore:

Pgal = [P 1h
gal(k) + P 2h

gal(k)]/[1 + e(k)], (6.13)

with P 1h
gal(k) and P 2h

gal(k) given by equation (6.5).

6.2.1.4 Converting to the projected correlation function

To obtain the projected correlation function from the galaxy power spectrum,
we numerically perform two standard transformations. First, to obtain the 3D
correlation function:

ξ(r) =
1

2π2

∫ ∞

0
k2P (k)

sin kr

kr
dk, (6.14)
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6.2.1 Estimating the correlation function

Figure 6.2: The FoF halo mass function, showing number of haloes available in the Millennium
Simulation at z = 0 (black) and the number randomly selected as a function of M200mean in each
subsample (red). The subsamples each comprise of less than 0.04% of the total halo sample, or
0.14% of the total subhalo sample. The selection function was built iteratively by demanding
that ∼ 90% of the random samples it generated lead to projected correlation functions that were
within 30% of the full sample prediction. Low-mass haloes were favoured over high-mass haloes
in order to suppress the size of the trees used in the SAM. Even so, the fraction of FoF groups
needed to match the correlation function within some uncertainty at any stellar mass is higher
for more massive haloes.

and, finally, to obtain the projected galaxy correlation function:

w(rp) = 2

∫ ∞

0
ξ
(√

r2p + π2
)
dπ = 2

∫ ∞

rp

rξ(r)√
r2 − r2p

dr. (6.15)

Here rp and π are the projected and line-of-sight separation, respectively. It is
in this last step that we also convert the units from Mpc/h to Mpc, in order to
directly compare our model w(rp) to that of observations.

6.2.1.5 Selection function

The selection function we use to create the halo sample the SAM is repeatedly
run on while exploring parameter space was built through use of the following
algorithm.

At each step, the algorithm adds some number of Friends-of-Friends (FoF)
groups to each halo mass bin in turn, and generates a number of random samples
for each of the resulting selection functions. The correlation functions predicted
using these samples are then compared to determine which mass bin would con-
tribute to the largest reduction in the variance with respect to the full model run

125



Constraining galaxy formation through clustering

Figure 6.3: The fractional difference between our model prediction of the projected galaxy
correlation function and a direct calculation, for galaxies in the Guo et al. (2011) semi-analytical
model. Here we use the full galaxy sample as an input to our model. Results are shown for six
different stellar mass bins, indicated by lines of different colours, over the range where SDSS/DR7
data is available for each. The overall agreement is within 20%, with the model tending to over-
predict the clustering on sub-Mpc scales. This can be traced to an overestimation of the power
in the 1-halo term by a similar amount around k = 1hMpc−1. For our application, our model
performs well enough, and we leave improvements to future work.

for all six stellar mass bins. If at any step adding more haloes does not reduce
the variance for any halo mass, FoF groups are added to a random bin. This
continues until at least 90% of the random samples the current selection function
generates lead to projected correlation functions that are within 30% of the full
sample prediction.

In order to suppress the size of the merger trees used in the SAM, low-mass
haloes were favoured over high-mass haloes by weighting the number of FoF groups
added to each mass bin by the inverse of the average number of subhaloes hosted by
FoF groups of that mass. Nonetheless, the fraction of haloes selected at high mass
is still higher than at low mass, since more massive haloes potentially contribute
more galaxies to the sample, increasing the accuracy of the estimates made in the
clustering model described above. Additionally, the most massive galaxies probed
here, M∗ > 1011.27 M), preferentially occupy the most massive haloes.

After building several selection functions in this way, we found that on average
they were well approximated by the combination of a constant value and a power
law (rounded to integer values). This is the near-optimal selection function shown
in Figure 6.2 (red line), which takes the constant value Nh = 200 below M200mean =
1012.2 h−1 M). The subsamples generated by this selection function each comprise
less than 0.04% of the total FoF halo sample, or 0.14% of the total subhalo sample.
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6.2.1.6 Performance of the model

We compare our model prediction of w(rp), using the full halo sample, to that
calculated directly for the galaxies in the Guo et al. (2011) model in Figure 6.3.
Here we show the relative difference between the two for six different bins in stellar
mass, indicated as ranges in log10(M∗/M)). We only show the results over the
range where we constrain w(rp) using observations. The model performs well,
and any deviations from the true correlation function are typically within 20%.
The magnitude of the mismatch tends to increase with stellar mass. The large-
scale disagreement is caused by the model slightly under-predicting the power
in the transition region between the 1-halo and 2-halo terms, while the small-
scale offset is mostly due to the 1-halo term in the power spectrum being slightly
overestimated around k = 1 hMpc−1. However, overall the agreement is good,
especially considering our relatively simple treatment of e.g. the halo bias (linear
and scale-independent), and we leave further improvements – such as using a halo-
halo power spectrum measured from the dark matter only simulation instead of a
biased linear power spectrum – to future work.

The true power of the model lies in its ability to reproduce the clustering predic-
tion for the full sample from only a small subsample of FoF groups. In Figure 6.4
we compare the predictions for 100 random subsamples selected according to the
selection function shown in Figure 6.2 to the model prediction for the full sample.
The dotted lines indicate offsets of 30% for reference, and the colours indicate the
same stellar mass bins as in Figure 6.3. The scatter is around 7 − 8% for the
first four mass bins, increasing to 10% and 16% for the fifth and sixth mass bin
respectively. This shows that the model is capable of reproducing the full sample
estimate from relatively few haloes.

6.2.2 The SAM and MCMC
As our estimator is able to quickly and accurately recover the projected correlation
function from a very small subsample of haloes, this makes it ideally suited for
constraining the parameter space of semi-analytical models using the projected
correlation function. In this work we present a first application, where we constrain
the model of G13, a recent version of the Munich semi-analytical code, using
both the galaxy stellar mass function (SMF) and the projected galaxy correlation
function. For this we utilise the same data sets as presented in G13. As we
will only utilise the Millennium Simulation, and not Millennium II, we only use
constraints above M∗ > 109 h−1M).

The G13 model includes 17 parameters which together determine the outcome
of galaxy formation. These are (see Table 6.1): the star formation efficiency (αSF);
the star formation criterion (M̃crit, or equivalently Σcrit); the star formation effi-
ciency in the burst phase following a merger (αSF,burst); the slope on the merger
mass ratio determining the stellar mass formed in the burst (βSF,burst); the AGN
radio mode efficiency (kAGN); the black hole growth efficiency (fBH); the typi-
cal halo virial velocity of the black hole growth process (VBH); three parameters
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Parameter Description Units
αSF Star formation efficiency –
M̃crit Star formation threshold M) km s−1Mpc−1

αSF,burst Star formation burst mode efficiency –
βSF,burst Star formation burst mode slope –
kAGN Radio feedback efficiency h−1M) yr−1

fBH Black hole growth efficiency –
VBH Quasar growth scale km s−1

ε SN mass-loading efficiency –
Vreheat Mass-loading scale km s−1

β1 Mass-loading slope –
η SN ejection efficiency –
Veject SN ejection scale km s−1

β2 SN ejection slope –
γ Ejecta reincorporation scale factor –
y Metal yield fraction –
Rmerger Major-merger threshold ratio –
αfriction Dynamical friction scale factor –

Table 6.1: Parameters varied in the MCMC. The best-fit values (as well as the G13 values for
the WMAP1 cosmology and the prior ranges) are shown in Figure 6.8. For more information we
refer to G13.

governing the reheating and injection of cold disk gas into the hot halo phase by
supernovae, namely the gas reheating efficiency (ε), the reheating cut-off velocity
(Vreheat) and the slope of the reheating dependence on Vvir (β1); three parameters
governing the ejection of hot halo gas to an external reservoir, namely the gas
ejection efficiency (η), the ejection cut-off velocity (Veject) and the slope of the
ejection dependence on Vvir (β2); a parameter controlling the gas return time from
the external reservoir to the hot halo (γ); the yield fraction of metals returned
to the gas phase by stars (y); the mass ratio separating major and minor merger
events (Rmerger); and finally a parameter controlling the dynamical friction time
scale of orphan galaxies, i.e. the time it takes for satellite galaxies of which the
dark matter subhalo is disrupted (or at least no longer detected) to merge with
the central galaxy (αfriction).

While in the original G13 paper some of these parameters were held fixed, here
we allow all 17 to vary. We start our Monte Carlo Markov Chains (MCMCs) at
the position in parameter space used by Guo et al. (2011), which was arrived at by
using a combination of SMFs, as well as rest-frame B -band and K -band luminosity
functions between z = 0 and z = 3, as observational constraints. We then use the
same techniques as described in G13 to find a new set of best-fit parameters, with
the projected correlation function as an additional constraint.
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Figure 6.5: The projected galaxy correlation function in six bins of stellar mass. The points
with error bars show the SDSS data in each bin, while the lines show the model results. The
green dotted line shows the results for the original model from G13, in which the parameter
values were set manually. The blue lines show the results of only using the stellar mass function
as a constraint, while the red lines show the results when the model is simultaneously constrained
by the projected correlation function and the stellar mass function. Finally, dashed and dotted
lines are used to indicate whether these are the results for the sample haloes or for all haloes,
respectively. The clustering on small scales of the full model is systematically underestimated
by the sample, which is mostly due to the clustering estimator (see §6.2.1.6). Note that even
though the lowest mass bin is not used as a constraint, the match to observations is markedly
improved with respect to the other models.

As our model is only accurate to within ∼ 10% on small scales, and addition-
ally since the error bars on the SDSS clustering data were derived from Poisson
statistics alone, and so do not include cosmic variance, we artificially increase the
error bars on the data points used during the fitting. Each data point of the ob-
served projected correlation function was assumed to have an uncertainty of 20%.
As noted before, we do not use the clustering data below M∗ = 109.27M), nor the
stellar mass function data below M∗ < 109M), when constraining the model, as
the haloes hosting these galaxies are not well resolved in the original Millennium
Simulation which we are using as a basis for the SAM. When fitting to the SMF
and clustering data simultaneously, we increase the relative weighting of the fit to
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the SMF by a factor of five to compensate for the fact that the clustering data is
measured in five separate bins. This helps avoid sacrificing the excellent fit to the
SMF in favour of matching the correlation function.

Note that while G13 used a WMAP7 cosmology, here we use the original
WMAP1 cosmology to avoid additional complications introduced by scaling to
a different cosmology. In future work the results will be explored for more up-to-
date cosmologies. Contrary to what is claimed in G13, the change in cosmology
has a negligible impact on the resulting correlation functions, which are far more
sensitive to the SAM’s physical recipes. Besides updating the cosmology, the only
change made from the WMAP1 Guo et al. (2011) model to the newer WMAP7
G13 model is that the type 2 (orphan) satellite galaxy positions are now correctly
updated in the code, meaning that their orbits now decay as intended and can
therefore be disrupted earlier. This change was the main reason for the improved
agreement with clustering data with respect to Guo et al. (2011).

6.3 Results

6.3.1 Comparison with observations

The results of our MCMC chains for the projected correlation function are shown
in Figure 6.5, for six bins in stellar mass, as indicated in the panels. In each
figure, we indicate the original results found by G13, where the galaxy formation
parameters were set by hand, as a green dotted line. The new results are shown
in blue and red; in blue, we show the correlation functions that follow from only
using the stellar mass function as a constraint (“SMF-only”), while in red we show
the results of fitting to the clustering data simultaneously (“SMF+w(rp)”).

The dashed lines show the predictions made based on the sample of haloes
used in the MCMC, as described in §6.2.1. The dotted lines show the true galaxy
correlation function, as calculated directly from the full galaxy catalogue for the
same model parameters. The true values are generally below the ones estimated
from the sample, as expected from the results of §6.2.1.6, and as a consequence the
new results tend to under-predict the amount of clustering on the smallest scales.

Even so, one immediately sees that the SMF+w(rp) correlation functions (red
lines) generally provide a better fit to the data, bringing the small-scale cluster-
ing down considerably in comparison with the original G13 and SMF-only (blue
lines) models, which are very close together. This effect is larger for low stellar
masses, where the clustering discrepancy between the old model and the data was
larger as well. The much improved match to observations indicate that the model
retains enough freedom to match the clustering data. Note that the match to the
projected galaxy correlation function for galaxies in the first mass bin is greatly
improved as well, even though this data is not used to constrain the model. For the
highest-mass galaxies, 11.27 < log10(M∗/M)) < 11.77, all models perform equally
well, while for galaxies with masses above 1010.27M) the SMF-only correlation
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Figure 6.6: The stellar mass functions of the models. The green line again refers to the
original G13 model, of which the parameters were set manually. The blue lines show the results
when the MCMC algorithm is used with only the stellar mass function as a constraint, while
the red lines again show the result when clustering constraints are used additionally. When
the SMF is the only constraint, the model clearly has enough freedom to reproduce it to high
precision. However, the match grows somewhat worse at low mass when the model is additionally
constrained by clustering, and is in some places about 2σ away from the combined observational
constraints shown in black. Still, the SMF+w(rp) model performs better in matching both sets
of constraints simultaneously.

functions perform better on the smallest scales, due to the clustering estimator
overestimating the small-scale clustering.

However, the improved match to the observed clustering data (at least for low-
mass galaxies) comes at a price. In Figure 6.6, we show how the models compare to
the SMF data used to constrain the models. The black points with error bars are
derived by combining several observational data sets (see G13). The original G13
model, in which the parameters were set by hand, is again shown as a green dotted
line, which matches the data well. When we use only the SMF as a constraint for
the galaxy formation model, shown in blue, we obtain a marginally better fit to
the data at low mass.

When the projected galaxy correlation function is used as an additional con-
straint, shown in red, the agreement with the stellar mass function suffers consid-
erably in favour of the clustering predictions. While the agreement for galaxies
with masses M∗ ! 1010.5M) is still comparable to that obtained by G13, the
new model over-predicts the number densities of lower-mass galaxies, although
the results are still within 2σ of the data. Note that the sample results (dashed
lines) agree perfectly with the full catalogue ones (dotted lines) for both SMF-only

132



6.3.1 Comparison with observations

Figure 6.7: Comparison of the galaxy distribution profiles for the SMF-only (solid lines) and
SMF+w(rp) (dashed lines) best-fit parameters. The different panels show the profiles of galaxies
in the six correlation function mass bins, as indicated in the top right of each panel. As in
Figure 6.1, different colours are used for different halo mass bins, which are set to be the same
for both models to allow for an unbiased comparison. Note that the mass bins do change as a
function of stellar mass in order to make sure each bin in halo mass is roughly equally populated.
For clarity, we show only the fits to the measured profiles (see equation 6.12) here, but stress
that each provides an excellent fit over the full range shown here. Note that the dynamic range
in scales has been extended relative to Figure 6.1 to better appreciate the differences between
the profiles. Mainly because of the reduced dynamical friction time scale in the latter model, the
profiles of galaxies in every mass bin are slightly flatter at any halo mass, reducing the correlation
function on small scales.
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and SMF+w(rp), which indicates that the discrepancy observed for the correlation
function is indeed due to the inaccuracy of the estimator at small separations.

The slight mismatch for low-mass galaxies could indicate that the SAM is
missing some physical ingredient needed in order to reproduce observations, but
other viable explanations also exist. For both the clustering and SMF data the
uncertainties may be underestimated; for example, the error bars on the correla-
tion function do not take into account cosmic variance, which could have a quite
significant effect. If the observed correlation functions are biased low because of
this, the clustering in our model may have been brought artificially low, prevent-
ing us from matching the SMF simultaneously. Another possible source of errors
could be systematic uncertainties in the observations that lead to samples that
are not volume limited. Additionally, changing the cosmology to one that is more
up-to-date may help. We will explore some of these possibilities in future work.
Note, however, that the SMF+w(rp) model is in far closer agreement with both
the SMF and the clustering data simultaneously than both the original G13 and
the SMF-only models: while the latter models are in strong disagreement with
the clustering data for low-mass galaxies on small scales, the SMF+w(rp) model
is generally in agreement with both the low-mass clustering data and the SMF
within 2σ. This shows the merit of using a clustering estimator while exploring
parameter space.

6.3.2 Change in parameters

Even though we vary 17 galaxy formation parameters, by far the largest role in
bringing the clustering predictions in agreement with observations is played by
only two of these: αfriction, which controls the time it takes for satellite galaxies
to merge with the central once their dark matter subhalo has been disrupted, and
γ, which controls the time it takes for ejected gas to re-enter the halo.

The way these parameters influence the clustering and stellar mass function
predictions is as follows. When the clustering data is included as an additional
constraint, the dynamical friction time scale of orphan galaxies decreases by more
than a factor of three with respect to the SMF-only results. This causes galaxies at
small separation scales to merge with their centrals much quicker, flattening the
galaxy distribution profile within the haloes and greatly decreasing the amount
of clustering on small scales, especially for low-mass satellites. This change in
the galaxy distribution profiles from the SMF-only to the SMF+w(rp) model is
shown in Figure 6.7. The halo mass bins are set to be the same for both models
to allow for an unbiased comparison. Note that the mass bins do change as a
function of stellar mass in order to make sure each bin in halo mass is roughly
equally populated. Although we only show the fits to the measured profiles here,
we stress that each provides an excellent fit to the data, over the full range in scales
shown here. The change in slope of the profiles is relatively small, meaning that
the galaxy distributions are still consistent with SDSS data for rich clusters (see
Figure 14 of Guo et al., 2011). This is because even though the friction time scale
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Constraining galaxy formation through clustering

decreases by more than a factor of three when using clustering as an additional
constraint, the number of type 2 galaxies at z = 0 decreases only by a factor 0.87,
as the merging time scale for many of these galaxies is still long compared to the
Hubble time.

Additionally, however, the decrease in the dynamical friction time scale causes
the number density of galaxies above the knee (M∗ > 1010.5M)) to decrease as
well. This counter-intuitive change in the SMF comes about because the cold gas
in the merging satellites directly feeds the supermassive black holes in the centres
of the central galaxies, increasing feedback from AGN and thereby the suppression
of star formation.

The γ parameter, on the other hand, increases by more than a factor of five in
SMF+w(rp) with respect to SMF-only, meaning that the hot gas reincorporation
time scale decreases by the same factor. This raises the number densities of galaxies
at any mass, but most significantly below the knee of the SMF (M∗ < 1010.5M)).
The change in γ is the main source of the higher low-mass number densities from
SMF-only to SMF+w(rp). The upside is that this parameter shift also lowers the
clustering of galaxies, especially for galaxies with masses M∗ > 109.77M). While
it may seem counter-intuitive to have the number of galaxies at some mass increase
while their clustering decreases, keep in mind that it is the (normalised) galaxy
distribution within each halo that is driving the clustering prediction, and this
distribution flattens when the aforementioned time scales decrease.

The parameter changes in γ and αfriction alone, with respect to the best-fit
parameters of the SMF-only data, already produce predictions that are very close
to those of the SMF+w(rp) model. While the decrease in the dynamical friction
and reincorporation time scales each bring the clustering into better agreement
with data separately, a change in both simultaneously is needed as they affect the
SMF in different (adverse) ways.

We show the shift in parameter values in Figure 6.8. We again indicate the
results for all three models: the original G13 model (green dotted lines), the
SMF-only model (blue lines), and the SMF+w(rp) model (red lines). Histograms
indicate the Bayesian likelihood regions as derived from the full MCMC chains,
while the vertical dashed lines indicate the best-fit values. Both the likelihood
regions and the best-fit values of the SMF-only and SMF+w(rp) models are gen-
erally consistent. The largest exceptions to these are the star formation efficiency
αSF, the cold gas mass star formation threshold M̃crit, the metal yield y, and
the previously mentioned reincorporation scale factor γ and dynamical friction
scale factor αfriction. The latter two cause the main decrease in the clustering
predictions, needed to bring them in agreement with observations. The significant
increase in the star formation efficiency and the decrease in the cold gas mass
threshold for star formation, on the other hand, mainly affect the SMF, compen-
sating for the decrease in high-mass galaxies due to the more active AGN, caused
in turn by the change in αfriction. Finally, the large change in the metal yield is
of little consequence, as this parameter is largely unconstrained by both the SMF
and correlation functions.

136



6.4 Summary

Figure 6.9: The effect of the changes in the supernova parameters ε, Vreheat, β1, η, Veject and
β2. The mass-loading factor (left panel) goes up slightly when using the correlation function as
an additional constraint, but the change is not significant with respect to the 2σ regions allowed
(also shown). The same goes for the supernova ejection efficiency (right panel).

To show the effect of the changes in the feedback parameters (ε, Vreheat, β1,
η, Veject and β2), we turn to Figure 6.9. In the left-hand panel, we show the
SN mass loading as a function of the maximum virial velocity of the halo, for all
three models. We also indicate the 2σ regions allowed by the parameters for the
SMF+w(rp) model. It is clear that while the supernova mass loading increases
when the clustering data is used as an additional constraint, the change is not
significant.

The right-hand panel of Figure 6.9 shows how the SN ejection efficiency changes
between the different models. Because the parameter η is significantly higher in the
SMF+w(rp) model with regards to the others, the high-Vmax horizontal asymptote
of this function is increased, meaning SNe are more effective at ejecting material
for galaxies occupying massive haloes. However, the large 2σ regions again indicate
that the constraints used here are not very sensitive to these changes.

6.4 Summary

We have developed a fast and accurate clustering estimator, capable of predicting
the projected galaxy correlation function for a full galaxy catalogue to within
∼ 10% accuracy using only a very small subsample of haloes (< 0.1% of the total
sample). In this work, we have described our estimator and demonstrated its
effectiveness for use in constraining parameter space for semi-analytical models of
galaxy formation, using the Guo et al. (2013) version of the Munich SAM as a test
case.

Our estimator determines the halo occupation distribution of galaxies in the
subsample and fits a profile to the galaxy distribution within haloes as a function of
halo mass, using these quantities in a halo model based approach to determine the
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galaxy clustering of the full sample. By being able to quickly predict the two-point
galaxy correlation function for the first time while exploring parameter space, one
can use clustering observations to limit the range allowed to the galaxy formation
parameters of any SAM, adding constraints complementary to those of one-point
functions typically used today, such as the stellar mass or luminosity function. As
we have demonstrated, this may lead to different sets of parameters through which
the resulting model is able to provide a better match to the observed stellar mass
and correlation functions simultaneously.

For the G13 model tested here, the improved match to the correlation function
is achieved mainly by significantly decreasing the time it takes for stripped (or-
phan) satellites galaxies to merge with their centrals, as well as the time it takes
for gas ejected into the hot halo by feedback processes to be reincorporated. Both
changes cause the galaxy distribution profiles within haloes to flatten, lowering
the clustering on small scales. Other parameter shifts mainly serve to keep the
changes in the SMF caused by the reduced time scales in check.

While the use of the clustering estimator presented here clearly has merit,
some issues remain to be solved. The estimator tends to over-predict clustering on
small scales, leading to final results that tend to fall ∼ 10% below the observational
constraints. Improving the model, for example by adding higher-order terms to
the linear halo bias currently used, or basing the clustering predictions of galaxies
directly on the measured clustering of the haloes in N-body simulations may help.
Additionally, the agreement with the SMF could be improved at low mass. We
will explore these topics in future work.
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