(Astronomical Observing Techniques) Astronomische Waarneemtechnieken

Preface: **Definition of the Angle**

Better measure: Babylonians one degree = $1/360^{\text{th}}$ of a full circle Θ = (arc length s) / (radius of the circle r) in radian

for solid]. subtends at a point (the 2D analogon to a linear angle) [stereos = Greek wikipedia: The solid angle Ω is the 2D angle in 3D space that an object

from that point It is a measure of how large that object appears to an observer looking

N

 Ω = (surface area S) / (radius of the sphere r) steradians is the area it cuts out: In three dimensions, the solid angle in

sphere of radius r under which a surface of area r² is seen. One steradian is the solid angle at the center of a

A complete sphere = 4π sr. 1 sr = (180deg/ π)² = 3282.80635 deg².

the solid angle Ω . The radiant exitance M is the integral of the radiance over

Units are [W m⁻²]. It measures the total power emitted per unit surface area.

= solid angle

For Lambertian sources (see below) we get:

For Lambertian Sources (see below) we get:

$$M = \int L\cos\theta d\Omega = 2\pi L \int_{0}^{\pi/2} \sin\theta \cos\theta d\theta = \pi L$$

Emission (3): Flux **T** and Luminosity L

radiant exitance and total surface area of the source. It is the power emitted by the *entire* source The flux Φ or luminosity L emitted by the source is the product of

Units are [W] or [erg s⁻¹]

Example, a source of radius R (e.g., a star) has:

$$\Phi = 4\pi R^2 M = 4\pi^2 R^2 L$$

$$\uparrow_{M = \pi L}$$

the geometry of the optical system, the field of from a limited range of directions, determined by A detector system usually accepts radiation only The Field of View (FOV)

where Θ is the half angle of the right cone.

Reception (1): the Irradiance m

the source. The irradiance E is the power received at a unit surface element from

Units are [W m⁻²].

10 compute E

- <u>--</u> multiply M (= π ·L) by surface area A of the source to get flux Φ .
- N divide flux Φ by the area of a sphere of radius r.

That yields: E = $4r^{2}$ AL

Reception (2): the Flux Density F_{ν}

unit frequency or wavelength interval: The spectral irradiance E_v or flux density F_v is the irradiance per

$$=\frac{AL_{\nu}}{4r^2}$$

 F_{v}

Units are

[W m⁻² Hz⁻¹] in frequency space or [W m⁻³] in wavelength space.

Note: 10^{-26} W m⁻²Hz⁻¹ = 10⁻²³ erg s⁻¹cm⁻²Hz⁻¹ is also called 1 Jansky,

named after US radio astronomer Karl Guthe Jansky.

Summary of Radiometric Quantities

					Alternate	Alternate
Symbol	Name	Definition	Units	Equation	name	symbol
Le	Spectral	Power leaving unit projected	$\mathrm{W}\mathrm{m}^{-2}\mathrm{Hz}^{-1}\mathrm{ster}^{-1}$		Specific	I_{v}
	radiance	surface area into unit solid angle			intensity	
	(frequency units)	and unit frequency interval			(frequency units)	
L_{λ}	Spectral	Power leaving unit projected	W m ⁻³ ster ⁻¹		Specific	I_{λ}
	radiance	surface area into unit solid angle			intensity	
	(wavelength units)	and unit wavelength interval			(wavelength units)	
L	Radiance	Spectral radiance integrated	W m ⁻² ster ⁻¹	$L = \int L_v dv$	Intensity or	1
		over frequency or wavelength			specific intensity	
М	Radiant	Power emitted per unit	$W m^{-2}$	$M = \int L(\theta) d\Omega$		
	exitance	surface area				
Φ	Flux	Total power emitted by	W	$\Phi = \int M dA$	Luminosity	L
		source of area A				
E	Irradiance	Power received at unit	W m ⁻²	$E = \int M dA$		
		surface element; equation		$(4\pi r^2)$		
		applies well removed				
		from the source at distance r				
E_{ν}, E_{λ}	Spectral	Power received at unit	$W m^{-2} Hz^{-1}$,		Flux density	S _v . S _z
	irradiance	surface element per unit	W m ⁻³			$\mathbb{F}_{\mathbf{v}},\mathbb{F}_{\lambda}$
		frequency or wavelength				
		interval				

2. Radiative Transfer

surface to another in vacuum: Fundamental equation to describe the transfer of radiation from one

Using the definition of the solid angle $d\Omega_{12} = \frac{dA_1 \cos \theta_1}{2}$ ρ_{2} one can show that

$$d\Phi = LdZ$$

where dZ is the differential throughput.

dZ is also called the étendue (extent, size) or the A- Ω product Note: L is property of the source, dZ a property of the geometry.

Lambertian Emitters

The radiance of Lambertian emitters is independent of the direction

Max Planck, Nobel Prize 1918

Note for the conversion of frequency \Leftrightarrow wavelength:

 $dv = \frac{c}{\lambda^2} d\lambda$ or

 $d\lambda = \frac{c}{\nu^2} d\nu$

Consider a cavity in thermal equilibrium with completely opaque sides: With α = absorptivity, ρ = reflectivity, and τ = transmissivity Conservation of power requires that: A radiator with $\varepsilon = \varepsilon(\lambda) < 1$ is often called a grey body Polarization filter Center of Curvature Spherical Mirror Spectral filter Septum Isothermal Enclosure Useful Approximations Kirchhoff's Law $\alpha + \rho + \tau = 1$ $\rho = 1 - \rho$ $\alpha + \rho + \tau = 1$ $\tau = 0$ $\mathcal{Q} = \mathcal{E}$ applies to a perfect black body This is Kirchhoff's law, which R

At high frequencies (hv>> kT) we get Wien's law:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \exp\left(-\frac{h\nu}{kT}\right)$$

A + |

$$V_{\nu}(T) \approx \frac{2\nu^2}{2}kT = \frac{2kT}{2}$$

 σ = 5.67·10⁻⁸ W m⁻² K⁻⁴ is the Stefan-Boltzmann constant.

fourth power of the temperature:

The total radiated power per unit surface is proportional to the

 $\int_{\Omega} \int_{V} I_{V}(T) d\nu d\Omega = \sigma T^{4}$

aw:

$$V_{\nu}(T) \approx \frac{2\nu^2}{2}kT = \frac{2kT}{2}$$

$$T(T) \approx \frac{2V^2}{kT} = \frac{2kT}{kT}$$

$$V_{\nu}(T) \approx \frac{2V^2}{c^2} kT = \frac{2kT}{\lambda^2}$$

(hv << kT) we get Rayleigh
$$2\nu^2 = 2kT$$

$$c \quad (\kappa I)$$

Black Body "Peak" Temperatures

The temperature corresponding to the maximum specific intensity is

The constant q₀ defines magnitude zero

Note: Magnitudes are units to describe unresolved (pointlike) objects. When referring to surface brightness one uses mag/sr or mag/arcsec².

σ
Ť
O
-+
0
Ť
3
Ξ
-2
2.
• •
S
S
N
-+
\mathbf{O}
-
3
5

that defines a finite bandwidth: In practice, measurements are done through a transmission filter $t_0(\Lambda)$

$$m_{\lambda_0} = -2.5 \log \int_{0}^{\infty} t_0(\lambda) F(\lambda) d\lambda + 2.5 \log \int_{0}^{\infty} t_0(\lambda) d\lambda + q_{\lambda_0}$$

 λ_0'

 $T(\lambda)$

Δl

photometric systems: As filters differ there are many different

- Johnson UBV system
- Gunn griz USNO
- SDSS
- 2MASS JHK
- HST filter system (STMAG)
- AB magnitude system
- m(AB) = -2.5 log(F,[W/cm²/Hz]) 48.60

2	۶
Photometric System	Reference
AAO	Allen & Cragg (1983) Elias et al. (1983)
ARNICA	Hunt et al. (1988)
Bessell & Brett	Bessell & Brett (1988)
CIT	Elias et al. (1982) Elias et al. (1983)
ESO	van der Bliek et al. (1996)
Koornneef	Koornneef (1983)
LCO	Persson et al. (1998)
MKO	UKIRT web site (2002)
MSSSO	McGregor (1994)
SAAO	Carter (1990) Carter & Meadows (1995)
UKIRT	Hawarden et al. (2001)

Standard Photometry

$\lambda_0 \; [\mu { m m}]$	$\Delta\lambda_0 \; [\mu m]$	$F_{\lambda}~[W~m^{-2}~\mu m^{-1}]$	F_{v} [Jy]	
0.36	0.068	4.35×10^{-8}	1880	Ultraviolet
0.44	0.098	7.20×10^{-8}	4650	Blue
0.55	0.089	3.92×10^{-8}	3 9 5 0	Visible
0.70	0.22	1.76×10^{-8}	2870	Red
0.90	0.24	8.3×10^{-9}	2240	Infrared
1.25	0.30	3.4×10^{-9}	1 770	Infrared
1.65	0.35	7×10^{-10}	636	Infrared
2.20	0.40	3.9×10^{-10}	629	Infrared
3.40	0.55	8.1×10^{-11}	312	Infrared
5.0	0.3	2.2×10^{-11}	183	Infrared
10.2	UT.	1.23×10^{-12}	43	Infrared
21.0	00	6.8×10^{-14}	10	Infrared
	$\lambda_0 \ [\mu m]$ 0.36 0.44 0.55 0.70 0.90 1.25 1.65 2.20 3.40 5.0 21.0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$

 $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$

Bolometric Magnitude

Bolometric magnitude = integral of the monochromatic flux over all

$$m_{bol} = -2.5 \log \frac{\int_{0}^{\infty} F(\lambda) d\lambda}{F_{bol}} \qquad \text{with } F_{bol} = 2.52 \cdot 10^{-8} \text{ W/m}^2$$

wavelengths:

If the source radiates isotropically one gets:

$$m_{bol} = -0.25 + 5 \log D - 2.5 \log \frac{L}{L_{\odot}}$$

where $L_0 = 3.827 \cdot 10^{26}$ W is the luminosity of the Sun.

Absolute Magnitude and Color Indices

distance of D = 10 parsecs. Absolute magnitude = apparent magnitude of the source if it were at a

Including a term A for interstellar absorption we get:

$$M = m + 5 - 5\log D - A$$

ratio of fluxes at different wavelengths Color indices = difference of magnitudes at different wavebands =

Important

٠ The color indices of an AO dwarf star are about zero longward of V.

The color indices of a blackbody in the Rayleigh-Jeans tail are: B-V = -0.46, U-B = -1.33, V-R = V-I = ... = V-N = 0.0

•

5. Coherence of Light

enables temporally and spatially constant interference. Coherence (from Latin *cohaerere* = to be connected) of EM waves

is possible to define the relative phase at two arbitrary points along **k**. Best case of an uni-directional monochromatic wave (perfect laser): it

Worst case (in terms of coherence): black-body radiation.

Two types of coherence:

- **!** spatial coherence → image formation
- N temporal coherence → spectral analysis

First we consider the <u>wave aspect of light</u>...

Degree of Coherence

power spectrum S(v) and time average $\langle V(t) \rangle = 0$. Consider a complex field V(t) as a stationary random process with

Measure the fields at any two points in space $V_1(t)$ and $V_2(t)$. The cross correlation between these measurements is given by

 $\Gamma_{12}(\tau) = \left\langle V_1(t) V_2^*(t+\tau) \right\rangle$

whereas the *mean* intensity at point 1 can be described by

 $\Gamma_{11}(0) = \left\langle V_1(t) V_1^*(t) \right\rangle$

The (mutual) degree of coherence can then be defined as:

Note that γ_{12} includes both spatial (points 1,2) and temporal (r)

 $\gamma_{12}(\tau) = \frac{1}{\left[\Gamma_{11}(0)\Gamma_{22}(0)\right]^{1/2}}$

 $\Gamma_{12}(au)$

coherence

Quasi-Monochromatic Radiation

temporal width r_c is: It can be shown that the relation between spectral width Δv and

 $\tau_c \Delta \nu \cong 1$

memory of its phase - the distance beyond which the waves **A** and The coherence length $l_{
m c}$ is the length over which the field retains the

λ+Δλ are out of step by λ: $l_c = c \tau_c = \frac{\lambda_0^2}{\Delta \lambda}$

For /-- ct_c it follows that: $\gamma_{12}(au) \sim \gamma_{12}(0) e^{-2i\pi v_0 au}$

and the coherence is determined by $y_{12}(0)$.

For purely monochromatic radiation, r is infinite.

Photon Statistics (1): Poissonian

Now we consider the particle aspect of light. There are several cases:

<u>--</u> distribution with variance and standard deviation σ : For any time *r* the number of photons *n* obeys a Poissonian

$$\left< \Delta n^2 \right> = \overline{n} \tau$$
 or $\sigma = \sqrt{\overline{n} \tau}$

Constant classical intensity and photon events following a Poissonian distribution

Time

Photon Statistics (2): **Bose-Einstein**

 $\dot{\mathbf{v}}$ the photon fluctuation is affected by the Bose-Einstein Quasi-monochromatic radiation (e.g., a spectral line) with finite coherence time $\tau_c \sim 1/\Delta \nu$ (where $\Delta \nu$ is the line width). If $\tau \mapsto \tau_c$

distribution:
$$f(E) = \frac{1}{Ae^{E/kT} - 1}$$

and the photon statistics is given as:

$$\left< \Delta n^2 \right> = \overline{n} \, \tau \left(1 + \frac{1}{e^{h\nu/kT} - 1} \right)$$

Photon Statistics (3): Bunching

- Statistical tendency for multiple photons to arrive simultaneously
- Classical view: non-interacting particles should arrive independently of one another
- principle, fermions show the opposite effect) Quantum mechanics (wave effect): a property of all bosons (due to the Pauli exclusion
- Experimentally known as Hanbury-Brown and Twiss effect (ointensity interferometer)
- $\bullet \rightarrow \text{R.J. Glauber}$, Nobel Prize 2005
- .ω significant when: Poissonian statistics but group together (bunching). This becomes For thermal radiation, if $\tau < \tau_c$, the photons will no longer obey

$$\frac{1}{2^{h\nu/kT}-1}$$

4 significant as degeneracy $\frac{1}{e^{hV/kT}-1}$ increases. For non-thermal radiation, if $r \rightarrow r_c$, the bunching becomes more

Classical intensity of a thermal source with a photon distribution that combines a Poisson process, Bose-Einstein distribution, and bunching.

The Stokes Parameter

Polarization can be defined by the four Stokes parameters I, Q, U, V (1852) as follows: <

$$I = a_1^2 + a_2^2$$

$$Q = a_1^2 - a_2^2 = I \cos 2\chi \cos 2\psi$$

$$U = 2a_1 a_2 \cos \phi = I \cos 2\chi \sin 2\psi$$

$$V = 2a_1 a_2 \sin \phi = I \sin 2\chi$$

Generally, the degree of polarization of a wave is:

$$\Pi = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$$

A plane wave has Π = 1 and the Stokes parameters are related as:

$$U^2 = Q^2 + U^2 + V^2$$

Examples

Polarizers can be used to filter out e.g., reflected light

