Exercises Astronomical Observing Techniques, Set 10

Exercise 1

a) WYFFOS is the multi-object, wide-field, fibre spectrograph working at the Prime focus of the 4.2 m WHT telescope. At a wavelength of 500 nm the resolving power is (R) is 2200 . Calculate the spectral resolution element $(\Delta \lambda)$ for this instrument.
b) How many pixels should be used (along the spectral axis) to properly sample this spectrum from 450 to 550 nm ?

Exercise 2

Give a short description of the (i) Gaussian, (ii) Lorentzian, and (iii) Voight line profiles.

Exercise 3

a) A square grating of 5 cm has 40 groves per mm . Calculate the maximum resolving power obtainable at at a wavelength of 500 nm , using the second order $(\mathrm{m}=2)$.
b) Calculate the wavelengths for constructive interference, using an incidence (i) and diffraction $\left(i^{\prime}\right)$ angle of 30° and -30° respectively.
c) In order to increase the efficiency at a specific order a blazed grating is used (having the same properties described above, except those mentioned below). The angle of incidence and diffraction (i and i^{\prime}), are both 30° which is also equal to the blaze angle $\left(\theta_{B}\right)$. Calculate the blaze wavelength $\left(\lambda_{b}\right)$ associated with the order $m=50$.

Exercise 4

a) Calculate the spectral radiance (at the zenith) of the sky background in the L band $(3.4 \mu \mathrm{~m})$, the optical depth $\tau=0.15$ (you can assume $\tau \ll 1$, use wavelength units). The average temperature of the atmosphere is $\bar{T}=250 \mathrm{~K}$.
b) Calculate the sky brightness in mag $\operatorname{arcsec}{ }^{-2}$, use that for $\operatorname{mag}_{L}=0$, the spectral irradiance is $8.1 \times 10^{-11} \mathrm{~W} \mathrm{~m}^{-2} \mu \mathrm{~m}^{-1}$.

