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Reminder: Coherent Radiation
A light source may exhibit temporal and spatial coherence.  The 
coherence function Γ12 between two points (1,2) is the cross-

l ti  b t  th i  mpl x mplit d s:correlation between their complex amplitudes:
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The normalized representation is called the degree of coherence:
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*e.g., from Young’s double slit experiment
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The Zernike-van Cittert Theorem  (1) 

Consider a monochromatic, extended, 
i h t s  A ith i t sit  incoherent source As with intensity 
I(x,y).  Θ

Consider further a surface element dσ
(dσ <<λ), which illuminates two points P1

d P t dist s R d R   and P2 at distances R1 and R2 on a 
screen.  

The quantity measuring the correlation of the electric fields between 
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The quantity measuring the correlation of the electric fields between 
P1 and P2 (for any surface element dσ at distance r) is:
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The Zernike-van Cittert Theorem  (2) 

Generally, the degree of coherence is then given by the Zernike-van 

Cittert theorem: ( ) ( )[ ]
dr
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I  ds  th  l Z ik  Citt t th m d s ib s th  In words, the general Zernike-van Cittert theorem describes the 
relation between the degree of coherence between two points on the 
screen and the intensity distribution across the illuminating source As.y m g s

Frits Zernike (1888-1966) : Dutch physicist 
and winner of the Nobel prize for physics in and winner of the Nobel prize for physics in 
1953 for his invention of the phase 
contrast microscope,

The Z-vC Theorem for Large Distances  (3) 
For large distances from source to screen (relative to 
the distance between P1 and P2 and the size of the the distance between P1 and P2 and the size of the 
source) we can use angular variables [x/R=α, y/R=β, 
Θ=(α,β), and ΔX=X2-X1] to describe the source as seen 
f  th  from the screen.

Then the general Z-vC theorem simplifies (Lena p. 118) to:
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F  l  di t  th  d l * f th  d  f h  | | For large distances, the modulus* of the degree of coherence |γ12| 
between two points is the modulus of the normalized Fourier transform 
of the source intensity distribution. 

*absolute value of a complex number

of the source intensity distribution. 



The Z-vC Theorem for a Circular Source (4) 
Now: calculate the complex degree of coherence for a circular 
source of radius r0.  
Let P1 be at the center of the screen and P2 at distance ρ where 
Θ=r0/R.  
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Then the modulus of the degree of coherence for a circular source is:
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Then the modulus of the degree of coherence for a circular source is:
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Θ0 = angular size of circular source
ρ = distance of P from centerρ = distance of P2 from center
λ = wavelength
J1 = 1st order Bessel function 

The Coherence Étendue
1. Consider a point source at infinity: Θ0 = r0/R 0 and thus |γ12| 1.  

In this case a plane wave illuminates the screen coherently.

2. Consider a source of finite size, which subtends a solid angle Ω.  An 
circular area S = πρ2 of the screen corresponds to a beam étendue εcircular area S = πρ2 of the screen corresponds to a beam étendue ε
of:
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we can calculate that:                                                  

which yields a degree of coherence greater than 50%  (what we want!)
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which yields a degree of coherence greater than 50%  (what we want!).

Hence, the beam remains coherent for an étendue 2 λε =,



Note: Beam Étendue, AxΩ, and Throughput
Étendue (frz.) = `extent’

The geometrical étendue is the area A of the source times the solid 
angle Ω the system's entrance pupil subtends as seen from the source. 

The étendue never increases in any optical system.  A perfect optical 
system produces an image with the same étendue as the source. system produces an image with the same étendue as the source. 

The geometric étendue may be viewed as the maximum beam size the 
i t t  tinstrument can accept.

Hence, the étendue is also called acceptance, throughput, and the  , p , g p ,
A·Ω product.

Here A=h2π, and Ω is given by the angle of
the marginal ray.

Note:Note:
So far we have considered So far we have considered 
the coherence from a the coherence from a 
source at infinitysource at infinity.

Now we will consider 
diffraction caused by a y
pupil “near infinity”.p p y



The Huygens-Fresnel Principle
Fermat’s view:  “A wavefront is a surface on which every point has 
the same OPD.”

Huygens’ view:  “At a given time, each point on primary wavefront
acts as a source of secondary spherical wavelets   These propagate acts as a source of secondary spherical wavelets.  These propagate 
with the same speed and frequency as the primary wave.”

The Huygens-Fresnel principle was theoretically demonstrated by 
Kirchhoff  ( Fresnel-Kirchhoff diffraction integral)

Fresnel and Fraunhofer Diffraction
Fresnel diffraction = near-field diffraction 

When a wave passes through an aperture and diffracts in the near 
field it causes the observed diffraction pattern to differ in size and 
shape for different distances  shape for different distances. 

For Fraunhofer diffraction at infinity (far-field) the wave becomes 
planar.
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Fraunhofer Diffraction at a Pupil

Consider a circular pupil function G(r) of 
unity within A and zero outside.  

Then the diffraction at infinity is given 
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Theorem: When a screen is illuminated by a source at infinity, the 
amplitude of the field diffracted in any direction is the Fourier 

f  f h  il f i  h i i  h   Atransform of the pupil function characterizing the screen A.

The conjugate variables are the angular direction and the reduced The conjugate variables are the angular direction and the reduced 
coordinates r/λ on the screen.

Relation between Object and Image
Let V(Θ0) and V(Θ1) be the complex 
field amplitutes of points in the f p f p
object and image plane.
Let K(Θ0;Θ1) be the transmission of 
th  s st m (i  th  mpl x the system (i.e., the complex 
amplitude per solid angle round Θ1)  
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Then the image of an extended object is a linear superposition:
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This is a convolution equation which can be conveniently addressed in 
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Relation between Object and Image  (2)
The convolution equation becomes GVKVV

~
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In other words, the Fourier transform of the image equals the product 
of Fourier transform of the object and the pupil function.

Note that:
Amplitude of V0(ω) strength of frequency component ω in the image~mp f 0( ) g f f q y mp m g
Phase of V0(ω) position of this component ω in the image
-------------------------------------------------------------------------------

~

So far considered: Coherent sources
but more realistic in astronomy:  Incoherent sources

Main difference:  add intensities rather than amplitudes:
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The Modulation Transfer Function (MTF)
The equation                              can be interpreted as spatial 
linear filtering, which depends only on the pupil function G(r/λ)
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linear filtering, which depends only on the pupil function G(r/λ)

For a centrally symmetric pupil the above autoconvolution is just the 
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and normalized to the pupil area (in the same reduced units of r/λ):p p ( )
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The function T(ω) is called the (intensity) modulation transfer function 
(MTF)

~

(MTF).



The Point Spread Function (1)
The function                     (i.e., the Fourier transform of H(ω)) is 
called the point spread function (PSF) of the system

( )θHK =2 ~

called the point spread function (PSF) of the system.

The PSF – if circular symmetric – is often described by the half 
power beam width (HPBW) in angular units, which characterizes the 
angular resolution of the image. 

A word on filtering:  all physical pupils have finite sizes cut-off 
frequencies                           must exist.  The pupil will act as a low-( ) 2/122 vu +=ωfrequencies                           must exist.  The pupil will act as a low

pass filter on the spatial frequencies of the object I(Θ).

( )ccc vu +ω

According to the Nyquist-Shannon sampling theorem I(Θ) shall be 

sampled with a rate of at least
cω

θ 2
1=Δ

c

The Point Spread Function (2)
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Then the autoconvolution is the autocorrelation, 
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Right: Right: 

• the pupil function G(r)

its autocorrelation G(r)*G(r)• its autocorrelation G(r)*G(r)

• and its MTF.



The Point Spread Function (3)
When the circular pupil is illuminated by a point source  [I0(Θ) = δ(Θ)] 
then the resulting PSF can be described with a 1st order Bessel then the resulting PSF can be described with a 1 order Bessel 
function by:
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This is also called the Airy function
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This is also called the Airy function.

The radius of the first dark ring (minimum) is at:
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R d   h  R l h   h  Reminder:  the Rayleigh criterion states that 
two sources can be resolved if the peak of 
the second source is no closer than the 1stthe second source is no closer than the 1
dark Airy ring of the first source.

The PSF of a Real Telescope
Most “real” telescopes have a central obscuration, which modifies our 
simple pupil function ( ) ( )02/ rrrG Π=p p p

The resulting PSF can be described by a modified function
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where ε is the fraction of central obscuration 
to total pupil area

( )

to total pupil area.

Astronomical instruments sometimes use a 
phase mask to reduce the secondary lobes of phase mask to reduce the secondary lobes of 
the PSF (from diffraction at “hard edges”.  
Phase masks introduce a position dependent p p
phase change.  This is called apodisation.



The Strehl Ratio

A convenient measure to assess the quality of an optical system is 
the Strehl ratio. 

The Strehl ratio (SR) is the ratio of the observed peak intensity of The Strehl ratio (SR) is the ratio of the observed peak intensity of 
the PSF compared to the theoretical maximum peak intensity of a 
point source seen with a perfect imaging system working at the 
diffraction limit.

Using the wavenumber k=2π/λ and the RMS wavefront error ω one Using the wavenumber k=2π/λ and the RMS wavefront error ω one 
can calculate that:
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Commonly  a SR > 0 8 is considered diffraction-limited  which Commonly, a SR > 0.8 is considered diffraction-limited, which 
corresponds to an average wavefront error of about λ/14.

The Encircled Energy
In many practical applications (e.g., imaging of very faint sources) the 
main goal is the maximum concentration of light within a small area.  
The fraction of the total PSF intensity within a certain radius is 
given by the encircled energy (EE): 
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