

Based on "Astronomical Optics" by Daniel J. Schroeder, "Principles of
Optics" by Max Born \& Emil Wolf, the "Optical Engineer's Desk
Reference" by William L. Wolfe, Lena book, and Wikipedia

(Astronomical Observing Techniques) Astronomische Waarneemtechnieken

Fermat's principle states that the OPL is the shortest distance $a \rightarrow b$ u xapu! fo mn!paw ayt u! +46!! fo paads aut s! 1 aıaym

Equivalently: travel time \Leftrightarrow optical path length (OPL)
$\left(\kappa^{\prime} x\right)$

Consider two points, a and b, and various paths between them. The
Preface: Fermat's Principle
The speed of an optical system is described by the numerical
aperture NA and the Fnumber, where:
Generally, fast optics (large NA has a high light power, is compact,
has low tolerances and is difficult to manufacture.
(small NA is just the opposite.

\[

\]

- coma, astigmatism, ...
- difference [parabola - sphere] - field curvature However, the practically useable FOV of a telescope is
much smaller and limited by aberrations: adoosaja D fo ma! fo pla!f for aul

[^0]Aberrations

ϕ is the wave aberration
Θ is the angle in the pupil plane
ρ is the radius in the pupil plane
$\xi=\rho \sin \Theta ; \eta=\rho \cos \Theta$

$$
\text { Spherical Aberration }
$$

Rays further from the optical axis have a different focal point than
rays closer to the optical axis:
The depth of focus usually refers to an optical path difference of $\kappa / 4$.

The amount of defocus can be characterized by the depth of focus:

Defocus

Θ is the angle in the pupil plane
ρ is the radius in the pupil plane
ϕ is the wave aberration
Θ is the angle in the pup
Side note: the HST mirror

suaj aut of dasop a60mi ud
tangential plane than for the plane normal to it (sagittal plane) and form

 MS!+DM6!+SV

[^1]Distortion (2)

transversal magnification depends on the distance from the optical axis. Straight lines on the sky become curved lines in the focal plane. The Distortion (1)

	$\left\lvert\, \begin{aligned} & \text { 亳 } \\ & \text { of } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$			－		
		－	－	－	＊	管䍚
		\cdots	\because	\％	\％	咅旁
		\because	\＃	T	＊	量
		！•			¢	离妥
$\stackrel{i}{*}^{2}$	\％	$\frac{1}{0}$	$\frac{1}{0}$	${ }_{0}^{2}$	${ }_{5}^{+}$	
$\begin{array}{\|l} \stackrel{8}{3} \\ \stackrel{\rightharpoonup}{9} \end{array}$	$\stackrel{2}{6}$	$\stackrel{2}{0}$	$\stackrel{2}{0}$	2	$\stackrel{8}{\square}$	

Summary：Primary Wave Aberrations
2. Fermat's view: "A wavefront is a surface on which every point has
the same OPD."
E. Huygens' view: "At a given time, each point on primary wavefront
acts as a source of secondary spherical wavelets. These propagate
with the same speed and frequency as the primary wave." ald! ou!ud ןausad」-sua6人nH

-
For Fraunhofer diffraction at infinity (far-field) the wave becomes
planar. shape for different distances.
When a wave passes through an aperture and diffracts in the near
field it causes the observed diffraction pattern to differ in size and Fresnel diffraction $=$ near-field diffraction uo!+כDdft! 0 dafoyundat pux pusad」

$V\left(\Theta_{0}\right), V\left(\Theta_{1}\right):$ complex field amplitudes of points in object and image plane
$K\left(\Theta_{0} ; \Theta_{1}\right)$ "transmission" of the system бu!лa+!!」 pud 6u!бbmi

Theorem: When a screen is illuminated by a source at
infinity, the amplitude of the field diffracted in any
direction is the Fourier transform of the pupil function
characterizing the screen A.
Mathematically, the amplitude of the diffracted field can be expressed as
(see Lena book pp. 120ff for details): $\quad V_{1}\left(\theta_{1}, t\right)=\lambda \sqrt{\frac{E}{A}} \iint_{\text {screen } A} G\left(\frac{r}{\lambda}\right) e^{-i 2 \pi\left(\theta_{1}-\theta_{0}\right) \cdot \frac{r}{\lambda}} \frac{d r}{\lambda^{2}}$

Consider a circular pupil function $G(r)$ of unity within A and zero outside Fraunhofer Diffraction at a Pupil

（コSd）NOILONกョ avヨyds INIOd

$\left.\begin{array}{l}\text { Point Spread Function (3) } \\ \text { Most "real" telescopes have a central obscuration, which modifies our } \\ \text { simplistic pupil function } G(r)=\Pi\left(r / 2 r_{0}\right) \\ \text { The resulting PSF can be described by a modified function: } \\ \qquad I_{1}(\theta)=\frac{1}{\left(1-\varepsilon^{2}\right)^{2}}\left(\frac{2 J_{1}\left(2 \pi r_{0} \theta / \lambda\right)}{2 \pi r_{0} \theta / \lambda}-\varepsilon^{2} \frac{2 J_{1}\left(2 \pi r_{0} \varepsilon \theta / \lambda\right)}{2 \pi}\right)^{2} r_{0} \varepsilon \theta / \lambda\end{array}\right)$.
$\%$ IO 0-ז'0 ~ yS D sDy ado

$$
S R=e^{-k^{2} \omega^{2}} \approx 1-k^{2} \omega^{2}
$$

Using the wave number $k=2 \pi / \Lambda$ and the RMS wavefront error ω one
can calculate that:
point source seen with a perfect imaging system working at the
diffraction limit.
The Strehl ratio (SR) is the ratio of the observed peak intensity of
the PSF compared to the theoretical maximum peak intensity of a Strehl ratio.
A convenient measure to assess the quality of an optical system is the Strehl Ratio

Note that the EE depends strongly on the central obscuration ε of the

The fraction of the total PSF intensity within a certain radius is
given by the encircled energy (EE): Q: What is the maximum concentration of light within a small area?
Encircled Energy ring starting at innermost ring.

[^0]: optics.
 Generally, aberrations are departures of the performance
 of an optical system from the predictions of paraxial

[^1]:

