Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 8th Lecture: 12 November 2008

$$S_{cont} = \frac{\sigma h \lambda \sqrt{n_{pix}} 10^{30}}{SR \Delta \lambda A_{tel} \eta_D G \eta_{atm} \eta_{tot} t_{int}} \sqrt{\frac{2hc^2}{\lambda^5}} \left(\frac{\varepsilon_T}{\exp\left[\frac{hc}{kT_T \lambda}\right] - 1} + \frac{\varepsilon_A}{\exp\left[\frac{hc}{kT_A \lambda}\right] - 1} \right) \eta_{tot}}$$
$$\cdot \sqrt{2\pi \left(1 - \cos\left(\arctan\left(\frac{1}{2F\#}\right)\right)\right)} D^2_{pix} \cdot \frac{\eta_D G \lambda}{hc} \cdot \Delta \lambda \cdot t_{int} + I_d t_{int} + N_{read}^2 n$$

Based on "Observational Astrophysics" (Springer) by P. Lena, F. Lebrun & F. Mignard, 2nd edition – Chapter 6; and other sources

Two noisy spectra... What part is noise? What is real information?

General Overview

Detected signal = Source Signal + Background

Background:

- background signal (sky background, thermal emission, cosmics, ...)
- background noise (noise associated with the background signal)
- detectors noise (see next lecture)

Source signal:

- fundamental (physical limitations)
- observational/practical limitations
- transmission noise (scintillation)

Gaussian Noise

Gaussian noise – noise with a Gaussian amplitude distribution (normal distribution), i.e., the noise values are Gaussiandistributed*.

$$S = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

*Often incorrectly labeled white noise, which refers to the (un-)correlation of the noise.

Poisson Noise

Poisson noise - noise following a Poissonian distribution:

$$P \sim \frac{e^{-\overline{N}} \overline{N}^k}{k!}$$

For instance, fluctuations in the detected photon flux between finite time intervals Δt . Detected are k photons, while expected are on average \mathcal{N} photons.

Note that the standard deviation of P is \sqrt{N} .

Fundamental Fluctuations

Consider a thermodynamic system of monochromatic power P(v) and mean energy P(v). The actual energy of the system fluctuates around this mean with a variance of:

Signal Processing: Sampling

Sampling means multiple measurements of the signal – either in time (Δ t) or in space (Δ x).

The interval between two measurements is called sampling rate.

The Nyquist-Shannon sampling theorem (1949) states that

If a function x(t) contains no frequencies higher than f_s , it is completely determined by measuring its values at a series of points spaced $1/(2f_s)$ apart.

Signal Processing: Digitization

Digitization = converting an analog signal into a digital signal using an Analog-to-Digital Converter (ADC).

The number of bits determines the dynamic range of the ADC. The resolution is 2^n , where n is the number of bits.

Typical ADCs have:

12 bit: 2¹² = 4096 quantization levels

16 bit: 2¹⁶ = 65636 quantization levels

Compare this to the detector pixel capacity (number of electrons)!

Instrument Sensitivities - Overview

The signal detection depends on the two main components:

- 1. the strength of the detected signal S_{el}
- 2. the total noise N_{tot} nof the system,
- and can be characterized by the statistical significance of the detection σ (= signal-to-noise S/N)

$$\sigma = \frac{S_{el}}{N_{tot}}$$

Notes:

- (i) in this discussion we neglect quantum (shot) noise from the source.
- (ii) we consider only point sources.
- (iii) typically, the threshold for a "real" detection is taken as 3σ .

Instrument Sensitivities (1)

The detected signal Sel depends on:

- the source flux density S_{src} [photons s⁻¹ cm⁻² μ m⁻¹]
- the integration time t_{int} [s]
- the telescope aperture A_{tel} [m²]
- the transmission of the atmosphere η_{atm}

• the total throughput of the system η_{tot} , which includes the reflectivity of all telescope mirrors and the reflectivity (or transmission) of all instrument components, such as mirrors, lenses, filters, beam splitters, grating efficiencies, slit losses, etc.

- the Strehl ratio SR
- the detector responsivity $\eta_D G$, and
- the spectral bandwidth $\Delta \Lambda$ [µm]

 $S_{Pl} = S_{Src} SR\Delta\lambda A_{tel} \eta_D G \eta_{atm} \eta_{tot} t_{int}$

Instrument Sensitivities (2)

The total noise N_{tot} depends on:

- the number of pixels n_{pix} of one resolution element
- \bullet the background noise per pixel N_{back}

$$N_{tot} = N_{back} \sqrt{n_{pix}}$$

Where the total background noise N_{back} depends on:

- the background flux density Sback
- the integration time t_{int}
- \bullet the detector dark current \mathbf{I}_{d}
- the number of reads (N) and detector frames (n)

$$N_{back} = \sqrt{S_{back} t_{int} + I_d t_{int} + N_{read}^2 n}$$

Instrument Sensitivities (2b)

The background flux density S_{back} depends on:

• the total background intensity B_{tot} B_{tot} where B_T and B_A are the thermal emissions from telescope and atmosphere, approximated by $B_{T,A}$ black body emission

$$B_{tot} = (B_T + B_A)\eta_{tot}$$
$$B_{T,A} = \frac{2hc^2}{\lambda^5} \left[\frac{\varepsilon}{\exp\left[\frac{hc}{kT\lambda}\right] - 1} \right]$$

- the spectral bandwidth $\Delta \lambda$
- the pixel field of view $A \times \Omega = 2\pi \left(1 \cos\left(\arctan\left(\frac{1}{2F^{\#}}\right)\right)\right) D^{2}_{pix}$
- the detector responsivity $\eta_D G$, and
- the photon energy hc/A

$$S_{back} = B_{tot} \cdot A \times \Omega \cdot \frac{\eta_D G \lambda}{hc} \cdot \Delta \lambda$$

Instrument Sensitivities (3)

Putting it all together, the minimum detectable source signal is: \square **N**7

$$S_{src} = \frac{O_{S/N} N_{back} \sqrt{n_{pix}}}{SR\Delta \lambda A_{tel} \eta_D G \eta_{atm} \eta_{tot} t_{int}}$$

Now we can calculate the unresolved line sensitivity S_{line} [W/m²] from the source flux S_{src} [photons/s/cm²/µm]:

$$S_{line} = \frac{hc}{\lambda} S_{src} \Delta \lambda \cdot 10^4$$

Be aware of unit CONVERSION ISSUES and with $S_{\lambda}\left[\frac{W}{m^{2}\mu m}\right] = S_{\nu}[Jy] \cdot 10^{-26} \frac{c}{\lambda^{2}}$ we can calculate the continuum sensitivity Scont

$$S_{cont} = \frac{hc}{\lambda} S_{src} \cdot 10^4 \cdot \frac{\lambda^2}{c} \cdot 10^{26} = 10^{30} h\lambda S_{src}$$

SUMMARY

Summary: I. S/N Basics

Note: Signal = S; Background = B; Noise = N; Telescope diameter = D

σ = ----Obviously: Noise

 \leftarrow measured as (S+B)-mean{B} \leftarrow total noise = $\sqrt{\sum (N_i)^2}$ if statist. independent

Noise: Poisson noise in B, read noise, dark current noise, ...

Both S and N should be in units of events (photons, electrons, data numbers) per unit area (pixel, PSF size, arcsec²).

Standard case: N = Poisson shot noise in B = $\int B$

Side note: noise between pixels is equivalent to successive measurements with one pixel - analogous to throwing 5 dices versus one dice 5 times.

Dependence on integration time t_{int}:

Consider integrating $n \times t_{int}$: $\sigma = \frac{n \cdot S}{\sqrt{n \cdot R}} = \sqrt{n} \frac{S}{N}$

 $\frac{S}{N} \propto \sqrt{t_{\rm int}}$ You need to integrate 4 times as long to get twice the S/N

Summary: II. S/N and Telescope Size

- Signal = S; Background = B; Noise = N; Telescope diameter = D Note:
- Case 1: seeing limited system & "point source" of θ_{seeing}

 $\Theta_{\text{seeing}} \sim \text{const} \rightarrow \text{if Nyquist sampled: } S \sim D^2; B \sim D^2 \rightarrow N \sim D$ $S/N \sim D \rightarrow t_{int} \sim D^{-2}$.

Case 2: diffraction limited system & extended source

"PSFØ" ~ const \rightarrow if Nyquist sampled: S ~ D², pixel area ~ D⁻²

 D^2 and D^{-2} cancel each other; same for B

 $S/N \sim const \rightarrow t_{int} \sim const \rightarrow no gain from larger telescopes!$ Case 2B: offline re-sampling by a factor x (= telescope x-times smaller) $S/N \sim \int n_{\text{pix}} \rightarrow S/N \sim \int x^2 = x \rightarrow t_{\text{int}} \sim x^{-2}$.

Case 3: diffraction limited system & point source

"S/N = (S/N)_{light bucket} ·(S/N)_{pixel scale}" $S \sim D^2$; $B \sim D^{-2} \rightarrow N \sim D^{-1}$; Nyquist: $S \sim \text{const}$; $B/\text{pix} \sim D^{-2} \rightarrow N/\text{pix} \sim D^{-1}$ combined S/N ~ $D^2 \rightarrow t_{int} \sim D^{-4} \rightarrow huge gain: 1hr ELT = 3 months VLT$