Detection of Light. Problem Set 2

Questions? martinez@strw.leidenuniv.nl

1 Mobility of carriers

The mobility of the electrons in a Si photodetector at room temperature is $\mu = 1.35 \times 10^3 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. What is its conductivity in $\text{AV}^{-1} \text{ m}^{-1}$ for the amount of charge carriers calculated in Problem set 1? $n_0 = 1.5 \times 10^{10} \text{ cm}^{-3}$. The charge of the electron is $1.602 \times 10^{-19} \text{C}$.

2 Design of an intrinsic photoconductor

Consider an intrinsic silicon photoconductor operating at 1 μ m and constructed as shown in the Figure. Let its surface area, wl, be 1 mm², and operate it at 300 K. Assume the detector breaks down when the bias voltage, $V_{\rm b}$, exceeds 60 mV. Determine;

- a A reasonable detector thickness for good quantum efficiency in absence of reflection. The refractive index of Si is 3.4. What is the value of η if you take reflectivity into account?
- b The responsivity of the detector. The recombination time for Si under the given conditions is $\tau = 1 \times 10^{-4}$ s. The mobility of electrons is $\mu = 1.35 \times 10^3$ cm² V⁻¹ s⁻¹.
- c The dark resistance. Here, use the concentration of carriers calculated in Problem set 1: $n_0 = 1.5 \times 10^{10} \text{ cm}^{-3}$.
- d The time response. The capacitance of a plane parallel capacitor can be calculated as:

$$C_d = \frac{w d\kappa_0 \epsilon_0}{l}$$

where κ_0 is the dielectric constant (11.8 for Si), and $\epsilon_0 = 8.854 \times 10^{-12} \text{Fm}^{-1}$ is the permittivity of free space.

- e The Johnson noise.
- f The Noise Equivalent Power (NEP). Assume an integration time of 0.5 s.