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B d  “ b l h ” ( ) b  P   F  b  Based on “Observational Astrophysics” (Springer) by P. Lena, F. Lebrun 
& F. Mignard, 2nd edition – Chapter 3; and Rieke “Detection of Light”

1. Radiometryy
Radiometry = the physical quantities associated with the energy 
transported by electromagnetic radiationtransported by electromagnetic radiation.

Photon energy:
λ

ν hc
hEph ==gy

with  h =  Planck’s constant [6.626·10-34 Js]
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Emission of an Object

Consider a projected area of a surface 
element dA onto a plane perpendicular to element dA onto a plane perpendicular to 
the direction of observation.
θ is the angle between both planes.

The spectral radiance Lv or specific intensity Iv = the power leaving a 
unit projected area [m2] into a unit solid angle [sr] and unit frequency 
interval [Hz].

It is measured in units of [W m-2 sr-1 Hz-1] in frequency space. 

The spectral radiance in wavelength space Lλ has units  [W m-3 sr-1]

The radiance L or intensity I is the spectral radiance integrated over The radiance L or intensity I is the spectral radiance integrated over 
all frequencies or wavelengths.  Units are  [W m-2 sr-1].

Side note:  Steradian
Steradian [sr] = the dimensionless SI unit of the solid angle.  

One steradian is the solid angle at the center of a sphere of radius r 
under which a surface area of area r2is seen. 

A complete sphere = 4π sr.
1 sr = (180deg/π)2 = 3282.80635 deg2. ( g ) g

In two dimensions, the angle in radians is the m , g
arc length it cuts out:        
θ = (arc length s) / (radius of the circle r)

In three dimensions, the solid angle in 
steradians is the area it cuts out:        
Ω = (surface area S) / (radius of the sphere r)



Emission of an Object  (2)
The radiant exitance M is the integral of 
the radiance over the solid angle Ω.g Ω

It measures the total power emitted per 
it s f    U its   [W m 2]unit surface area.  Units are  [W m-2].

For Lambertian sources we get:
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The flux Φ or luminosity L emitted by the source is product of 
radiant exitance and total surface area of the source – hence the f f
power emitted by the entire source.  

F  l   s  f di s R h s:For example, a source of radius R has:

LRMR 222 44 ππ ==Φ LRMR 44 ππΦ

Side note: Lambertian Emitters

νσνθ ννν dddBddSBdP Ω=Ω= cos
Perfect black bodies obey Lambert’s law (1760):

ννν

meaning that the intensity is independent of the direction θ of 
observationobservation.

When a Lambertian surface is 
viewed from an angle θ then dΩ is 
decreased by cos(θ) but the size of 
the observed area A is increased by the observed area A is increased by 
the corresponding amount.  Example: 
the Sun is almost a perfect 
Lambertian radiator (except for the 
limb) with a uniform brightness 
across the disk (although only the across the disk (although only the 
center is on-axis).



Computing the received Power

A detector system A detector system 
usually accepts radiation 
only from a limited y
range of directions, the 
field of view (FOV).

The relevant area of the source depends on FOV and distance r.

Th  d d  i  h  h  di  i  h    The detected power is then the radiance times the source area 
within the FOV times the solid angle subtended by the optical system 
as viewed from the source   as viewed from the source.  

Computing the received Power  (2)

Here we assume that the entire source of 
di s R (   R2) li s ithi  th  FOVradius R (or area πR2) lies within the FOV.

The solid angle subtended by the detector g y
system is:

2r
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where a is the area of the entrance aperture 
and r is the distance to the source.    

For a circular aperture: ⎟
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Computing the received Power  (3)
The irradiance E is the power received at 
a unit surface element from the source.  f f
Units are  [W m-2].  To compute E:

1 m lti l  M ( L) b  s f   A 1. multiply M (=π·L) by surface area A 
of the source to get the flux Φ.

2. divide the flux Φ by the area of a f y f
sphere of radius r.

Th t i lds: 
AL

E =That yields: 24r
E =

The spectral irradiance E or flux density is the irradiance per The spectral irradiance Ev or flux density is the irradiance per 
frequency or wavelength interval:  

24r

AL
E ν
ν =

The units are  [W m-2 Hz-1] or [Jy].

Note:  1 Jansky = 10-26 W m-2 Hz-1

4r

Note:  1 Jansky = 10 26 W m 2 Hz 1.

Overview of Radiometric Quantities
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2. Black Body Radiationy
Most astronomical sources emit close to a black body. described 
either by a single temperature or by a series of temperatureseither by a single temperature or by a series of temperatures.

Example:  COBE measurement of the cosmic background 

Black Body Emission
The specific intensity Iν of a blackbody is given by Planck’s law as:

i  it  f [W 2 1 H 1]( ) 12 3hν in units of [W m-2 sr-1 Hz-1]( )
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In terms of wavelengths this corresponds to:

( ) 12 2hc
TB in units of [W m-1 sr-1]( )

1exp
5

−⎟
⎠
⎞

⎜
⎝
⎛

=

kT
hc

TB

λ
λλ

⎠⎝ kTλ

Note for the conversion frequency wavelength:

cc ν
ν

λλ
λ

d
c

dd
c

dv
22

or         ==



Black Body Approximations
At high frequencies  (hv >> kT)  we get Wien’s law:
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At low frequencies (hv << kT) we get Rayleigh-Jeans’ law:
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The total radiated power per unit surface is proportional to the 
fourth power of the temperature: ( ) 4TddTB σνν =Ω∫ ∫ ( )

ν
ν∫ ∫

Ω

σ = 5.67·10-8 W m-2 K-4 is the Stefan-Boltzmann constant.

Temperature Radiation



Black Body Temperatures
The temperature corresponding to the maximum specific intensity is 
given by:g y

mK  1098.2or  mK   10096.5 3
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Hence, cooler BBs have their 
k i i  t l  peak emission at longer 

wavelengths and at lower 
intensities. intensities. 

N t  i  BB di ti  Note: assuming BB radiation 
one often describes the 
emission from objects via their emission from objects via their 
effective temperature. 

3. Polarization and Coherence 
Coherence (from Latin cohaerere = to be connected) of 
electromagnetic waves enables temporally and spatially constant 
interference.

Ideal case of an uni-directional monochromatic wave (perfect laser): 
it is possible to define the relative phase at two arbitrary points 
along k.

“Worst” case (in terms of coherence):  black-body radiationWorst  case (in terms of coherence):  black-body radiation.

Two types of coherence:

1 spatial coherence image formation1. spatial coherence image formation
2. temporal coherence spectral analysis



Mutual Degree of Coherence
Consider a complex field V(t) as a stationary random process with 
power spectrum S(v) and time average ‹V(t)› = 0.

Measure the fields at any two points in space  V1(t) and  V2(t).  The 
cross correlation between these measurements is given bycross correlation between these measurements is given by

( ) ( ) ( )ττ +=Γ tVtV *
2112

Note that the mean intensity at point 1 can be described by 
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The (mutual degree of) coherence can then be defined as:
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Note that γ12 includes both spatial (points 1,2) and temporal (τ) 
coherence.

Quasi-Monochromatic Radiation
Quasi-monochromatic radiation = spectral density is confined to the 
neighbourhood Δν of some frequency v:
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which yields the relation between spectral width Δν and temporal 
width Δτ: 1Δwidth Δτ: 1≅Δντ c

The coherence length lc is the length over which the field retains the 
memory of its phase (i.e., the distance beyond which the waves λ and 
λ+Δλ are out of step by λ): λ2λ+Δλ are out of step by λ):

λ
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For l << cτc it follows that: 
and the coherence is determined by γ12(0).
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Interference Measurements
Consider Young’s double slit experiment in which two diffracted, 
coherent beams interfere.

The maximum and minimum intensities define the visibility V:The maximum and minimum intensities define the visibility V:
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Coherence and Photon Statistics
Now we consider the particle aspect of light. There are several cases:

1. Purely monochromatic radiation: τ is infinite. For any τ the number 
of photons n obeys a Poissonian distribution with variance:

2

2. Quasi-monochromatic radiation: coherence time τc ~ 1/Δν where 
τnn =Δ 2

Δν is the line width.  If τ >> τc the photon fluctuation is given by 
the Bose-Einstein statistics:
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4. For non-thermal radiation bunching becomes more significant as 
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Coherence and Photon Statistics  (2)

) C nst nt l ssi l a) Constant classical 
intensity and photon 
events following a f g
Poissonian distribution.

b) Classical intensity of a 
th m l s  ith  thermal source with a 
photon distribution that 
combines a Poisson m
process, Bose-Einstein 
distribution, and 
b hibunching.

Polarized Radiation
Th   th  t p s f p l i d s:There are three types of polarized waves:

linear                    circular       and elliptical polarization



Polarized waves

The degree of polarization is important as it carries information on the 
properties of the source (magnetic fields, dust grain alignment, etc.).properties of the source (magnetic fields, dust grain alignment, etc.).

T l  i t t ti  d d t t   lt  th  l i tiTelescope, instrument optics and detector may alter the polarization.

( )11 2cos φπν +⋅−= rktaEx

( )22 2cos φπν +⋅−= rktaEy

where ai are the amplitudes, v is the frequency, k=2π/λ the wavevector, 
and Φi are the phases.and Φi are the phases.

We also define Φ = Φ2 – Φ1

The Stokes Parameter
Polarization can be defined by the four Stokes parameters I, Q, U, V 
(1852) as follows: V
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Generally, the degree of polarization of a wave is:

VUQ 222 ++
I
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A plane wave has Π = 1 and the Stokes parameters are related as:
2222 VUQI ++= VUQI ++=



4. Magnitudesg
(Apparent) magnitude = relative measure of the monochromatic flux 
(λ) f  e(λ) of a source: ( ) ( )

00 0
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The constant q0 defines magnitude zero.
0e

This system has its origins in the Greek classification of stars 
according to their visual brightness.  The brightest stars were m = 1, accord ng to the r v sual br ghtness.  he br ghtest stars were m  , 
the faintest detected with the bare eye were m = 6.  

L t  f li d b  P (1856)    1st t  i  100 ti  b i ht  Later formalized by Pogson (1856):  a 1st mag star is 100 times brighter 
than a 6th mag star.

Note: usually ‘magnitudes’ are being used for quasi-pointlike objects.  
When referring to surface brightness one uses mag/sr or mag/arcsec2.

Magnitude systems
In practice, measurements are done through a transmission filter t0(λ) 
that defines a finite bandwidth:
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As filters differ there are many different 
photometric systems:photometric systems:

• Johnson UBV system
• Gunn griz
• USNO
• SDSS• SDSS
• 2MASS JHK
• HST filter system (STMAG)
• ...
• AB magnitude system

m(AB) = -2.5 log(F[W/cm2/Hz]) - 48.60



Standard Photometry

Bolometric Magnitude

Bolometric magnitude = integral of the monochromatic flux over all 
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m −= log5.2wavelengths:                                                  with ebol = 2.52 10 W/m

If the source radiates isotropically one gets:
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where Lo = 3.827·1026 W is the luminosity of the Sun. 



Absolute Magnitude and Color Indices

Absolute magnitude = apparent magnitude of the source if it were at a 
di t  f D  10   distance of D = 10 parsecs.  

Including a term A for interstellar absorption we get:

ADmM −−+= log55

g m f p g

C l i di   diff  f i d   diff  b d   Color indices = difference of magnitudes at different wavebands = 
ratio of fluxes at different wavelengths.  

• The color indices of an A0 dwarf star are about zero longward of V.
• The color indices of a blackbody in the Rayleigh-Jeans tail are:          y y g

B-V=-0.46,  U-B=-1.33,  V-R = V-I = ... = V-N = 0.0 

Applications: e.g., Color-Color-Diagram


