Astronomische Waarneemtechnieken (Astronomical Observing Techniques)

 $8^{\text {th }}$ Lecture: 12 November 2008$$
\begin{aligned}
S_{\text {cont }}= & \left.\frac{\sigma h \lambda \sqrt{n_{\text {pix }}} 10^{30}}{S R \Delta \lambda A_{\text {tel }} \eta_{D} G \eta_{\text {atm }} \eta_{\text {tot }} t_{\text {int }}}\left|\frac{2 h c^{2}}{\lambda^{5}}\right| \frac{\varepsilon_{T}}{\exp \left[\frac{h c}{k T_{T} \lambda}\right]-1}+\frac{\varepsilon_{A}}{\exp \left[\frac{h c}{k T_{A}}\right]-1}\right) \eta_{\text {tot }} . \\
& \cdot \sqrt{2 \pi\left(1-\cos \left(\arctan \left(\frac{1}{2 F \#}\right)\right)\right) D^{2}{ }_{\text {pix }} \cdot \frac{\eta_{D} G \lambda}{h c} \cdot \Delta \lambda \cdot t_{\text {int }}+I_{d} t_{\text {int }}+N_{\text {read }}^{2} n}
\end{aligned}
$$

Based on "Observational Astrophysics" (Springer) by P. Lena, F. Lebrun \& F. Mignard, $2^{\text {nd }}$ edition - Chapter 6; and other sources

Noise ...?

Two noisy spectra... What part is noise? What is real information?

General Overview

Detected signal $=$ Source Signal + Background

Background:

- background signal (sky background, thermal emission, cosmics, ...)
- background noise (noise associated with the background signal)
- detectors noise (see next lecture)

Source signal:

- fundamental (physical limitations)
- observational/practical limitations
- transmission noise (scintillation)

Gaussian Noise

Gaussian noise - noise with a Gaussian amplitude distribution (normal distribution), i.e., the noise values are Gaussiandistributed*.

$$
S=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

*Often incorrectly labeled white noise, which refers to the (un-)correlation of the noise.

Poisson Noise

Poisson noise - noise following a Poissonian distribution:

$$
P \sim \frac{e^{-\bar{N}} \bar{N}^{k}}{k!}
$$

For instance, fluctuations in the detected photon flux between finite time intervals Δt. Detected are k photons, while expected are on average \bar{N} photons.
Note that the standard deviation of P is \sqrt{N}.

Fundamental Fluctuations

Consider a thermodynamic system of monochromatic power $P(v)$ and mean energy $\langle P(v)\rangle$. The actual energy of the system fluctuates around this mean with a variance of:
$\left.\left\langle[\Delta P(v)]^{2}\right\rangle=P(v) \cdot h v \cdot 1+\frac{1}{\exp \left[\frac{h v}{k T}\right]-1}\right]$
Two terms:
Two terms:
the quantum noise (the photon number fluctuation), and the thermal noise (phase differences of the wave fields).

Characteristic domains:

Signal Processing: Sampling

Sampling means multiple measurements of the signal either in time (Δt) or in space (Δx).
The interval between two measurements is called sampling rate.

The Nyquist-Shannon sampling theorem (1949) states that

> If a function $x(t)$ contains no frequencies higher than f_{s}, it is completely determined by measuring its values at a series of points spaced $1 /\left(2 f_{s}\right)$ apart.

Sampling above or below the sampling rate $1 /\left(2 f_{s}\right)$ is called oversampling or undersampling, respectively.

Signal Processing: Digitization

Digitization = converting an analog signal into a digital signal using an Analog-to-Digital Converter (ADC).

The number of bits determines the dynamic range of the ADC. The resolution is 2^{n}, where n is the number of bits.

Typical ADCs have:
12 bit: $2^{12}=4096$ quantization levels
16 bit: $2^{16}=65636$ quantization levels

Compare this to the detector pixel capacity (number of electrons)!

Instrument Sensitivities - Overview

The signal detection depends on the two main components:

1. the strength of the detected signal $S_{e l}$
2. the total noise $\mathrm{N}_{\text {tot }}$ nof the system,
and can be characterized by the statistical significance of the detection σ (= signal-to-noise S/N)

$$
\sigma=\frac{S_{e l}}{N_{t o t}}
$$

Notes:
(i) in this discussion we neglect quantum (shot) noise from the source.
(ii) we consider only point sources.
(iii) typically, the threshold for a "real" detection is taken as 3σ.

Instrument Sensitivities

The detected signal $S_{e l}$ depends on:

- the source flux density $S_{\text {src }}$ [photons $\mathrm{s}^{-1} \mathrm{~cm}^{-2} \mu \mathrm{~m}^{-1}$]
- the integration time $t_{\text {int }}[s]$
- the telescope aperture $A_{\text {tel }}\left[\mathrm{m}^{2}\right]$
- the transmission of the atmosphere $n_{\text {atm }}$
- the total throughput of the system $n_{\text {tot }}$, which includes the reflectivity of all telescope mirrors and the reflectivity (or transmission) of all instrument components, such as mirrors, lenses, filters, beam splitters, grating efficiencies, slit losses, etc.
- the Strehl ratio SR
- the detector responsivity $n_{0} G$, and
- the spectral bandwidth $\Delta \mathrm{A}$ [$\mu \mathrm{m}$]

$$
S_{e l}=S_{s r c} S R \Delta \lambda A_{t e l} \eta_{D} G \eta_{\text {atm }} \eta_{\text {tot }} t_{\mathrm{int}}
$$

Instrument Sensitivities

The total noise $N_{\text {tot }}$ depends on:

- the number of pixels $n_{\text {pix }}$ of one resolution element
- the background noise per pixel $N_{\text {back }}$

$$
N_{t o t}=N_{b a c k} \sqrt{n_{p i x}}
$$

Where the total background noise $N_{\text {back }}$ depends on:

- the background flux density $S_{\text {back }}$
- the integration time $t_{\text {int }}$
- the detector dark current I_{d}
- the number of reads (N) and detector frames (n)

$$
N_{\text {back }}=\sqrt{S_{\text {back }} t_{\mathrm{int}}+I_{d} t_{\mathrm{int}}+N_{\text {read }}^{2} n}
$$

Instrument Sensitivities

The background flux density $S_{\text {back }}$ depends on:

- the total background intensity $B_{\text {tot }}$

$$
\begin{aligned}
& B_{\text {tot }}=\left(B_{T}+B_{A}\right) \eta_{t o t} \\
& B_{r, A}=\frac{2 h c^{2}}{\lambda^{5}}\left[\frac{\varepsilon}{\exp \left[\frac{h c}{k T \lambda}\right]-1}\right]
\end{aligned}
$$

where B_{T} and B_{A} are the thermal emissions from telescope and atmosphere, approximated by black body emission

- the spectral bandwidth $\Delta \lambda$
- the pixel field of view $A \times \Omega \quad A \times \Omega=2 \pi\left(1-\cos \left(\arctan \left(\frac{1}{2 F \#}\right)\right)\right) D^{2}{ }_{p i x}$
- the detector responsivity $n_{D} G$, and
- the photon energy hc/^

$$
S_{b a c k}=B_{t o t} \cdot A \times \Omega \cdot \frac{\eta_{D} G \lambda}{h c} \cdot \Delta \lambda
$$

Instrument Sensitivities

Putting it all together, the minimum detectable source signal is:

$$
S_{s r c}=\frac{\sigma_{S / N} N_{b a c k} \sqrt{n_{p i x}}}{S R \Delta \lambda A_{t e l} \eta_{D} G \eta_{a t m} \eta_{t o t} t_{\mathrm{int}}}
$$

Now we can calculate the unresolved line sensitivity $S_{\text {line }}$ $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ from the source flux $\mathrm{S}_{\text {src }}\left[\right.$ photons $\left./ \mathrm{s} / \mathrm{cm}^{2} / \mu \mathrm{m}\right]$:

$$
S_{\text {line }}=\frac{h c}{\lambda} S_{s r c} \Delta \lambda \cdot 10^{4}
$$

and with $\quad S_{\lambda}\left[\frac{W}{m^{2} \mu m}\right]=S_{v}[J y] \cdot 10^{-26} \frac{c}{\lambda^{2}}$ we can calculate the continuum sensitivity $S_{\text {cont }}$:

$$
S_{c o n t}=\frac{h c}{\lambda} S_{s r c} \cdot 10^{4} \cdot \frac{\lambda^{2}}{c} \cdot 10^{26}=10^{30} h \lambda S_{s r c}
$$

Summary: I. S/N Basics

Note: \quad Signal $=$ S; \quad Background $=B ; \quad$ Noise $=$ N; Telescope diameter $=D$
Obviously: $\sigma=\begin{gathered}\text { Signal } \\ \text { Noise }\end{gathered}$
\leftarrow measured as $(S+B)$-mean $\{B\}$
\leftarrow total noise $=\sqrt{\sum\left(N_{i}\right)^{2}}$ if statist. independent
Noise: Poisson noise in B, read noise, dark current noise, ...
Both S and N should be in units of events (photons, electrons, data numbers) per unit area (pixel, PSF size, $\operatorname{arcsec}^{2}$).

Standard case: $N=$ Poisson shot noise in $B=\sqrt{B}$
Side note: noise between pixels is equivalent to successive measurements with one pixel-analogous to throwing 5 dices versus one dice 5 times.

Dependence on integration time $t_{\text {int }}$:
Consider integrating $n \times \mathrm{t}_{\text {int }}$: $\quad \sigma=\frac{n \cdot S}{\sqrt{n \cdot B}}=\sqrt{n} \frac{S}{N}$
$\rightarrow \quad \frac{S}{N} \propto \sqrt{t_{\text {int }}} \quad$ You need to integrate 4 times as long to get twice the S / N

Summary: II. S/N and Telescope Size

Note: \quad Signal $=S ; \quad$ Background $=B ; \quad$ Noise $=N ;$ Telescope diameter $=D$
Case 1: seeing limited system \& "point source" of $\theta_{\text {seeing }}$

$$
\begin{aligned}
& \theta_{\text {seeing }} \sim \text { const } \rightarrow \text { if Nyquist sampled: } S \sim D^{2} ; B \sim D^{2} \rightarrow N \sim D \\
& S / N \sim D \rightarrow t_{\text {int }} \sim D^{-2} .
\end{aligned}
$$

Case 2: diffraction limited system \& extended source "PSFØ" \sim cons $\dagger \rightarrow$ if Nyquist sampled: $S \sim D^{2}$, pixel area $\sim D^{-2}$ D^{2} and D^{-2} cancel each other; same for B
$S / N \sim$ const $\rightarrow \dagger_{\text {int }} \sim$ cons $\dagger \rightarrow$ no gain from larger telescopes!
Case 2B: offline re-sampling by a factor x (= telescope x-times smaller)
$S / N \sim \delta n_{\text {pix }} \rightarrow S / N \sim \delta x^{2}=x \rightarrow t_{\text {int }} \sim x^{-2}$.
Case 3: diffraction limited system \& point source
$" S / N=(S / N)_{\text {light bucket }}(S / N)_{\text {pixel scale }}{ }^{\prime \prime}$
$S \sim D^{2} ; B \sim D^{-2} \rightarrow N \sim D^{-1}$; Nyquist: $S \sim$ const; $B /$ pix $\sim D^{-2} \rightarrow N /$ pix $\sim D^{-1}$ combined $S / N \sim D^{2} \rightarrow t_{i n t} \sim D^{-4} \rightarrow$ huge gain: 1hr ELT $=3$ months VLT

