1. Coordinate Systems

Based on "Observational Astrophysics" (Springer) by P. Lena, F. Lebrun \& F. Mignard, $2^{\text {nd }}$ edition, 1998 - Chapter 8

Everything is changing ... [axis tilt]

Equinox $=$ when the centre of the Sun can be observed to be directly above the Earth's equator.

Equinox derives from 'aequus' (equal) and 'nox' (night).

At an equinox, the Sun will spend equal amounts of time above and below the horizon at every location on Earth.

UTC date and time of solstices and equinoxes ${ }^{[1]}$								
	Equinox Mar	Solstice June	Equinox Sept		Solstice Dec			
	day	time	day	time	day	time	day	time
$\mathbf{2 0 0 2}$	20	$19: 16$	21	$13: 24$	23	$04: 55$	22	$01: 14$
$\mathbf{2 0 0 3}$	21	$01: 00$	21	$19: 10$	23	$10: 47$	22	$07: 04$
$\mathbf{2 0 0 4}$	20	$06: 49$	21	$00: 57$	22	$16: 30$	21	$12: 42$
$\mathbf{2 0 0 5}$	20	$12: 33$	21	$06: 46$	22	$22: 23$	21	$18: 35$
$\mathbf{2 0 0 6}$	20	$18: 26$	21	$12: 26$	23	$04: 03$	22	$00: 22$
$\mathbf{2 0 0 7}$	21	$00: 07$	21	$18: 06$	23	$09: 51$	22	$06: 08$
$\mathbf{2 0 0 8}$	20	$05: 48$	20	$23: 59$	22	$15: 44$	21	$12: 04$
$\mathbf{2 0 0 9}$	20	$11: 44$	21	$05: 45$	22	$21: 18$	21	$17: 47$
$\mathbf{2 0 1 0}$	20	$17: 32$	21	$11: 28$	23	$03: 09$	21	$23: 38$
$\mathbf{2 0 1 1}$	20	$23: 21$	21	$17: 16$	23	$09: 04$	22	$05: 30$
$\mathbf{2 0 1 2}$	20	$05: 14$	20	$23: 09$	22	$14: 49$	21	$11: 11$
$\mathbf{2 0 1 3}$	20	$11: 02$	21	$05: 04$	22	$20: 44$	21	$17: 11$
$\mathbf{2 0 1 4}$	20	$16: 57$	21	$10: 51$	23	$02: 29$	21	$23: 03$

Everything is changing ... [orbital motion]

Parallax $=$ semi-angle of inclination between two sightlines to a star. Definition:

Everything is changing ... [tidal forces]

$$
\begin{aligned}
\text { Precession }= & \text { movement of the direction of the } \\
& \text { Earth's rotational axis, caused } \\
& \text { mainly by Sun and Moon. } \\
& \text { period: } 25,764 \text { years } \\
& \text { magnitude: } \sim 50 "
\end{aligned}
$$

Nutation $=$
tidal forces of Sun and Moon are continuously changing with their relative positions \rightarrow cause precession to vary over time. period: 18.6 years (largest component) magnitude: ~9.2"

Everything is changing ... [position of the Sun]

The Analemma
Positions of the Sun at $12: 00 \mathrm{hr}$
\leftrightarrow elliptical orbit + axis tilt
$\uparrow \downarrow$ axis til†

The Horizontal Frame

Origin: Position of the observer
Axes: local vertical (gravity vector) horizon

Coordinates: azimuthal angle A height h

Plane containing the local vertical and the direction to the celestial pole is the meridian plane.

Fig. 8.2. Definition of the horizontal reference system

Problem: apparent motion of the celestial sphere.

Note: due to tidal forces the gravity vector changes and hence the coordinates relative to surface structures by typically 0.015"
$O M(A, h)=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\cos A \cos h \\ \sin A \cos h \\ \sin h\end{array}\right]$

The Hour Frame

Improvement: choose celestial equator as fundamental plane.

Origin: Position of the observer
Axes: vector to celestial pole vector to celestial equator (rot)

Coordinates: declination δ (latitude) hour angle H

Fig. 8.3. The hour system of coordinates

The hour angle is the angle between the local meridian and the plane containing both the star and the celestial pole.
$O M(H, \delta)=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\cos H \cos \delta \\ -\sin H \cos \delta \\ \sin \delta\end{array}\right]$
Problem: refers to the observer's local meridian.

The Equatorial Frame

Improvement: removes the largest component of Earth rotation.

Axes: vector to celestial pole vector to celestial equator (fixed)

Coordinates: declination δ (lattitude) right ascension a (RA)

The right ascension is the angle to the intersection between the orbital plane of the Earth and the instantaneous celestial Fig. 8.4. The equatorial reference system equator ($=$ vernal equinox y).

$$
O M(\alpha, \delta)=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\cos \alpha \cos \delta \\
\sin \alpha \cos \delta \\
\sin \delta
\end{array}\right]
$$

The right ascension is the angle to the intersection between the orbital plane of the Earth and the instantaneous celestial equator (= vernal equinox y).

At the (vernal) equinox the Sun is at one of two opposite points on celestial sphere where the celestial equator (i.e., declination $\delta=0$) and ecliptic intersect.

PPM J2000.0
+80 degrees
Stars No. 2401 ff

PPM		DM	Mas	Sp		R.A.	. 12000		ec.	J2000	PMA	PMD	N	SA	SD	SPMA	SPMD	EPA	EPD	SAO	HD		AGK3	Notes
01	+88	0084	10.8	G0	13	41	7.059	+87	54	45.48	0.0022	0.005	9	07	06	2.2	1.9	44.10	43.94	2296		+88	0076	H
02	+84	0316	11.2	F5	13	41	10.613	+83	25	29.66	-0.0091	0.000	4	12	12	5.3	5.4	23.00	24.78	2263		+83	0356	H
03	+81	0445	11.1	G5	13	41	21.575	+81	3	40.88	0.0064	0.011	,	12	12	5.4	5.5	24.15	26.00	2261		+81	0417	
04	+87	0130	10.3	G8	13	41	33.265	+86	35	55.03	0.0024	-0.021	7	07	07	2.3	2.1	49.34	49.71	2276		+86	0193	H
05	+80	0421	8.5	K5	13	41	39.768	+80	12	13.06	-0.0126	0.001	7	06	07	2.3	2.4	54.13	51.57	2262	120103	+80	0305	H H
06	+83	0397	6.0	G5	13	42	23.092	+82	45	8.62	0.0183	-0.041	0	02	02	0.8	0.7	56.42	40.97	2266	120565	+83	0357	F
07	+81	0446	11.0	F2	13	42	33.663	+80	24	7.97	-0.0045	-0.009	4	12	12	5.4	5.6	25.27	27.25	2264	120565	$+80$	0306	
08	+81	0447	9.8	KO	13	42	52.566	+80	43	25.36	-0.0113	-0.005	5	10	10	4.5	4.4	23.67	23.85	2265	120363	+80	0307	
09	+88	0085	10.2	K0	13	43	5.608	$+87$	51	5.97	0.0695	-0.017	5	07	06	2.1	1.9	44.61	44.34	2301		+88	0077	
10	+86	0198	11.2	G5	13	43	26.319	+85	42	26.46	0.0005	-0.024	5	08	09	3.9	4.1	39.32	47.45 37.45	2277		+88	0213	H
11	+82	0403	11.4	G5	13	43	26.894	+81	32	47.03	-0.0136	-0.026		12	12	5.4	5.4	22.53	24.31	2269				
12	+87	0132	12.4	K2	13		9.617	+86	50	13.77	0.0141	-0.004	7	07	07	2.5	2.3	51.11	53.38	2286		+87	0418	
13	+81	0448	10.7	K0		44	25.170	+80	34	24.28	-0.0069	-0.023	4	12	11	5.3	5.2	25.71	26.18	2271		+80	0308	H
14	$+85$	0234	8.8	K0	13	45	31.538	$+84$	30	47.82	-0.0005	-0.010	8	05	06	2.0	2.0	50.28	50.43	2280	121623	+84	0292	H
15	+86	0199	9.6	F5	13	45	48.743	+85	31	24.16	-0.0121	0.022	7	07	07	3.1	3.1	34.58	31.08	2284	122103	+85	0214	H
16	$+83$	0398	10.8	G5	13	46	27.094	+82	31	46.99	0.0016	0.029	4	12	11	5.2	5.0	24.71	24.86	2278		+82	0399	
17	+81	0449	10.5	K0		47	4.418	+81	16	24.02	0.0065	-0.018	4	11	11	5.2	5.1	26.23	26.70	2279		$+81$	0419	
18	+84	0317	9.7	F0	13	47	18.812	+84	6	56.58	0.0042	0.013	5	10	10	4.3	4.1	23.81	23.73	2283		+81	0293	
19	+88	0087	11.2	A5	13	48	12.656	+87	55	34.91	-0.0144	0.002	9	07	06	2.1	1.9	43.60	45.53	2318		+88	0078	H
20	+85	0235	9.8	K2	13	48	18.527	+85	11	55.70	-0.0001	0.003	6	07	08	3.4	3.4	36.98	33.67	2292	122362	+85	0215	H
21	+81	0450	11.4	F5			32.674	+80	21	1.44	0.0012	-0.004	4	12	13	5.6	5.7	24.31	26.35	2281		+80	0309	
22	+86	0201	7.5	F0			15.571	+85	44	52.23	-0.0370	0.024	8	05	06	2.3	2.4	52.79	52.75	2298	122882	+85	0216	
23	+84 +88	0318	10.9	G5		49	17.750	$+83$	58	57.13	0.0198	-0.005	4	12	11	5.3	5.1	24.42	24.57	2290	122882	+85 +84	$\begin{aligned} & 0216 \\ & 0294 \end{aligned}$	H
24	+88	0088	11.2	G0		49	51.417	+88	7	39.75	-0.1248	-0.008	8	08	08	3.2	5.1 3.2	31.12	29.01	2327		+84 +88	0079	
25	+81	0451	11.2	KO		49	55.447	+80	55	14.32	-0.0031	-0.005	4	12	12	5.4	5.5	23.82	25.69	2285		+81	0420	
	$+83$	0399	11.5	K0			1.940	+82	18	47.07	-0.0103	0.010	4	13	12	5.6	5.3	24.50	23.78	2287		+82	0400	
27	+86	0202	10.2	F5			4.531	+85	54	56.01	-0.0099	0.004	5	09	08	2.6	2.5	51.18	50.54	2287		+86	0194	H
28	$+83$	0401	11.7			50	21.839	+82	54	47.92	0.0021	0.017	4	13	12	5.6	5.3	24.51	23.80	2293		+86 +83	0359	H
29	$+83$	0400	11.6			50	22.800	+82	52	42.81	0.0024	0.000	4	13	12	5.6	5.3	24.51	23.80	2291		+83	0358	
30	+81	0452	7.7	KO		51	0.570	+80	46	4.28	0.0178	-0.011	6	08	08	2.3	2.3	50.52	52.71	2289	121778	+81 +81	0421	H
	$+87$	0134	10.9	G0			27.814	$+87$	14	27.95	-0.0224	-0.014	7	08	08	3.3	3.2	34.02	30.31	2315		+87	0106	
32	$+84$	0320	11.1	G0		51	29.795	+84	4	17.56	-0.0106	0.008	4	12	12	5.3	5.3	23.34	25.10	2299		+84	0295	
33	$+89$	0031	11.4	G8		51	39.885	+89	15	23.97	0.0197	0.000	14	08	06	2.4	1.8	34.24	34.41	2450		+84 +89	0038	H
34	+81 +82	0453	11.0	F2		52	12.812	+80	48	27.30	0.0124	-0.045	4	12	12	5.3	5.5	24.46	26.30	2295		+81	0422	H
35	+82	0404	11.3	G0		52	18.733	+81	59	21.03	0.0079	-0.070	4	12	12	5.3	5.4	22.64	24.43	2297		+81 +8	0401	
36	+83	0402	10.0	F8			29.431			1.84	-0.0090	0.041	5		10	4.5	4.3	23.13	23.13					
37	+87	0133	10.2	G8		52	51.384	+86	29	25.25	-0.0033	0.000	8	07	07	4.5 3.0	3.0	32.62	28.92	2300 2312		+83 +86	0360 0195	
38	+82	0406	10.2	A5		53	53.449	+82	1	59.73	-0.0031	0.004	4	11	11	5.0	4.8	26.58	26.58	2302		+86 +82	0402	
39 40	+82	0405	10.1	G5	13	54	9.462	+81	49	54.89	-0.0144	-0.020	4	11	11	5.0	4.9	26.67	26.67	2304		+82	0403	
40	+86	0203	12.3	K3		54	14.438	+85	25	0.51	0.0039	0.009	5	08	09	4.2	4.4	41.04	39.29	2311		+85	0217	

The Ecliptic Frame

Best for charting solar system objects

Axes: normal to the orbital plane vector to vernal equinox

Coordinates: ecliptic lattitude β ecliptic longitude \wedge

Problem: orbital plane (Earth-Sun vector) is sensitive to perturbations by the other
 planets \rightarrow oscillations of ~ 1 " about mean plane.

The Galactic Frame

Useful to chart e.g. stellar populations in the MilkyWay.
Origin: Sun
Axes: rotation vector of the Galaxy vector to the Galactic Center

Coordinates: galactic lattitude b galactic longitude I

Definition:
North Galactic pole at $12^{h} 51^{m} 26.282^{s}+27^{\circ} 07^{\prime} 42.01^{\prime \prime}$ (J2000) zero longitude at position angle 122.932°
zero point is at $17^{\mathrm{h}} 45^{\mathrm{m}} 37.224^{s}-28^{\circ} 56^{\prime} 10.23^{\prime \prime}$ (J2000), close to Sgr A*

The Supergalactic Frame

Equator aligned with the supergalactic plane formed by the nearby galaxy clusters Virgo, the Great Attractor and the Pisces-Perseus supercluster.

Coordinates: supergalactic lattitude SGB supergalactic longitude SGL

Zero point for SGL is the intersection of the supergalactic plane with the Galactic plane

Definition:

North supergalactic pole at $\mathrm{I}=47.37^{\circ}, \mathrm{b}=+6.32^{\circ}$ or $\mathrm{RA}=18.9^{\mathrm{h}}, \delta=+15.7^{\circ}$ (J 2000). Zero point ($\mathrm{SGB}=0^{\circ}, \mathrm{SGL=} 0^{\circ}$) at $\mathrm{I}=137.37^{\circ}, \mathrm{b}=0^{\circ}$ or $\mathrm{RA}=2.82^{\mathrm{h}}, \delta=+59.5^{\circ}$ (J 2000).

Coordinate Frame Transformations

The easy way:

The hard way: $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=[R] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, where: $R_{1}(\alpha)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
\rightarrow see homework for how to apply these

1. Calculate Cartesian coordinates $\left[x_{1}, x_{2}, x_{3}\right]$
2. Apply rotation

$$
R_{2}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & -\sin \beta \\
0 & 1 & 0 \\
\sin \beta & 0 & \cos \beta
\end{array}\right]
$$

3. Calculate transformed frame ${ }^{*}$ coordinates

$$
R_{3}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example: from Equatorial to Galactic Frame

Celestial pole

Fig. 8.6. The galactic coordinate system

$$
\begin{gathered}
O M(\lambda, \beta)=R_{3}(\phi) \cdot R_{1}(\theta) \cdot R_{3}(\psi) O M(\alpha, \delta) \\
{\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
-0.05611 & -0.87374 & -0.48315 \\
0.49333 & -0.44498 & 0.74741 \\
-0.86803 & -0.19642 & 0.45601
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{gathered}
$$

Ephemeris Time (ET)

Uniform motion \Leftrightarrow absence of force \rightarrow ephemeris or position vector $r(t)$
t is found by solving the equation $O M=r(t) \rightarrow$ only need to define the units "day" or "year"

The independent variable in Simon Newcomb (1898) gravitational theory of the Sun and planets is the ephemeris time (ET).
Assumption: uniform motion of the Sun (mean of Jan 1900) (not true: irregular and slowing down)
\rightarrow SI definition : one second $=1 / 31,556,925.9747$ of the tropical year for 1900 January 0 at 12 hours ephemeris time.

One Julian century has 36,525 days
One Julian day has 86,400 seconds
\rightarrow one tropical year has 365.24219879 days

Universal Time (UT)

Timescale based on the rotation of the Earth.
Reference location Greenwich meridian: Ideally, noon Greenwich Mean Time is when the Sun crosses the Greenwich meridian.

But: variations in the Earth's orbit (nutation, ellipticity, axial tilt) cause differences of up to 16 minutes.
\rightarrow Use Newcomb's fictitious mean Sun - hence also called Greenwich mean time G.M.T.)

UT = 12 hours + Greenwich hour angle
Nowadays, use atomic standards (won't slow down)..
...and provide connection to Earth orientation.
(undergoes one second discontinuities whenever necessary to keep the Earth rotation in phase with atomic clocks).

Sidereal Time (ST)

Sidereal time \equiv hour angle of the true vernal equinox
The sidereal time is proportional to the UTC.
Note: when $S T=R A$ the object will be at culmination.
When corrected for nutation \rightarrow mean sidereal time.

Local sidereal time (LST)
Leiden: $52^{\circ} 09^{\prime} \mathrm{N} 04^{\circ} 30^{\prime} \mathrm{E}$

Sidereal Day

Every 24.00 hr the Sun reaches the highest position in the South (= synodic day)

In the meantime, the Earth has rotated a bit more than 360 degrees as it orbits the Sun, (namely $360^{\circ} / 365.25=0.986^{\circ}$).

Thus, a sidereal day is shorter: $24 \mathrm{hr} \cdot 360^{\circ} / 360.986^{\circ}=23 \mathrm{hr}$ $56 m i n$

