品

(Astronomical Observing Techniques)
Astronomische Waarneemtechnieken

$$
E(J)=\hbar^{2} \frac{J(J+1)}{2 I}
$$

Transition	Energy $[\mathrm{eV}]$	Spectral Region	Example
Hyperfine structure	10^{-5}	Radiofrequencies	21 cm hydrogen line
Spin-orbit coupling	10^{-5}	Radiofrequencies	1667 MHz transitions of OH molecule
Molecular rotation	$10^{-2}-10^{-4}$	Millimetre and infrared	1-0 transition of CO molecule at 2.6 mm
Molecular rotationvibration	$1-10^{-1}$	Infrared	H_{2} lines near $2 \mu \mathrm{~m}$
Atomic fine structure	$1-10^{-3}$	Infrared	Ne II line at $12.8 \mu \mathrm{~m}$
Electronic transitions of atoms, molecules and ions	$10^{-2}-10$	Ultraviolet, visible, infrared	Lyman, Balmer series, etc. of H ; resonance lines of C I, He I; K , L shell electron lines (Fe XV, O VI)
Nuclear transitions	$>10^{4}$	X - and γ-rays	${ }^{12} \mathrm{C}$ line at 15.11 keV
Annihilations	$\geq 10^{4}$	γ-rays	Positronium line at 511 keV

sa6upy K6ıauヨ - sassaวoud uo!+D+!כXヨ \rightarrow vibrational transitions split further: complex structure of vibrational-rotational
transitions. * rotational transitions are generally weaker and often coupled to vibrational transitions
\rightarrow vibrational transitions split further: complex structure of vibrational-rotational - $(8 I$ - Transitions in solids (ices) due to vibrations \rightarrow phonons $(\rightarrow$ near-farannihilation (\rightarrow MeV range) - Nuclear lines due to nuclear excititations or electron-positron dipole moment and moment of inertia I (\rightarrow near-far-IR). and vibrational (change in vibrational energy) transitions*, requiring - Molecular transitions such as rotational (change in angular momentum) electron.

- Electronic hyperfine structure transitions due to the interaction of
the nuclear magnetic moment with the magnetic field of the - Electronic fine structure transitions due to the coupling of electron
spin and nuclear spin. numbers of the electronic states (\rightarrow visible). - Electronic transitions due to the change of the principal quantum Excitation Processes

- Doppler effect: the emitter is in motion relative to the observer with
tf!4S-au!7 D 6u!snds sassajoud ןDد!skyd

\section*{| |
| :--- | :--- |}

Three General Types of Spectra
Model spectra of $\mathrm{C}_{2} \mathrm{H}_{2}$ at 900 K and HCN at 600 K (assumed Doppler broadening $\sim 4 \mathrm{~km} / \mathrm{s}$) at
different spectrograph resolutions (figure provided by F. Lahuis).

- the transmission determines the throughput $\eta(v)=\frac{I_{\text {out }}(v)}{I_{\text {in }}(v)}$
Spectral Resolution and S / N
For unresolved lines, both the S / N and the line/continuum in
with increasing resolution: or highly inclined beams (Ω). instrument. Larger étendues require larger dispersive elements (A)
- the beam étendue determines the light gathering power of the
element, which is typically Nyquist-sampled. Usually the instrumental profile det $(\Lambda)^{0} I *(\Lambda) d=(\Lambda) I$
narrow line $I_{0}(v)=\delta\left(v-v_{0}\right)$ to the observed line width:
- the instrumental profile $P(v)$ broadens a theoretically infinitely
$\Delta \Lambda$ is called a spectral resolution element.
- the spectral resolution or spectral resolving power is: $R=\frac{\lambda}{\Delta \lambda}$
Characteristics of a Spectrometer
Gratings are usually operated in a collimated beam at the pupil.
The maximum resolution is given by $R=m N$ where N is the number of
(illuminated) periods (grooves), and the angular dispersion is $d \theta / d \lambda \sim \frac{m}{a}$
$\beta=$ angle of reflected beam
$\alpha=$ angle of incoming beam
$a=$ distance between equally spaced grooves
$\lambda=$ wavelength

$$
\begin{aligned}
& m \lambda=a \cdot(\sin \alpha \pm \sin \beta) \\
& m=\text { order of diffraction }
\end{aligned}
$$

is given by the grating equation:
The condition for constructive interference $\begin{array}{llll}\text { Use a device that introduces an optical path } & \text { ray } 2: & & \left.\begin{array}{l}\text { gratiug } \\ \text { nomal } \\ \text { difference }=\text { f }\end{array} \text { \{angle to the surface }\right\}\end{array}$ Gu!todg D fo ald!כu!ad ןDaəuag

Blaze Angle

In Littrow configuration the grating equation becomes: $m \lambda_{B}=2 a \sin \Theta$
If $a=\beta=\theta \rightarrow$ Littrow configuration
incidence, and operate at a very high order of diffraction ($m>\sim 50$). groove density, or use large groove periods ($a>\lambda$) and a large angle of
To get high dispersion $d \theta / d \lambda \sim \frac{m}{a}$ one could either increase the
s6u!+Daの ว!จบวヨ

A low-dispersion prism/grating with a dispersion direction
perpendicular to that of the high-dispersion grating
optical element will be needed:
To spatially separate the orders and avoid overlap, an additional ...and Cross-Dispersion

- wavelengths farther from Λ_{0} (for which the above equation
- filters are often tilted with respect to the optical axis to
avoid reflections \rightarrow shift of Λ_{0}

Refractive indices
- can be quite "bulky" (\leqslant filter wheel)
replication and gluing or by direct ruling.
- difficult to manufacture (either by
Disadvantage:

(almost) unchanged
For a given wavelength and diffraction order the refraction of grating
and prism may compensate each other and the optical axis remains
Grism $=$ transmission GRating + prISM
Grisms

The performance of a Fabry-Perot is characterized by: plates, and $\Delta k=1 / 2 d$ the free spectral range.

$$
\text { and has transmission peaks where } k=\frac{m}{2 d}
$$

Two parallel plates (Fabry-Perot etalon) of high
reflectivity r and transmission $t=1-r$.
uopDtヨ +0uad-KuqD」

$$
R_{0}
$$

3. The maximum throughput $U=2 \pi \frac{S}{R}$ (S = illuminated area of the etalon). Here, m is the order of the interferometer, d is the separation of the

This is called the Fellgett（or multiplex）advantage． Whole integration time used for each spectral element－as compared to
a Fabry－Perot spectrometer $\rightarrow S / N$ gain of $G=\frac{\sqrt{M}}{2}$
（ M is the number of spectral elements）． Moving the mirror in many small steps across x_{m} ，the source spectrum in
the frequency domain，$I_{0}(k)$ ，can be recovered via inverse Fourier
transform：$\quad I_{0}^{\prime}(k)=F T\{I(x)-\langle I(x)\rangle\}=I_{0}(k) * \operatorname{sinc}\left(x_{m} k\right)$
Finite interval $\left[-x_{m} / 2,+x_{m} / 2\right] \rightarrow$ resolution is degraded to $R=\frac{k_{0}}{\Delta k}=x_{m} k_{0}$ If x is the difference in path length the intensity of a
monochromatic wave of intensity I_{0} and wave number k is：

$$
I(x)=\frac{I_{0}}{2}(1+\cos 2 \pi k x)
$$

Then，a source with a spectral distribution $I_{0}(k)$ in the
range［ k_{1}, k_{2} ］has：$I(x)=\frac{1}{2} \int_{k_{1}} I_{0}(k)(1+\cos 2 \pi k x) d k$

山O＋OMOルtJOdS MuOfSUDN\＆山O！ルNO」

 sources． －FTS are axisymmetric and particularly suited to observe extended elements contribute to the signal（＂spectral multiplexing＂）． spectrum of the object． －The signal is an interferogram．It is the Fourier transform of the －The FTS or Michelson interferometer is a + two－wave interferometer（as opposed to a grating with N waves from N grooves ）． （ Fourier Transform Spectrometer（1）

ןолади! ар!м \Leftrightarrow ио! \downarrow по suotวatap Ny M이 sau!!bau.	sววunos papuałxa ло 		
ıasuads!p-aıd spazu . to panıasqo unnu!+uoว pud au!! • 	SLJ UDYt todduos asou ио! ! пos stoa!qo abudp $10+$ ןDap! •	+0.ad-KıqD	
үV st!u!! uo!ss!usudit auq!t spla! f 	shanuns jputjads not joap! Dutjads fo spudsnoyt of dn.	+כa!qo-!+17n	
人\|иo stoə!qo a	бu!s. sכ! \downarrow do xajdmos.	stoa!qo panjosan dof ןDap! ofu! OZ snoaudtudtsu! •	plo!f \|oubatui
vจ snoaudtud+su! pat!u!! - 	ио! + по	ว॥วчэヨ	
ajods лонәанар fo asn tua! !!ftau! • 	ałDuq! D Ot 0 KsDa . tndyбnouyt 	+!\|s-6uo7	
saбр+идлpds!	saбт+ирлр	truoutoads	
$s a d k \perp$ tuadaft!Q	aut to suos Pud	soud	

- by the continuum-subtracted total
line intensity I ($=\underline{\text { absolute }}$
measurement)
or
- by the equivalent width, which
expresses the integrated line flux as a
rectangular window of the continuum
strength at that wavelength ($=$ relative
measurement).

$$
{ }^{\tau} \wedge \nabla\left({ }^{\top} I-{ }^{0} \Lambda\right)=\Lambda p\left({ }^{\top} I-{ }^{\wedge} I\right) \int
$$

The line intensity describes the total power contained within the line
and can be characterized by either: (2) mnatjads D fo sauntDay an!tD+!!DnO

$$
\begin{aligned}
& \text { - the symmetry of the flanks } \\
& \text { - the wings } \\
& I(\lambda)
\end{aligned}
$$

Qualitative Features of a Spectrum (1)

