

Fermat's principle states that the OPL is the shortest distance $a \rightarrow b$ $\operatorname{spu} u \int_{q}^{\mathrm{p}}=\mathrm{TdO}$

$$
\frac{\mathfrak{q p}}{c \Omega} \cdot u=\not p \Lambda \cdot \frac{\Lambda}{\Lambda}=\not p \jmath=(\mathrm{TdO}) p
$$

Equivalently: travel time \Leftrightarrow optical path length (OPL)

Preface: Fermat's Principle

Generally, fast optics (large NA) has a high light power, is compact
has low tolerances and is difficult to manufacture. Slow optics
(small NA) is just the opposite.

:KDu fa! Mo :Kdu ןDu!budw :!!dnd $+!\times \exists$:!!dnd әวuDı+uヨ :do+s ppo!-

ray from an object point on the optical axis that passes at image of the aperture stop in the image space determines the field of view of the system. point on the object.
determines the diameter of the light cone from an axial
:dots auntuad \forall

suo!+Ddaวq甘 KDy pud andM uวamtaq uo!+Day
Generally, aberrations are departures of the performance of an
optical system from the predictions of paraxial optics.
Until photographic plates became available, only on-axis telescope
performance was relevant.
There are two categories of aberrations:

1. On-axis aberrations (defocus, spherical aberration)
2. Off-axis aberrations:
a) Aberrations that degrade the image: coma, astigmatism
b) Aberrations that alter the image position: distortion, field
curvature

Aberrations

ϕ is the wave aberration
Θ is the angle in the pupil plane
ρ is the radius in the pupil plane
$\xi=\rho \sin \Theta ; \eta=\rho \cos \Theta$

The depth of focus usually refers to an optical path difference of $\Lambda / 4$.

The amount of defocus can be characterized by the depth of focus:

"snoof fo tno " subam snoofar
Defocus

$y_{0}=$ position of the object in the field

$$
\begin{aligned}
& \phi \text { is the wave aberration } \\
& \Theta \text { is the angle in the pupil plane } \\
& \rho \text { is the radius in the pupil plane }
\end{aligned}
$$

Point sources will show a cometary tail. Coma is an inherent property
of telescopes using parabolic mirrors.

DuOS

Side note: the HST mirror

points due to the OPL difference.
Doof tuauaff!p andu II!M stoa!qo s!xD-ffo ubf pud s!xD-0+-asol Only objects close to the optical axis will be in focus on a flat image Field Curvature
 Θ is the angle in the pupil plane
ρ is the radius in the pupil plane
$\varepsilon=\rho \sin \Theta ; \eta=\rho \cos \Theta$ ϕ is the wave aberration
Θ is the angle in the pupil plane

an image closer to the lens
tangential plane than for the plane normal to it (sagittal plane) and form
 Consider an off-axis point A. The lens does not appear symmetrical Astigmatism

transversal magnification depends on the distance from the optical axis. Straight lines on the sky become curved lines in the focal plane. The uO!+uO+S!Q
> achromatic） different wavelengths have different foci．（Mirrors are usually Since the refractive index $n=f(\Lambda)$ ，the focal length of a lens $=f(\Lambda)$ and

$\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{gathered} \text { O} \\ \stackrel{3}{3} \end{gathered}$		
		－	－	－	＊	部율
		\because	\because	$\stackrel{\square}{\square}$	\％	竞品
		\because	\＃		\％	兔
		！！－	$\%$		品	
${ }_{0}^{2}$	\％	$\overbrace{0}^{2}$	$\overbrace{0}^{2}$	${ }_{0}^{2}$	${ }_{+}^{2}$	
	$\stackrel{2}{\omega}$	$\stackrel{2}{0}$	$\stackrel{2}{*}$	2	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	

Summary：Primary Wave Aberrations

Fresnel and Fraunhofer Diffraction

> of Fourier transform of the object and the pupil function G, which acts as a linear spatial filter. In other words, the Fourier transform of the image equals the product
 object and image plane, respectively, and let $K\left(\Theta_{0} ; \Theta_{1}\right)$ be the
"transmission" of the system. Let $V\left(\Theta_{0}\right)$ and $V\left(\Theta_{1}\right)$ be the complex field amplitutes of points in the Relation between Object and Image

According to the Nyquist-Shannon sampling theorem $I(\Theta)$ shall be

$$
(\theta) \Delta S d *\left({ }^{0} \theta\right) I=\left({ }^{1} \theta\right) I \quad \Leftrightarrow\left\{\left({ }^{0} \theta\right) y\right\} L A \cdot\left\{\left({ }^{0} \theta\right)^{0} \Lambda\right\} L A=\left\{\left({ }^{1} \theta\right) \Lambda\right\} L A
$$

spatial frequencies, equivalent to a convolution:
must exist. The pupil function $G(r)$ acts as a low-pass filter on the
All physical pupils have finite sizes \rightarrow cut-off frequencies $\omega_{c}=\left(u_{c}^{2}+v_{c}^{2}\right)^{1 / 2}$

Point Spread Function (1)

aכunos aut SD anpuata amps a4t 4+!м aбDu! uD saכnpoud matshs
The étendue never increases in any optical system. A perfect optical
product.
Hence, the étendue is also called acceptance, throughput, or $A \times \Omega$ instrument can accept.

The geometric étendue may be viewed as the maximum beam size the from the source)
source times the solid angle Ω (of the system's entrance pupil as seen
The geometrical étendue (frz. 'extent') is the product of area A of the Etendue, $A \times \Omega$, and Throughput

er $\mathrm{k}=2 \pi / \wedge$ and the RMS wavefront error ω one
$S R=e^{-k^{2} \omega^{2}} \approx 1-k^{2} \omega^{2}$
diffraction limit point source seen with a perfect imaging system working at the the PSF compared to the theoretical maximum peak intensity of a The Strehl ratio (SR) is the ratio of the observed peak intensity of Strehl ratio.
A convenient measure to assess the quality of an optical system is the

Strehl Ratio

