 A complete sphere $=4 \pi \mathrm{sr}$. from that point.
In three dimensions, the solid angle in
steradians is the area it cuts out:
$\Omega=$ (surface area S) / (radius of the sphere r)
One steradian is the solid angle at the center of a
sphere of radius r under which a surface of area r^{2} is seen. It is a measure of how large that object appears to an observer looking
from that point. [p!!os dof
 Wikipedia: The solid angle Ω is the 2 D angle in 3 D space that an object Preface: Definition of the Angle
$\begin{aligned} & \text { Babylonians: } \\ & \text { Better measure: } \quad \begin{array}{l}\text { one degree }=1 / 360^{\text {th }} \text { of a full circle }\end{array} \\ & =\text { (arc length } s) / \text { (radius of the circle } r \text {) in radian }\end{aligned}$ $2^{\text {nd }}$ Lecture: 15 September 2010 (Astronomical Observing Techniques) иวуว!ичวаншววилррМ ачวs!moиouts
The radiance L or intensity I is the spectral radiance integrated
over all frequencies or wavelengths. Units are $\left[\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1}\right]$. The spectral radiance L_{ν} or specific intensity I_{v} is the power leaving a
unit projected area $\left[\mathrm{m}^{2}\right]$ into a unit solid angle [sr] and unit frequency
interval $[\mathrm{Hz}]$.
It is measured in units of $\left[\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}\right]$ in frequency space L_{v} or
$\left[\mathrm{W} \mathrm{m}^{-3} \mathrm{sr}^{-1}\right]$ in wavelength space L_{1}. I R+!SUa+UI do 7 asuD!pDy $:$ (I) uo!ss!ug

See also
with $h=$ Planck's constant [6.626-10-34 Js]
Photon energy: $E_{p h}=h \nu=\frac{h c}{\lambda}$
transported by electromagnetic radiation.
Radiometry = the physical quantities associated with the energy

1. Radiometry

$$
\begin{aligned}
& \text { Example, a source of radius } R \text { (e.g., a star) has: } \\
& \qquad \begin{array}{c}
\Phi=4 \pi R^{2} M=4 \pi^{2} R^{2} L \\
M=\pi L
\end{array}
\end{aligned}
$$

Units are [W] or [erg s s^{-1}]
It is the power emitted by the entire source.

Emission (3): Flux Φ and Luminosity L

The radiant exitance M is the integral of the radiance over
the solid angle Ω.
It measures the total power emitted per unit surface area.
Units are [W m

-2 $]$.
For Lambertian sources (see below) we get:
$M=\int L \cos \theta d \Omega=2 \pi L \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta=\pi L$

$$
\begin{aligned}
& \text { The flux } \Phi \text { or luminosity } L \text { emitted by the source is the product of } \\
& \text { radiant exitance and total surface area of the source. }
\end{aligned}
$$

where θ is the half angle of the right cone.

For a circular aperture: $\Omega=4 \pi \sin ^{2}\left(\frac{\theta}{2}\right)$

 - $10 \dashv$ д4t
We assume that the entire source of radius R (or area πR^{2}) lies within

(i) FOV and (ii) distance r. a signal that can be observed depends on

The relevant area of the source, which produces
view (FOV).
from a limited range of directions, determined by
A detector system usually accepts radiation only
The Field of View (FOV)

$$
\begin{aligned}
& \text { The irradiance } E \text { is the power received at a unit surface element from } \\
& \text { the source. }
\end{aligned}
$$

$$
\text { Units are }\left[\mathrm{W} \mathrm{~m}^{-2}\right] .
$$

To compute E:

$$
\text { 1. multiply } M(=\pi \cdot L) \text { by surface area } A \text { of the source to get flux } \Phi \text {. }
$$

$$
\text { 2. divide flux } \Phi \text { by the area of a sphere of radius } r \text {. }
$$

$$
\text { That yields: } \quad E=\frac{A L}{4 r^{2}}
$$

$$
\begin{aligned}
& \text { Reception (2): the Flux Density } F_{v} \\
& \text { The spectral irradiance } E_{v} \text { or flux density } F_{v} \text { is the irradiance per } \\
& \text { unit frequency or wavelength interval: } \\
& \qquad F_{v}=\frac{A L_{v}}{4 r^{2}} \\
& \text { Units are }\left[W \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}\right] \text { in frequency space or }
\end{aligned}
$$

Xułamoab aبt fo Kfuadoud $D \mathrm{Zp}$ 'apunos ayt fo Ktuadoud s! $7:$:afoN

where $d Z$ is the differential throughput. $Z P_{T}=\Phi p$
surface to another in vacuum:

$$
d \Phi=L \frac{d A_{1} \cos \theta_{1} d A_{2} \cos \theta_{2}}{\rho^{2}}
$$

where:
L-net radiance $(1 \Leftrightarrow 2)$
$A_{1,2}$ areas
$\rho-$ line of sight distance
$\theta_{1,2}-$ angles between surface normal and line of sight
Using the definition of the solid angle $d \Omega_{12}=\frac{d A_{1} \cos \theta_{1}}{\rho^{2}}$ one can show that
Fundamental equation to describe the transfer of radiation from one

N 0 0 0 0 2 0

Name	Definition	Units	Equation	Alternate name	Alternate symbol
Spectral radiance (frequency units)	Power leaving unit projected surface area into unit solid angle and unit frequency interval	W m ${ }^{-2} \mathrm{~Hz}^{-1}$ ster ${ }^{-1}$		Specific intensity (frequency units)	\boldsymbol{I}
Spectral radiance (wavelength units)	Power leaving unit projected surface area into unit solid angle and unit wavelength interval	W m ${ }^{-3} \operatorname{ster}^{-1}$		Specific intensity (wavelength units)	I,
Radiance	Spectral radiance integrated over frequency or wavelength	W m ${ }^{-2} \operatorname{ster}^{-1}$	$\boldsymbol{L}=\int \boldsymbol{L}_{4} d y$	Intensity or specific intensity	1
Radiant exitance	Power emitted per unit sufface area	$\mathrm{W} \mathrm{m}^{-2}$	$M=\int L(\theta) d \Omega$		
Flux	Total power emitted by source of area A	W	$\Phi=j M d A$	Luminosity	L
Irradiance	Power received at unit surface element; equation applies well removed from the source at distance r	W m ${ }^{-2}$	$E=\frac{\int M d A}{\left(4 \pi r^{2}\right)}$		
Spectral irradiance	Power received at unit surface element per unit frequency or wavelength interval	$\begin{aligned} & \mathrm{W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}, \\ & \mathrm{~W} \mathrm{~m}^{-3} \end{aligned}$		Flux density	$\begin{aligned} & S_{,}, S^{\prime} \\ & \mathbf{F}_{\mathbf{v}}, \mathbf{F}_{\lambda} \end{aligned}$

sa!!!+upnð ग!utamo!ppy fo Rubumns

$$
\begin{aligned}
& \text { The total radiated power per unit surface is proportional to the } \\
& \text { fourth power of the temperature: } \iint_{\Omega} \int_{V}(T) d v d \Omega=\sigma T^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { At high frequencies (} \mathrm{h} v \gg \mathrm{kT} \text {) we get Wien's law: } \\
& \qquad I_{v}(T)=\frac{2 h v^{3}}{c^{2}} \exp \left(-\frac{h v}{k T}\right) \\
& \text { At low frequencies (} \mathrm{hv} \text { << } \mathrm{kT} \text {) we get Rayleigh-Jeans' law: }
\end{aligned}
$$

A radiator with $\varepsilon=\varepsilon(\Lambda)<\sim 1$ is often called a grey body

\rightarrow
Consider a cavity in thermal equilibrium with completely opaque sides:

Conservation of power requires that

Kirchhoff's Law

When referring to surface brightness one uses mag／sr or mag／arcsec ${ }^{2}$ ．
Note：Magnitudes are units to describe unresolved（pointlike）objects．

$$
\begin{aligned}
& \text { :0วanos D fo (} \mathrm{Y} \text {) } \mathrm{f} \text { 人 } \mathrm{t} \text { ! suap } \\
& \text { (Apparent) magnitude }=\text { relative measure of the monochromatic flux }
\end{aligned}
$$

a $1^{\text {st }}$ mag star is 100 times brighter than a $6^{\text {th }}$ mag star．
Later formalized by Pogson（1856）：
to their visual brightness．The brightest stars were $m=1$ ，the faintest
detected with the bare eye were $m=6$ ． This system has its origins in the Greek classification of stars according SOP円f．UGDW＇t
Assuming BB radiation，astronomers often describe the emission from
objects via their effective temperature．
1.000
ective temperature［K］
> given by：

> The temperature corresponding to the maximum specific intensity is

$$
v_{\max }
$$

emission (effective temperatures) at
${ }^{\text {xeu }}{ }_{A}$

$$
\frac{c}{v_{\max }} T=5.096 \cdot 10^{-3} \mathrm{mK} \text { or }
$$

$$
\begin{aligned}
& \text { longer wavelengths and at lower } \\
& \text { intensities: }
\end{aligned}
$$

$$
\lambda_{\max } T=2.98 \cdot 10^{-3} \mathrm{mK}
$$

$$
\begin{aligned}
& \text { Hence, cooler BBs have their peak }
\end{aligned}
$$

Standard Photometry					
Name	$\lambda_{0}[\mu \mathrm{~m}]$	$\Delta \lambda_{0}[\mu \mathrm{~m}]$	$\mathrm{F}_{\lambda}\left[\mathrm{W} \mathrm{m}^{-2} \mu \mathrm{~m}^{-1}\right]$	$\mathrm{F}_{\mathrm{v}}[\mathrm{Jy}]$	
U	0.36	0.068	4.35×10^{-8}	1880	Ultraviolet
B	0.44	0.098	7.20×10^{-8}	4650	Blue
V	0.55	0.089	3.92×10^{-8}	3950	Visible
R	0.70	0.22	1.76×10^{-8}	2870	Red
I	0.90	0.24	8.3×10^{-9}	2240	Infrared
J	1.25	0.30	3.4×10^{-9}	1770	Infrared
H	1.65	0.35	7×10^{-10}	636	Infrared
K	2.20	0.40	3.9×10^{-10}	629	Infrared
L	3.40	0.55	8.1×10^{-11}	312	Infrared
M	5.0	0.3	2.2×10^{-11}	183	Infrared
N	10.2	5	1.23×10^{-12}	43	Infrared
Q	21.0	8	6.8×10^{-14}	10	Infrared

In practice, measurements are done through a transmission filter $\dagger_{0}(\Lambda)$ Photometric Systems
$B-V=-0.46$

- The color indices of an $A O$ dwarf star are about zero longward of V Color indices = difference of magnitudes at different wavebands =
ratio of fluxes at different wavelengths.
Important:

> Including a term A for interstellar absorption we get:
Absolute magnitude $=$ apparent magnitude of the source if it were at a
distance of $D=10$ parsecs. Absolute Magnitude and Color Indices

Bolometric magnitude $=$ integral of the monochromatic flux over all
wavelengths: $\quad m_{\text {bol }}=-2.5 \log \frac{\int_{0}^{\infty} F(\lambda) d \lambda}{F_{\text {bol }}} \quad$ with $F_{\text {bol }}=2.52 \cdot 10^{-8} \mathrm{~W} /$
Bolometric Magnitude

$$
\begin{aligned}
& \text { Coherence (from Latin cohaerere = to be connected) of EM waves } \\
& \text { enables temporally and spatially constant interference. } \\
& \text { Best case of an uni-directional monochromatic wave (perfect laser): it } \\
& \text { is possible to define the relative phase at two arbitrary points along k. } \\
& \text { Worst case (in terms of coherence): black-body radiation. } \\
& \text { Two types of coherence: } \\
& \text { 1. spatial coherence } \rightarrow \text { image formation } \\
& \text { 2. temporal coherence } \rightarrow \text { spectral analysis } \\
& \text { First we consider the wave aspect of light... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Degree of Coherence } \\
& \text { Consider a complex field } \mathrm{V}(t) \text { as a stationary random process with } \\
& \text { power spectrum } \mathrm{S}(\mathrm{v}) \text { and time average }\langle\mathrm{V}(t)\rangle=0 \text {. } \\
& \text { Measure the fields at any two points in space } \mathrm{V}_{1}(t) \text { and } \mathrm{V}_{2}(t) \text {. The } \\
& \text { cross correlation between these measurements is given by } \\
& \qquad \Gamma_{12}(\tau)=\left\langle V_{1}(t) V_{2}^{*}(t+\tau)\right\rangle \\
& \text { whereas the mean intensity at point } 1 \text { can be described by } \\
& \qquad \Gamma_{11}(0)=\left\langle V_{1}(t) V_{1}^{*}(t)\right\rangle \\
& \text { The (mutual) degree of coherence can then be defined as: } \\
& \qquad \gamma_{12}(\tau)=\frac{\Gamma_{12}(\tau)}{\left[\Gamma_{11}(0) \Gamma_{22}(0)\right]^{1 / 2}} \\
& \text { Note that } \left.\mathrm{v}_{12} \text { includes both spatial (points 1,2) and temporal (} \tau\right) \\
& \text { coherence. }
\end{aligned}
$$

Quasi-Monochromatic Radiation

ω - \rightarrow R.J. Glauber, Nobel Prize 2005 - Experimentally known as Hanbury-Brown and Twiss effect (\rightarrow intensity interferometer) principle, fermions show the opposite effect) - Quantum mechanics (wave effect): a property of all bosons (due to the Pauli exclusion - Classical view: non-interacting particles should arrive independently of one another - Statistical tendency for multiple photons to arrive simultaneously
Photon Statistics (2): Bose-Einstein

Photon Statistics (3):
Gu!young

Three Types of Polarized Waves

We also define $\Phi=\Phi_{2}-\Phi_{1}$

$E_{x}=a_{1} \cos \left(2 \pi \nu t-k \cdot r+\phi_{1}\right)$
$E_{y}=a_{2} \cos \left(2 \pi \nu t-k \cdot r+\phi_{2}\right)$

The wave vectors of the electric field are given by:

