Exercises Astronomical Observing Techniques, Set 6

Exercise 1

The 1D Fourier pairs $f(x)$ and $F(s)$ are defined as follows:
$\int_{-\infty}^{+\infty} f(x) e^{-2 \pi i x s} d x=F(s): \mathcal{F}\{f(x)\}=F(s)$, the Fourier transform of $f(x)$ and $\int_{-\infty}^{+\infty} F(s) e^{2 \pi i x s} d s=f(x): \hat{\mathcal{F}}\{F(s)\}=f(x)$, the inverse Fourier transform of $F(s)$ (g(x) and G(s) are also a Fourier pair)

The 2D Fourier pairs $f(x, y)$ and $F(u, v)$ are defined as follows:
$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) e^{-2 \pi i(x u+v y)} d x d y=F(u, v): \mathcal{F}\{f(x, y)\}=F(u, v)$, the Fourier transform of $f(x, y)$ and
$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u, v) e^{2 \pi i(x u+v y)} d u d v=f(x, y): \hat{\mathcal{F}}\{F(u, v)\}=f(x, y)$, the inverse Fourier transform of $F(u, v)$

Compute the 2D Fourier transforms of:
a) $\delta(x, y)$
b) $\delta(x-a, y-b)$

Exercise 2

The convolution of $f(x)$ with $g(x)$ is defined as $h(x)=f(x) * g(x)=\int_{-\infty}^{+\infty} f(u) g(x-u) d u$
a) Show that $\mathcal{F}\{f(x) * g(x)\}=F(s) G(s)$
b) Give a proof of Parsevals' theorem (Rayleighs' energy theorem): $\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\int_{-\infty}^{+\infty}|F(s)|^{2} d s$

Exercise 3

We have a diffraction limited 0.1 arcsec image of a star from the Hubble Space Telescope, describe what happens if we convolve this image with a Gaussian having a width of about 2 arcsec?

Exercise 4

Calculate the depth of focus for an 8.2 m telescope with focal length of 14.4 m operating at $0.5 \mu \mathrm{~m}$.

Exercise 5

A spherical galaxy has a magnitude of $m_{V}=18$ and spans 30 arcsec on the sky. Calculate the surface brightness of this galaxy in mag $\operatorname{arcsec}^{-2}$ (you can assume the light is homogeneously distributed over the galaxy).

