Astronomische Waarneemtechnieken (Astronomical Observing Techniques)

 $2^{\text {nd }}$ Lecture: 17 September 2008

Based on "Observational Astrophysics" (Springer) by P. Lena, F. Lebrun \& F. Mignard, $2^{\text {nd }}$ edition - Chapter 3; and Rieke "Detection of Light"

1. Radiometry

Radiometry = the physical quantities associated with the energy transported by electromagnetic radiation.
Photon energy: $E_{p h}=h v=\frac{h c}{\lambda}$
with $h=$ Planck's constant [6.626•10-34 Js]

Emission of an Object

Consider a projected area of a surface element dA onto a plane perpendicular to the direction of observation.
θ is the angle between both planes.

The spectral radiance L_{v} or specific intensity $I_{v}=$ the power leaving a unit projected area $\left[\mathrm{m}^{2}\right.$] into a unit solid angle [sr] and unit frequency interval $[\mathrm{Hz}]$.

It is measured in units of $\left[\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}\right]$ in frequency space.
The spectral radiance in wavelength space L_{λ} has units $\left[\mathrm{W} \mathrm{m}^{-3} \mathrm{sr}^{-1}\right]$
The radiance L or intensity I is the spectral radiance integrated over all frequencies or wavelengths. Units are $\left[\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1}\right]$.

Side note: Steradian

Steradian [sr] = the dimensionless SI unit of the solid angle.
One steradian is the solid angle at the center of a sphere of radius r under which a surface area of area r^{2} is seen.

A complete sphere $=4 \pi \mathrm{sr}$.
$1 \mathrm{sr}=(180 \mathrm{deg} / \pi)^{2}=3282.80635 \mathrm{deg}^{2}$.

In two dimensions, the angle in radians is the arc length it cuts out:
$\theta=($ arc length s) / (radius of the circle r)

In three dimensions, the solid angle in steradians is the area it cuts out:
$\Omega=($ surface area $S) /$ (radius of the sphere r)

Emission of an Object (2)

The radiant exitance M is the integral of the radiance over the solid angle Ω.

It measures the total power emitted per unit surface area. Units are [W m${ }^{-2}$].

For Lambertian sources we get:

$$
M=\int L \cos \theta d \Omega=2 \pi L \int_{0}^{2 \pi} \sin \theta \cos \theta d \theta=\pi L
$$

The flux Φ or luminosity L emitted by the source is product of radiant exitance and total surface area of the source - hence the power emitted by the entire source.

For example, a source of radius R has:

$$
\Phi=4 \pi R^{2} M=4 \pi^{2} R^{2} L
$$

Side note: Lambertian Emitters

Perfect black bodies obey Lambert's law (1760):

$$
d P_{v}=B_{v} d S \cos \theta \Omega d v=B_{v} d \sigma d \Omega d v
$$

meaning that the intensity is independent of the direction θ of observation.

When a Lambertian surface is viewed from an angle θ then $d \Omega$ is decreased by $\cos (\theta)$ but the size of the observed area A is increased by the corresponding amount. Example: the Sun is almost a perfect Lambertian radiator (except for the limb) with a uniform brightness across the disk (although only the center is on-axis).

Computing the received Power

A detector system usually accepts radiation only from a limited range of directions, the field of view (FOV).

The relevant area of the source depends on FOV and distance r.
The detected power is then the radiance times the source area within the FOV times the solid angle subtended by the optical system as viewed from the source.

Computing the received Power (2)

Here we assume that the entire source of radius R (or area πR^{2}) lies within the FOV.

The solid angle subtended by the detector system is:

$$
\Omega=\frac{a}{r^{2}}
$$

where a is the area of the entrance aperture and r is the distance to the source.

For a circular aperture: $\quad \Omega=4 \pi \sin ^{2}\left(\frac{\theta}{2}\right)$
where θ is the half angle of the right cone.

Computing the received Power
 (3)

The irradiance E is the power received at a unit surface element from the source. Units are [$\mathrm{W} \mathrm{m}^{-2}$]. To compute E :

1. multiply $M(=\pi \cdot L)$ by surface area A of the source to get the flux Φ.

2. divide the flux Φ by the area of a sphere of radius r.
That yields: $\quad E=\frac{A L}{4 r^{2}}$
The spectral irradiance E_{v} or flux density is the irradiance per frequency or wavelength interval:

$$
E_{v}=\frac{A L_{v}}{4 r^{2}}
$$

The units are [$\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1}$] or [Jy].
Note: 1 Jansky $=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$.

Overview of Radiometric Quantities

Table 1.1 Definitions of radiometric quantities

2. Black Body Radiation

Most astronomical sources emit close to a black body. described either by a single temperature or by a series of temperatures.

Example: COBE measurement of the cosmic background

Black Body Emission

The specific intensity I_{v} of a blackbody is given by Planck's law as:

$$
B_{v}(T)=\frac{2 h v^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h v}{k T}\right)-1} \quad \text { in units of }\left[\mathrm{W} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}\right]
$$

In terms of wavelengths this corresponds to:

$$
\left.B_{\lambda}(T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{\exp \left(\frac{h c}{\lambda k T}\right)-1} \quad \text { in units of [W } m-1 \mathrm{sr}-1\right]
$$

Note for the conversion frequency \Leftrightarrow wavelength:

$$
d v=\frac{c}{\lambda^{2}} d \lambda \quad \text { or } \quad d \lambda=\frac{c}{v^{2}} d v
$$

Black Body Approximations

At high frequencies ($h v \gg k T$) we get Wien's law:

$$
B_{v}(T)=\frac{2 h v^{3}}{c^{2}} \exp \left(-\frac{h v}{k T}\right)
$$

At low frequencies (hv << kT) we get Rayleigh-Jeans' law:

$$
B_{v}(T) \approx \frac{2 v^{2}}{c^{2}} k T=\frac{2 k T}{\lambda^{2}}
$$

The total radiated power per unit surface is proportional to the fourth power of the temperature:

$$
\iint_{\Omega} \int_{V} B_{v}(T) d v d \Omega=\sigma T^{4}
$$

$\sigma=5.67 \cdot 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$ is the Stefan-Boltzmann constant.

Temperature \Leftrightarrow Radiation

Black Body Temperatures

The temperature corresponding to the maximum specific intensity is given by:

$$
\frac{c}{v_{\max }} T=5.096 \cdot 10^{-3} \mathrm{mK} \text { or } \lambda_{\max } T=2.98 \cdot 10^{-3} \mathrm{mK}
$$

Hence, cooler BBs have their peak emission at longer wavelengths and at lower intensities.

Note: assuming BB radiation one often describes the emission from objects via their effective temperature.

3. Polarization and Coherence

Coherence (from Latin cohaerere $=$ to be connected) of electromagnetic waves enables temporally and spatially constant interference.

Ideal case of an uni-directional monochromatic wave (perfect laser): it is possible to define the relative phase at two arbitrary points along k.
"Worst" case (in terms of coherence): black-body radiation.

Two types of coherence:

1. spatial coherence \rightarrow image formation
2. temporal coherence \rightarrow spectral analysis

Mutual Degree of Coherence

Consider a complex field $V(\dagger)$ as a stationary random process with power spectrum $S(v)$ and time average $\langle V(t)\rangle=0$.

Measure the fields at any two points in space $V_{1}(t)$ and $V_{2}(t)$. The cross correlation between these measurements is given by

$$
\Gamma_{12}(\tau)=\left\langle V_{1}(t) V_{2}^{*}(t+\tau)\right\rangle
$$

Note that the mean intensity at point 1 can be described by

$$
\Gamma_{11}(0)=\left\langle V_{1}(t) V_{1}^{*}(t)\right\rangle
$$

The (mutual degree of) coherence can then be defined as:

$$
\gamma_{12}(\tau)=\frac{\Gamma_{12}(\tau)}{\left[\Gamma_{11}(0) \Gamma_{22}(0)\right]^{1 / 2}}
$$

Note that γ_{12} includes both spatial (points 1,2) and temporal (T) coherence.

Quasi-Monochromatic Radiation

Quasi-monochromatic radiation = spectral density is confined to the neighbourhood Δv of some frequency v :

$$
S(v)=\exp \left(-\frac{\left(v-v_{0}\right)^{2}}{\Delta v^{2}}\right)
$$

The autocorrelation of $V(t)$ is then

$$
R(\tau)=\exp \left(-\frac{\tau^{2}}{\tau_{c}^{2}}\right)
$$

which yields the relation between spectral width Δv and temporal width ΔT.

$$
\tau_{c} \Delta v \cong 1
$$

The coherence length /c is the length over which the field retains the memory of its phase (i.e., the distance beyond which the waves Λ and $\lambda+\Delta \lambda$ are out of step by Λ):

$$
l_{c}=c \tau_{c}=\frac{\lambda_{0}^{2}}{\Delta \lambda}
$$

For $/ \ll c T_{c}$ it follows that: $\gamma_{12}(\tau) \sim \gamma_{12}(0) e^{-2 i \pi v_{0} \tau}$ and the coherence is determined by $\gamma_{12}(0)$.

Interference Measurements

Consider Young's double slit experiment in which two diffracted, coherent beams interfere.

The maximum and minimum intensities define the visibility V :

$$
V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

Coherence and Photon Statistics

Now we consider the particle aspect of light. There are several cases:

1. Purely monochromatic radiation: τ is infinite. For any τ the number of photons n obeys a Poissonian distribution with variance:

$$
\left\langle\Delta n^{2}\right\rangle=\bar{n} \tau
$$

2. Quasi-monochromatic radiation: coherence time $\tau_{c} \sim 1 / \Delta v$ where $\Delta \mathrm{v}$ is the line width. If $\tau \gg T_{c}$ the photon fluctuation is given by the Bose-Einstein statistics:

$$
\left\langle\Delta n^{2}\right\rangle=\bar{n} \tau\left(1+\frac{1}{e^{h \nu / k T}-1}\right)
$$

3. For thermal radiation if $\tau \gg T_{c}$ the photons will not follow a Poissonian distribution anymore but group together (bunching) when $\frac{1}{e^{h / k T}-1} \sim 1$
4. For non-thermal radiation bunching becomes more significant as $\frac{1}{e^{h \nu / k T}-1}$ increases.

Coherence and Photon Statistics

a) Constant classical intensity and photon events following a Poissonian distribution.
b) Classical intensity of a thermal source with a photon distribution that combines a Poisson process, Bose-Einstein distribution, and bunching.
a

Polarized Radiation

There are three types of polarized waves:

Polarized waves

The degree of polarization is important as it carries information on the properties of the source (magnetic fields, dust grain alignment, etc.).

Telescope, instrument optics and detector may alter the polarization.

$$
\begin{aligned}
& E_{x}=a_{1} \cos \left(2 \pi \nu t-k \cdot r+\phi_{1}\right) \\
& E_{y}=a_{2} \cos \left(2 \pi \nu t-k \cdot r+\phi_{2}\right)
\end{aligned}
$$

where a_{i} are the amplitudes, v is the frequency, $k=2 \pi / \Lambda$ the wavevector, and Φ_{i} are the phases.

We also define $\Phi=\Phi_{2}-\Phi_{1}$

The Stokes Parameter

Polarization can be defined by the four Stokes parameters I, Q, U, V (1852) as follows:

$$
\begin{aligned}
& I=a_{1}^{2}+a_{2}^{2} \\
& Q=a_{1}^{2}-a_{2}^{2}=I \cos 2 \chi \cos 2 \psi \\
& U=2 a_{1} a_{2} \cos \phi=I \cos 2 \chi \sin 2 \psi \\
& V=2 a_{1} a_{2} \sin \phi=I \sin 2 \chi
\end{aligned}
$$

Generally, the degree of polarization of a wave is:

$$
\Pi=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I}
$$

A plane wave has $\Pi=1$ and the Stokes parameters are related as:

$$
I^{2}=Q^{2}+U^{2}+V^{2}
$$

4. Magnitudes

(Apparent) magnitude = relative measure of the monochromatic flux $e(\lambda)$ of a source:

$$
m_{\lambda_{0}}=-2.5 \log \frac{e\left(\lambda_{0}\right)}{e_{0}}=-2.5 \log e\left(\lambda_{0}\right)+q_{\lambda_{0}}
$$

The constant q_{0} defines magnitude zero.
This system has its origins in the Greek classification of stars according to their visual brightness. The brightest stars were $m=1$, the faintest detected with the bare eye were $m=6$.

Later formalized by Pogson (1856): a $1^{\text {st }}$ mag star is 100 times brighter than a $6^{\text {th }}$ mag star.

Note: usually 'magnitudes' are being used for quasi-pointlike objects. When referring to surface brightness one uses mag/sr or mag/arcsec ${ }^{2}$.

Magnitude systems

In practice, measurements are done through a transmission filter $t_{0}(\lambda)$ that defines a finite bandwidth:
$m_{\lambda_{0}}=-2.5 \log \int_{0}^{\infty} t_{0}(\lambda) e(\lambda) d \lambda+2.5 \log \int_{0}^{\infty} t_{0}(\lambda) d \lambda+q_{\lambda_{0}}$
As filters differ there are many different photometric systems:

- Johnson UBV system
- Gunn griz
- USNO
- SDSS
- 2MASS JHK
- HST filter system (STMAG)
-...
- AB magnitude system
$m(A B)=-2.5 \log \left(F\left[W / \mathrm{cm}^{2} / \mathrm{Hz}\right]\right)-48.60$

Photometric System	Reference
AAO	Allen \& Cragg (1983) Elias et al. (1983)
ARNICA	Hunt et al. (1988)
Bessell \& Brett	Bessell \& Brett (1988)
CIT	Elias et al. (1982) Elias et al. (1983)
ESO	van der Bliek et al (1996)
Koornneef	Koornneef (1983)
LCO	Persson et al. (1998)
MKO	MKIRT web site (2002)
MSSSO	Carter (1990) Carter \& Meadows (1995)
SAAO	Hawarden et al. (2001)
UKIRT	

Standard Photometry

Name	$\lambda_{0}[\mu \mathrm{~m}]$	$\Delta \lambda_{0}[\mu \mathrm{~m}]$	$e_{0}\left[\mathrm{~W} \mathrm{~m}^{-2} \mathrm{~mm}^{-1}\right]$	$e_{0}[\mathrm{Jy}]$	
U	0.36	0.068	4.35×10^{-8}	1880	Ultraviolet
B	0.44	0.098	7.20×10^{-8}	4650	Blue
V	0.55	0.089	3.92×10^{-8}	3950	Visible
R	0.70	0.22	1.76×10^{-8}	2870	Red
I	0.90	0.24	8.3×10^{-9}	2240	Infrared
J	1.25	0.30	3.4×10^{-9}	1770	Infrared
H	1.65	0.35	7×10^{-10}	636	Infrared
K	2.20	0.40	3.9×10^{-10}	629	Infrared
L	3.40	0.55	8.1×10^{-11}	312	Infrared
M	5.0	0.3	2.2×10^{-11}	183	Infrared
N	10.2	5	1.23×10^{-12}	43	Infrared
Q	21.0	8	6.8×10^{-14}	10	Infrared

$1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$.

Bolometric Magnitude

Bolometric magnitude = integral of the monochromatic flux over all

$$
m_{\text {bol }}=-2.5 \log \frac{\int_{0}^{\infty} e(\lambda) d \lambda}{e_{\text {bol }}}
$$

wavelengths:
with $e_{\text {bol }}=2.52 \cdot 10^{-8} \mathrm{~W} / \mathrm{m}^{2}$

If the source radiates isotropically one gets:

$$
m_{b o l}=-0.25+5 \log D-2.5 \log \frac{L}{L_{\Theta}}
$$

where $L_{0}=3.827 \cdot 10^{26} \mathrm{~W}$ is the luminosity of the Sun.

Absolute Magnitude and Color Indices

Absolute magnitude $=$ apparent magnitude of the source if it were at a distance of $D=10$ parsecs.

Including a term A for interstellar absorption we get:

$$
M=m+5-5 \log D-A
$$

Color indices $=$ difference of magnitudes at different wavebands $=$ ratio of fluxes at different wavelengths.

- The color indices of an AO dwarf star are about zero longward of V.
- The color indices of a blackbody in the Rayleigh-Jeans tail are:

$$
B-V=-0.46, \quad U-B=-1.33, V-R=V-I=\ldots=V-N=0.0
$$

Applications: e.g., Color-Color-Diagram

- Plonetory Nebulo

Corbon Stor

- Cotoclysmic Variable

L stor

- Subdwarf

