Exercises Astronomical Observing Techniques, Set 6

Exercise 1

The 1D Fourier pairs f(x) and F(s) are defined as follows: $\int_{-\infty}^{+\infty} f(x)e^{-2\pi i x s} dx = F(s): \mathcal{F}\{f(x)\} = F(s), \text{ the Fourier transform of } f(x) \text{ and}$ $\int_{-\infty}^{+\infty} F(s)e^{2\pi i x s} ds = f(x): \hat{\mathcal{F}}\{F(s)\} = f(x), \text{ the inverse Fourier transform of } F(s)$ (g(x) and G(s) are also a Fourier pair)

The 2D Fourier pairs f(x, y) and F(u, v) are defined as follows: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) e^{-2\pi i (xu+vy)} dx dy = F(u, v): \quad \mathcal{F}\{f(x, y)\} = F(u, v), \text{ the Fourier transform of } f(x, y) \text{ and}$ $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u, v) e^{2\pi i (xu+vy)} du dv = f(x, y): \quad \hat{\mathcal{F}}\{F(u, v)\} = f(x, y), \text{ the inverse Fourier transform of } F(u, v)$

Compute the 2D Fourier transforms of:

- a) $\delta(x,y)$
- b) $\delta(x-a, y-b)$

Exercise 2

The convolution of f(x) with g(x) is defined as $h(x) = f(x) * g(x) = \int_{-\infty}^{+\infty} f(u)g(x-u) du$

a) Show that $\mathcal{F}{f(x) * g(x)} = F(s)G(s)$

b) Give a proof of Parsevals' theorem (Rayleighs' energy theorem): $\int_{-\infty}^{+\infty} |f(x)|^2 dx = \int_{-\infty}^{+\infty} |F(s)|^2 ds$

Exercise 3

We have a diffraction limited 0.1 arcsec image of a star from the Hubble Space Telescope, describe what happens if we convolve this image with a Gaussian having a width of about 2 arcsec?

Exercise 4

Calculate the depth of focus for an 8.2m telescope with focal length of 14.4 m operating at $0.5\mu\mathrm{m}.$

Exercise 5

A spherical galaxy has a magnitude of $m_V = 18$ and spans 30 arcsec on the sky. Calculate the surface brightness of this galaxy in mag $\operatorname{arcsec}^{-2}$ (you can assume the light is homogeneously distributed over the galaxy).