

Three Basic Types of Detectors

Photon detectors

Respond directly to individual photons ightarrow releases bound charge carriers. Used from X-ray to infrared.

Examples: photoconductors, photodiodes, photoemissive detectors

N **Thermal detectors**

Absorb photons and thermalize their energy ightarrow modulates electrical current. Used mainly in IR and sub-mm detectors.

Examples: bolometers

ω · **Coherent** receivers

Respond to electrical field strength and preserve phase Examples: heterodyne receivers information (but need a reference phase "local oscillator"). Mainly used in the sub-mm and radio regime.

Outline

- **Photon Detectors**
- ٩ Principle of (intrinsic) Photoconductors
- <u>с</u> Variations of Photoconductors
- **Readout and Operations**
- ٩ **Detector** Artifacts
- N **Thermal Detectors**
- ٩ Principle of Bolometers
- <u>ح</u> Variations of Bolometers
- ω **Coherent Receivers**
- ٩ Principle of Heterodyne Receivers
- Key components of Heterodyne Receivers
- Performance characteristics
- ि ि

Single atomic system Example: H atom = 3 Photon oneren Preface: -yman λ = 950Å λ = 973Å λ = 1026Å λ = 1216Å Continuum <u>vvvv</u> Paschen series Electronic Energy eV --0.54 --1.51 -13.6 -3.39 Forbidd Second en band band States and $\mathbf{\Lambda}$ Wavefunctions Ψ overlap → Energy levels of individual atoms Atomic crystal etectors Multiple splitting \rightarrow "bands" states) split due to Pauli principle (avoiding the same quantum eivers Bands 50 E

2

21

23

7

allowed

First

1

band

Preface: Electric Conductivity

Conductivity requires charge carriers in the conduction band

conduction band. This can be done via: One needs to overcome the bandgap Eg to lift an e- into the

- <u>-</u> external excitation, e.g. via a photon <photon detector
- $\dot{\mathbf{N}}$ internal excitation due to thermal energy
- 3. impurities

Preface: The Fermi Energy

electrons in the conduction band. The Fermi energy E_F determines the concentration of thermally excited

Rn	₽	P 0	<u>0</u>	B	1	Hg	A		င္ပ	
3 8	85	84	83	82	81	08	62		55	
5s ² 5p ⁶	5s ² 5p ⁵	$5s^25p^4$	5s ² 5p ³	$5s^25p^2$	5s ² 5p ¹	5s 2	5s_		[Kr] 5s ¹	
Xe	_	Te	ds	Sn	⊒	<u>0</u>	Ag		Rb	
54	53	52	51	50	49	48	47		37	
4s ² 4p ⁶	$4s^24p^5$	$4s^24p^4$	$4s^24p^3$	$4s^24p^2$	$4s^24p^1$	$4s^2$	4s_1		[Ar] 4s ¹	
۲.	P	Se	As	Ģ	Ga	۲n ۳	2		ㅈ	
36	35	34	3	3	31	30	66		19	
3s ² 3р ⁶	3s ² 3p ⁵	$3s^23p^4$	3s ² 3p ³	$3s^2 3p^2$	$3s^2 3p^1$			[Ne]3s ²	[Ne] 3s ¹	
Ą	<u>0</u>	S	J	<u>0</u>	≥	2B	1B	Mg	Na	
18	17	16	15	14	<u>ದ</u>			12	11	
2s ² 2p ⁶	$2s^22p^5$	$2s^22p^4$	2s ² 2p ³	$2s^22p^2$	$2s^22p^1$			$1s^2 2s^2$	$1s^22s^1$	
Ne	П	0	z	ი	σ			Be	5	
10	9	8	7	6	5			4	3	
1 <mark>s</mark> 2	7A	6A	5A	4A	3A			2A	1s [⊥]	
He	ghw	4/17/96			T ATTA	T VI IV	menn		т	
2	2	"laman	H adt?	hlan	die Te	Davia	idaad	۸hr	1	
a Nor										
Ieme				ays I						Ń

in valence state (outer shell)

Elements with 4 e⁻ form crystals with diamond lattice structure (each

atom bonds to four neighbors)

"classical" semiconductors: 4 e-

[Xe] 6s¹

Principle of

Photoconductors

4 Ď 3 ħ + Π nts

D

Basic Principle of intrinsic Photoconductors

an electric charge that will penetrate to an electrode.

The main Noise Components

G-R noise

 $\left\langle I_{G-R}^{2}\right\rangle = 4q^{2}\varphi\eta G^{2}\Delta f$

fundamental statistical noise due to the Poisson statistical processes (2N)^{1/2}. **r**ecombined holes and electrons o two independent transferred into the statistics of the generated and statistics of the incoming photon stream \rightarrow

Johnson or kTC noise $\left\langle I_{J}^{2}\right\rangle = \frac{4kT}{R}\Delta f$ fundamental thermodynamic noise due to the thermal motion of the charge carriers. Consider a E_{storage} are associated with a noise current I_{J} . Since $\langle Q^2 \rangle = kTC$, the charge noise is also called kTC noise photoconductor as an RC circuit: fluctuations in Since

or reset noise.

1/f noise $\left< I_{Vf}^2 \right> \propto rac{I^2}{f} \Delta f$

increased noise at low frequencies, due to bad JFETs. Physical origin mostly unclear. surface effects (damage), crystal defects, and electrical contacts, temperature fluctuations

Some Comments on the Noise

The total noise in the system is: $\langle I_N^2 \rangle = \langle I_{G-R}^2 \rangle + \langle I_J^2 \rangle + \langle I_{1/f}^2 \rangle$

The bandwidth $\Delta f=rac{1}{2\Delta t_{
m int}}$; if Poisson-distributed ightarrow relative error ~ 1/Jt

Operationally, background-limited performance (BLIP) $\langle I_{G-R}^2 \rangle >> \langle I_J^2 \rangle + \langle I_{IJ}^2 \rangle$ is always preferred*

The noise equivalent power (NEP) is the signal power that yields an RMS

S/N of unity in a system of $\Delta f = 1$ Hz:

 $NEP_{G-R} = \frac{2hc}{\lambda} \left(\frac{\varphi}{\eta}\right)^{1/2}$

In BLIP the NEP can only be improved by increasing the quantum efficiency n.

Photoconductors Variations of

Extrinsic Semiconductors

Limitations of intrinsic photoconductors:

- short wavelength cutoffs
- non-uniformity of material
- problems to make good electrical contacts
- difficult to "keep clean" and minimize Johnson noise

Solution: add impurities at low concentration to provide excess electrons ightarrow much reduced bandgap ightarrow longer wavelength cutoff

by a factor 1000!

intrinsic photoconductors e
e low QE
e active volumes must be large
e
econflicts Limitation of extrinsic photoconductors: absorption coefficients are 2 - 3 orders of magnitude less than those for direct absorption in

- = low conductivity Noise requirements: high resistance requires large $N_T \rightarrow$ high conductivity • Efficient absorption $[a(\lambda) = \sigma(\lambda) N_{I}]$
- independently: the optical and electrical properties Solution: use separate layers to optimize

IR-active layer: **Blocking layer:** (intrinsic photoconductor) heavily doped thin layer of high purity

Typical species are Si:As or Si:Sb

Photodiodes

2:2 Based on junction between two oppositely doped zones The two adjacent zones create a depletion region with high impedance

Same if absorbed in the n-type part but then the hole migrates through the junction.

region \rightarrow photo-current

Voltage drives the e⁻ across the depletion

The e⁻ diffuses through the material

Example: The Teledyne HAWAII-2RG

Parameter	Specification
Detector technology	HgCdTe or Si PIN
Detector input circuit	SFD
Readout mode	Ripple
Pixel readout rate	100 kHz to 5MHz (continuously adjustable)
Total pixels	2048 x 2048
Pixel pitch	18 µm
Fill factor	%86 ⋜
Output ports	Signal: 1, 4, 32 selectable guide window and reference
Spectral range	0.3 - 5.3µm
Operating temperature	≥ 30K
Quantum efficiency (array mean)	≥ 65%
Charge storage capacity	≥ 100,000e ⁻
Pixel operability	≥ 95%
Dark current (array mean)	≤ 0.1 e ⁻ /sec (77K, 2.5 μm)
Read noise (array mean)	<u>≤</u> 15 e ⁻ CDS @ 100 kHz
Power dissipation	≤ 4 mW @ 100 kHz

more info imaging/hawaii2rg.html for http://www.rsc.rockwell.com/ See

Can also be combined to a 2x2 mosaic

Charge Coupled Devices (CCDs)

CCDs = array of integrating capacitors.

Pixel structure: metal "gate" evaporated onto SiO_2 (isolator) on silicon = MOS

- <u>–</u> photoconductor photons create free e- in the
- Ņ e⁻ drift toward the electrode but
- ω cannot penetrate the SiO₂ layer
- interface e⁻ accumulate at the Si—SiO₂
- 4 the total charge collected at the
- S of photons during the exposure \rightarrow read out the number of e interface is a measure of the number

Note that there are two types: front-illuminated and back-illuminated CCDs. Back-illuminated: long distance to depletion region \rightarrow low QE \rightarrow thinning Front-illuminated: electrode of heavily doped Si blocks blue/UV photons

Next: Detector Operations

CCDs and infrared arrays are fundamentally different!

CCDs:

- destructive reads
- charges are physically shifted to the output line
- shutter determines exposure time

IR arrays:

- non-destructive reads
- readout addresses individual pixels directly
- read/reset determines exposure time

Readout and Infrared Arrays Operations

Infrared Arrays Construction

- 1. Produce a grid of readout amplifiers
- $\mathbf{\hat{N}}$ Produce a (matching mirror image) of detector pixels
- 3. Deposit Indium bumps on both sides
- 4 Squeeze the two planes together \rightarrow hybrid arrays
- S The Indium will flow and provide electrical contact

Multiplexers

Multiplexing: "Pixel signals \rightarrow Sequential output lines"

MUX Tasks:

- address a column of pixels by turning on their amplifiers
- pixels in other columns with power off will not contribute a signal

output bus $\label{eq:Reset:connect} V_{R} \mbox{ via } T_{5} \mbox{ and } T_{3}.$

Example: PHARO (the Palomar High Angular Resolution Observer)

Readout Operations CCDS and

Detector Artefacts

http://solar.physics.montana.edu/nuggets/2000/001201/ccd.png

Muxbleed, pulldown and banding. Mitigation: avoid bright sources, short exposures.

Detector Artefacts 2): Fringing

1000 time (s) sin

> 2000 end of illum

In spectrographs: photons reflect off the back of the detector and interfere with the incoming light.

If the phase difference between I_1 and $n \cdot I_2$ is an even multiple of π constructive interference occurs. If an odd multiple destructive

interference occurs \rightarrow fringes = wave pattern.

Principle of Bolometers

Coherent Receivers Thermal Detectors Photon Detectors Part III Part II Part I

Bolometers

So far: photon detection via direct excitation of charge carriers

Now: photon absorption and conversion into energy (heat)

- Absorber is decoupled from the detection process
- Especially for low light levels
- Especially for the far-IR & sub-millimeter wavelength range

Invention of the Ge:Ga bolometer in 1961 by Frank Low

bolometer: a cut-out of the 64x32 pixel Herschel / PACS bolometer array assembly.

Basic Operation of Bolometers

power

a thermal link with thermal conductance Principle: G to a heat sink of temperature T_0 . the detector is connected via

To thermal link

The total power absorbed by the detector is: $P_T(t) = GT_1 + C$

.

the voltage depends on resistance

A high input impedance amplifier measures the voltage

the resistance depends on temperature

pain black

thermometer

Chip of doped silicon or germanium

photon

heat

electrical lead / thermal link

0 detector

heat sink dT_1

dt

Variations of Bolometers

Composite Bolometers

Problem: low QE. Partial solution: enhance absorption with black paint – but this will increase the heat capacity.

Better solution: composite bolometers, where:

- absorber has low heat capacity C and high QE
- sensor has low C but is well coupled to absorber

Here the heat capacity of the blackened sapphire plate is only 2% of that of Ge.

Etched Bolometers

Precision etching techniques in Si minimize the size of the structures \rightarrow • low heat capacity C

- multiplexing advantage ("arrays") short thermal time response ~ C/G

.and many more Types of Bolometers

E.g., properties of superconductivity. Most of them utilize the

- Transition edge sensors (TES)
- absorbed in a superconductor, producing quasi-particle excitations, which change its detectors (MKIDs) [Photons are Microwave Kinetic Inductance

kinetic inductance]

FIR photon

Principle of Heterodyne Receivers **Coherent**

Thermal Detectors **Coherent Receivers** Photon Detectors Part III Part IJ Part I

Basic Idea

Problems:

- very low photon energies ightarrow wave character of light is dominant
- often very weak signal ightarrow amplification essential

Solution:

mix signal with reference wave

Advantages:

- typically, power(ω_{LO}) \gg power(ω_{S}) \Rightarrow amplification by oscillator signal encodes signal over a wide wavelength range \downarrow ideal for spectroscopy
- down-conversion to frequencies where low-noise electronics exist.

Step Down-convert the Frequency

waveguide) electronic LO (in combination with wire antenna or At low frequencies (radio/sub-mm) one uses an Key easily tuneable in frequency of Heterodyne low power at high frequencies (sub-mm) Receivers Local Oscillators (LO) Components Technical Building at 5000m. Photo: W. Grammer. The ALMA Central LO in the AOS --

At <u>high frequencies</u> (IR) the LO may be a continuous wave (CW) laser

- + high power
- discrete set of frequencies

Mixer Technology

Problems:

- "pixel" size > A for efficient absorption, but frequency response \propto 1/size.
- good & fast photon detectors do not exist for $1 \ge 40 \mu m$. Material Recombination

Solutions:

- SIS junctions
- Schottky diodes

erform

P

actei

istics

Receivers

Heterodyne

- - Hot electron bolometers
- - energy
- photon S S superconductor "bandgap" filled energy states unfilled energy states

Performance Estimators

To describe the performance of heterodyne detectors we introduce:

- <u>--</u> Obviously, the lower T_N the better the S/N. It is defined such that a matched blackbody at the receiver input The noise temperature T_N: at a temperature T_N produces a S/N = 1.
- Ņ of the source flux (S/N=1). It is defined, analogous to the noise temperature, as the strength The antenna temperature T_s:

linearly related to the input flux density: $P_{_S} \sim T_{_S}$ In the Rayleigh-Jeans approximation, the antenna temperature is

-		۰ ت	C	
	Effective Bandwidth (channel width for spect	troscopy) (MHz):	172
	Number of Antennas:			26
	Time on Source (hour	:(s		
- -	RMS Noise (mJy/bear	n):		0.019739
Example: VLA exposure time	RMS Brightness Tem	perature (K):		5.921671
calculator:				
<pre>http://www.vla.nrao.edu/astro/guides/ exposure/calc.html</pre>	Frequency Band			Array Configuration
				® A
	43 GHz	22 GHz	15 GHz	⊖ B
	8 GHz	5 GHz	1.5 GHz	0 c
	327 MHz	74 MHz		0

Performance Comparison

operating in the thermal limit (hv«kT) Case 1: Bolometer operating at BLIP and heterodyne receiver

ullet the bolometer will perform better

resolution, much higher than the IF bandwidth. This is always true, except for measurements at high spectral

operating at the quantum limit (hv»kT). Case 2: detector noise-limited bolometer and a heterodyne receiver

ullet the heterodyne receiver will outperform the bolometer

In the case of narrow bandwidth and high spectral resolution the range the figure of merit goes as $1/v^2$. If the spectral resolution $v/\Delta v$ is kept constant over the observed heterodyne system will always win.

Throughput of a Heterodyne System

system: Several factors limit the throughput of the

> laser wavefront

 \sim occurs when offset Only components of the signal electric field can interfere. field vector parallel to the reference Full cancellation S ン

 $l\sin\theta_{\rm max} = \lambda \approx l\theta_{\rm max}$

signal wavefront

- $\mathbf{\dot{N}}$ receiver should operate at the diffraction limit of the telescope. that can be accepted by a telescope of diameter D $oldsymbol{ o}$ a coherent The Etendue $A \times \Omega \sim \Lambda^2$ sets a constraint on the coherent beam
- ω receivers = single-mode detectors of the source can interfere and produce a signal \rightarrow heterodyne Since the laser field is polarized only one polarization component