
Detection of Light

See http://www.strw.leidenuniv.nl/~brandl/DOL/Detection_of_Light.html for more info

Metals, Semiconductors, Insulators

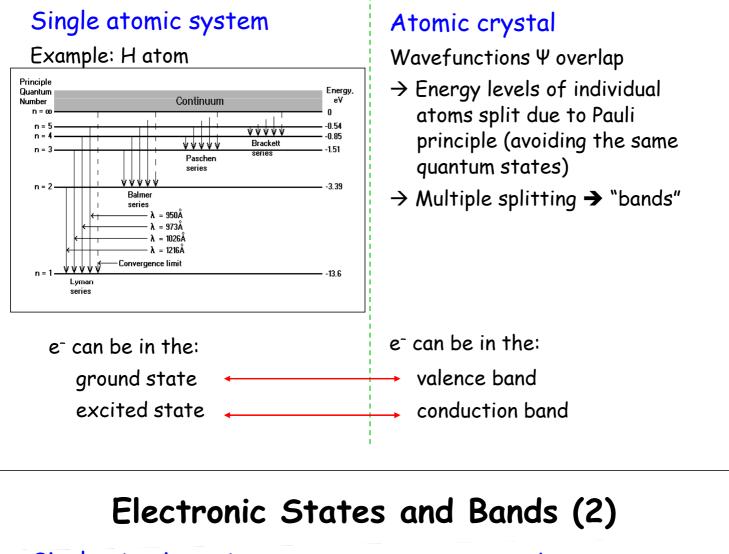
Metals, Semiconductors and Insulators

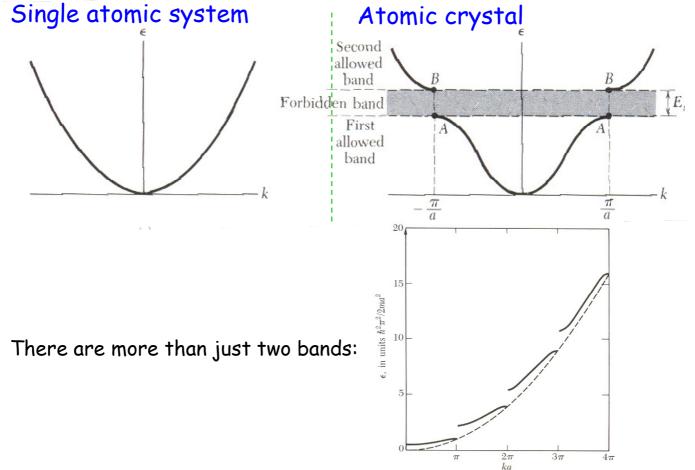
from Wikipedia:

- Metals are characterized by high electrical conductivity and consist of positive ions in a crystal lattice, surrounded by a cloud of delocalized electrons.
 - An insulator, also called a dielectric, is a material that resists the flow of electric current. (Semiconductors at T=OK are insulators.)
- A semiconductor is a material that has an electrical resistivity between that of a conductor and an insulator.

The Periodic System of the Elements

1A H	Abı	ridged	Perio	dic Ta	able of	f the E	21emer 4/17/96	1ts ghw	noble 2 He
1s ¹	2A			3 A	4 A	5A	6A	7 A	1s ²
Li 3	Be			5	C	N 7	0	9 F	10 Ne
1s²2s¹	1s²2s²			2s ² 2 ¹	2s²2p ²	2s²2p ³	2s²2p⁴	2s²2p ⁵	2s²2p ⁶
Na ¹¹	Mg ¹²	1B	2B	AI 13	Si ¹⁴	P ¹⁵	S ¹⁶	CI ¹⁷	Ar ¹⁸
[Ne] 3s ¹	[Ne] 3s ²			3s ² 3p ¹	3s [°] 3p ²	$3s^2 3p^3$	$3s^2 3p^4$	3s²3p ⁵	3s²3p ⁶
К ¹⁹		Cu ²⁹	Zn ³⁰	Ga	Ge ³²	As ³³	Se ³⁴	Br ³⁵	Kr ³⁶
[Ar] 4s ¹		4s ¹	4s ²	4s ² 4p ¹	4s ² 4p ²	4s ² 4p ³	$4s^24p^4$	4s ² 4p ⁵	4s ² 4p ⁶
Rb ³⁷		Ag ⁴⁷	Cd ⁴⁸	In	50 Sn	51 Sb	Te ⁵²	53 	Xe ⁵⁴
[Kr] 5s ¹		5s ¹	5s ²	5s ² 5p ¹	5s²5p ²	5s ² 5p ³	5s²5p⁴	5s ² 5p ⁵	$5s^25p^6$
55		79	80	81	82	. 83	84	85	86
Cs		Au	Hg		Pb	Bi	Po	At	Rn
[Xe] 6s ¹		6s ¹	6s ²	6s ² 6p ¹	6s²6p ²	6s²6p ³	6s ² 6p ⁴	6s ² 6p ⁵	6s²6p ⁶


"Classical" semiconductors: 4 e⁻ in valence state (outer shell) form a diamond lattice structure (each atom bonds to 4 n)
"New" semiconductors are 3-5 compounds (e.g., GaAs)
Metals are to the left of the green line.

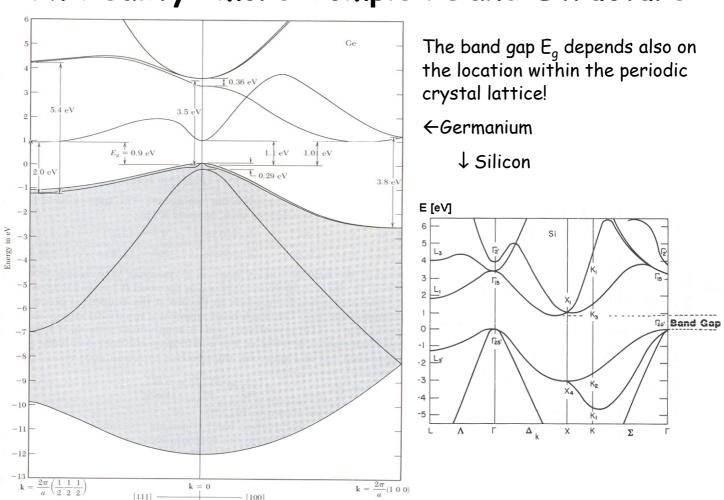

Semiconductors

(a)			IV	V	VI
		В	С	N	
		Al	Si	Р	S
	Zn	Ga	Ge	As	Se
	Cd	In		Sb	Te
(b)			Binary III-V	Binary II-VI	
	Elemental	IV compounds	compounds	compounds	
	Si	SiC	AIP	ZnS	
	Ge	SiGe	AlAs	ZnSe	
			AlSb	ZnTe	
			GaN	CdS	
			GaP	CdSe	
			GaAs	CdTe	
			GaSb		
			InP		
			InAs		
			InSb		

Electronic Bands

Electronic States ... and Bands

Side Note: The Wavevector k


Consider a crystal lattice with base vectors a, b, c. There are 14 Bravais lattices with 7 lattices systems (triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, **cubic**.)

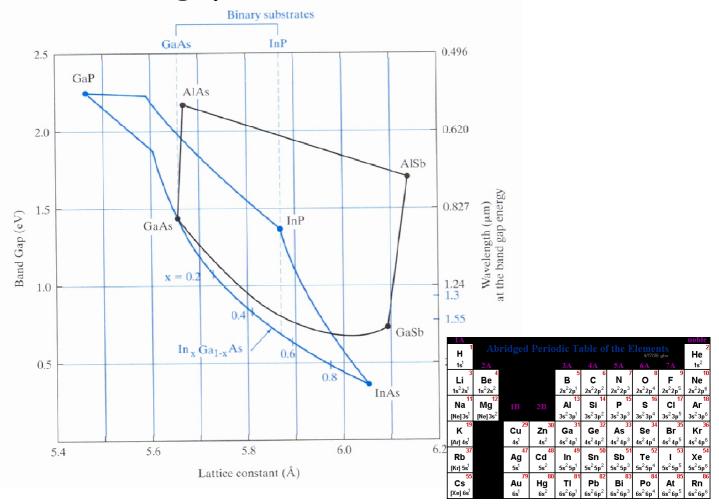
The wavefunction of a free electron is: $\Psi_k(r) = e^{ik \cdot r} 1$

It is most convenient to work with the reciprocal lattice, which is the set of all wave vectors k such that: $e^{ik \cdot r} = 1$ for all lattice point position vectors r.

For a periodic Bragg crystal: $k = \pm \frac{n\pi}{a}$

 Δk is a momentum difference. It can be directly measured from X-ray scattering \rightarrow reciprocal vectors of the lattice.

In Reality: more Complex Band Structure


Band Gaps

The Size of Bandgaps

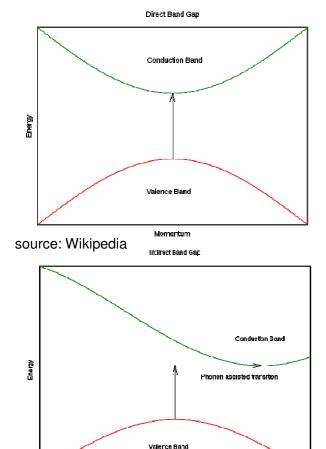

- E_g is the band gap energy (difference between the lowest level in the conduction band and the highest level in the valence band).
- For semiconductors, typically: 0 < E_g < 3.6 eV

Table 1 Energy gap between the valence and conduction bands $(i = \text{indirect gap}; d = \text{direct gap})$									
		$E_g,$	eV			E_g , eV			
Crystal	Gap	0 K	300 K	Crystal	Gap	0 K	300 K		
Diamond	i	5.4		HgTe ^a	d	-0.30			
Si	i	1.17	1.11	PbS	d	0.286	0.34 - 0.37		
Ge	i	0.744	0.66	PbSe	i	0.165	0.27		
αSn	d	0.00	0.00	PbTe	i	0.190	0.29		
InSb	d	0.23	0.17	CdS	d	2.582	2.42		
InAs	d	0.43	0.36	CdSe	d	1.840	1.74		
InP	d	1.42	1.27	CdTe	d	1.607	1.44		
GaP	i	2.32	2.25	ZnO		3.436	3.2		
GaAs	d	1.52	1.43	ZnS		3.91	3.6		
GaSb	d	0.81	0.68	SnTe	d	0.3	0.18		
AlSb	i	1.65	1.6	AgCl			3.2		
SiC(hex)	i	3.0		AgI			2.8		
Те	d	0.33	_	Cu_2O	d	2.172			
ZnSb		0.56	0.56	TiO_2		3.03			

Bandgaps and Lattice Struture

Direct and Indirect Band Gaps

Momentum

Minimum in the conduction band and maximum in the valence band are characterized by the wavevector ${\bf k}$

If the k-vectors for minimum and maximum are the same, it is called a "direct gap".

If the k-vectors for minimum and maximum are different it is called an "indirect gap", and a transition must involve the absorption or emission of a phonon to conserve momentum.

Direct and Indirect Band Gaps (2)

Indirect gaps make electronic transitions less likely \rightarrow light-emitting and laser diodes are almost always made of direct band gap materials (e.g., GaAs), and not indirect ones (e.g. Si)

Consider a compound material like:

$$(Al_xGa_{1-x})_{0.5}In_{0.5}P$$

Al and Ga have ~ same atomic size within the lattice \Leftrightarrow exchangeable

- If $x \le 0.7 \rightarrow$ bandgap is direct
- If $x > 0.7 \rightarrow$ bandgap is indirect.

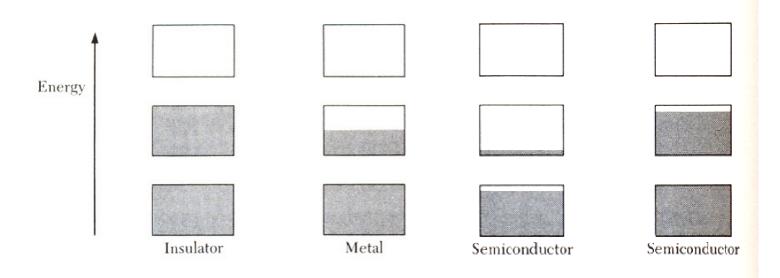
(Fletcher et al. 1993)

14	A 1	a a se a	Dania	л. т.	la la sa	6 4 L T	1		noble
н	ADI		Perio			i the F	4/17/96	<mark>ILS</mark> ighw	He
1s ¹	2A			3 A	4 A	5A	6A		1s ²
Li 3	Be			5 B	ເ	N ⁷	0	F 9	Ne ¹⁰
1s ² 2s ¹	1s ² 2s ²			$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	2s²2p ⁵	2s²2p ⁶
Na ¹¹	Mg ¹²	1B	2B	AI ¹³	Si ¹⁴	P 15	S ¹⁶	CI	Ar ¹⁸
[Ne] 3s ¹	[Ne] 3s ²			$3s^2 3p^1$	$3s^2 3p^2$	$3s^2 3p^3$	$3s^2 3p^4$	$3s^2 3p^5$	$3s^2 3p^6$
K ¹⁹		Cu ²⁹	Zn ³⁰	Ga ³¹	Ge ³²	As ³³	Se ³⁴	Br ³⁵	Kr ³⁶
[Ar] 4s ¹		4s ¹	4s ²	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
Rb ³⁷		Ag ⁴⁷	Cd ⁴⁸	49 In	Sn ⁵⁰	Sb ⁵¹	Te ⁵²	53 	Xe ⁵⁴
[Kr] 5s ¹		5s ¹	5s ²	$5s^25p^1$	$5s^25p^2$	$5s^25p^3$	$5s^25p^4$	5s ² 5p ⁵	$5s^25p^6$
Cs ⁵⁵		79 Au	80 Hg	81 TI	Pb ⁸²	83 Bi	84 Po	At ⁸⁵	86 Rn
[Xe] 6s ¹		6s ¹	6s ²	6s ² 6p ¹	6s ² 6p ²	6s²6p ³	6s ² 6p ⁴	6s ² 6p ⁵	$6s^26p^6$

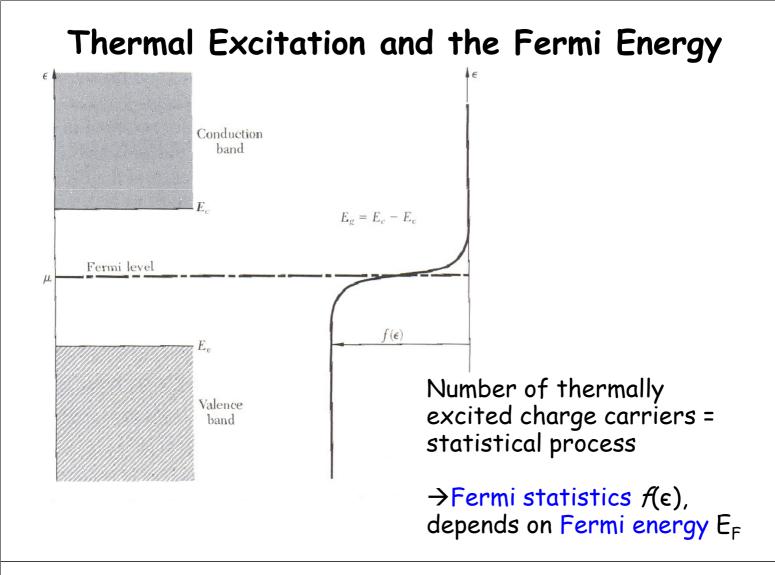
Electrical Conductivity

Requirement for Electric Conductivity

Needed: charge carriers in the conduction band \rightarrow to provide conductivity one must provide E_q


$$\lambda_c = \frac{hc}{E_g} = \frac{1.24\,\mu m}{E_g[eV]}$$

Excitation lifts an e⁻ into the conduction band <u>and</u> leaves a hole in the valence band; both e⁻ and hole contribute to electric current.


Possibilities for excitation:

- 1. external excitation, e.g. via a photon \leftarrow detector
- 2. internal excitation due to thermal energy
- (3. impurities)

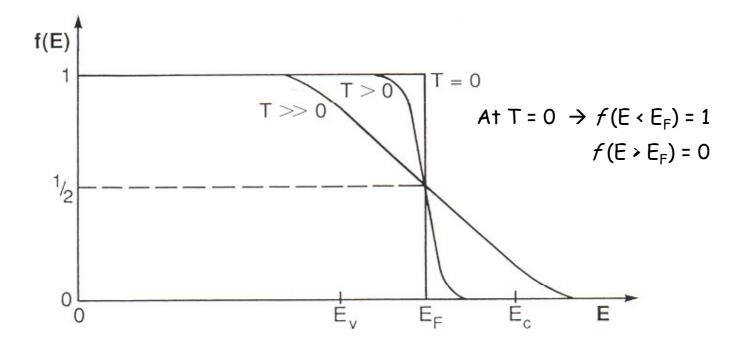
Conductivity ~ # Electrons in Conduction Band

- Semiconductors at T=OK are insulators
- The left of the two semiconductors is at T>OK with thermally excited electron.
- The right of the two semiconductors is electron-deficient because of impurities.

The Energy Distribution of Electrons (1)

In the classical picture the energetic distribution of electrons would be given by the Maxwell-Boltzmann statistics:

$$\frac{n_2}{n_1} = e^{-(E_2 - E_1)/kT} = e^{-E_g/kT}$$


In the QM picture the concentration of electrons in the conduction band is given by:

$$n_0 = \int_{E_c} f(E) N(E) dE$$

where *N(E)dE* is the density of states and *f*(E) the Fermi distribution (Fermi-Dirac statistics):

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$

The Energy Distribution of Electrons (2)

For intrinsic semiconductors: $E_c - E_F = E_F - E_V = E_g/2$

The Energy Distribution of Electrons (3)

Note: Even at T~T $_{\rm room}$ the conduction electrons occupy only the lowest states in the conduction band

If f(E)N(E) is close to zero at $E > E_c$, it can be described by an average "effective density** of states N_c " near $E ~ E_c$:

$$n_0 = N_c f(E_c)$$
 where $N_c = 2 \left(\frac{2\pi n_{eff} kT}{h^2}\right)^{3/2}$

Hence the Fermi-Dirac statistics becomes:

$$f(E_c) = \frac{1}{1 + e^{\frac{E_c - E_F}{kT}}} \approx e^{-\frac{E_c - E_F}{kT}}$$

And we get:

$$n_{0} = N_{c} f(E_{c}) = 2 \left(\frac{2\pi m_{eff} kT}{h^{2}}\right)^{3/2} e^{-(E_{c} - E_{F})/kT}$$

** see, e.g., Streetman & Banerjee, Appendix IV for a derivation

Intrinsic and Extrinsic Semiconductors

Limitations of Intrinsic Semiconductors

• Wavelength coverage: $\lambda_c = \frac{hc}{E_g} = \frac{1.24\,\mu m}{E_g[eV]}$ \Rightarrow Silicon: $\lambda_c \sim 1.0\,\mu m$

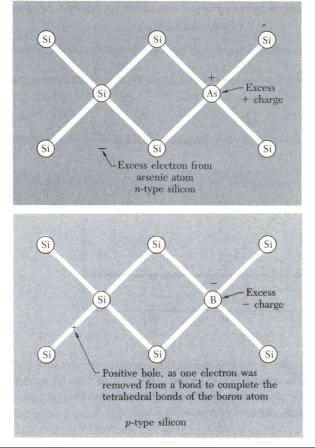
→Germanium: λ_c~1.8µm →GaAs: λ_c~0.87µm

- Low impedances \Leftrightarrow high Johnson (reset) noise
- Poor stability of material \rightarrow non-uniformity
- Problems to make good electrical contacts

Doping

Pure semiconductors are termed "intrinsic".

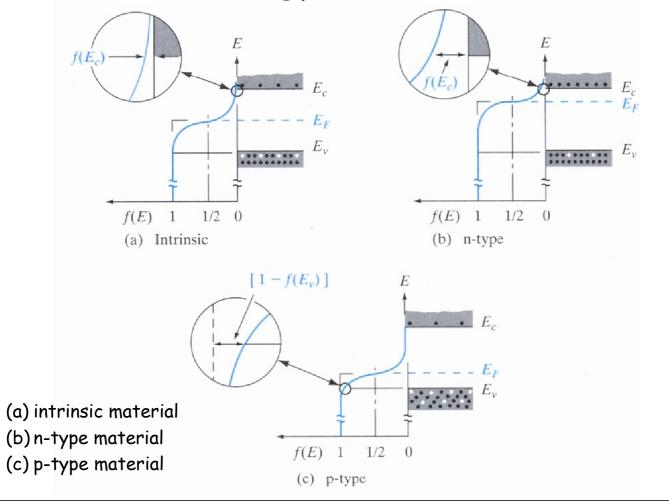
Semiconductors with added impurities (doped) are termed "extrinsic".

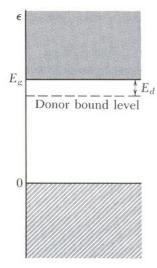

The deliberate** addition of impurities to a semiconductor is called doping.

Example: addition of boron to silicon in the ratio 1:100,000 increases its conductivity by a factor 1000!

** most materials are impure; however, Ge can be produced with 1 impurity in 10¹¹ Ge atoms

Donors and Acceptors


Imagine silicon or germanium \leftarrow diamond structure, each atom has covalent bonds to each of its four neighbors.


Replacing one Si or Ge against one atom with 5 valence electrons leaves one electron "left over" → Donors, ntype semiconductors

Replacing one Si or Ge against one atom with 3 valence electrons leaves one electron "missing" → Acceptors, ptype semiconductors

The Fermi Energy in Extrinsic Materials

Thermal Excitation in Extrinsic Materials

The doping with impurities shifts the level of E_F toward (n-type) or away from (p-type) the conduction band.

Concentration of neutral + ionized donors:

 $N_D = N_D^n + N_D^i$

 $\begin{bmatrix} \epsilon \\ E_g \\ Acceptor bound level \\ E_a \end{bmatrix}$

<u>Ideally</u>: $N_D^n = 0$, $N_D^i = N_D$ and the number of electrons is $n = N_D - N_A$

However, in reality $n \ll N_D$ since $N_A > 0$

Donor and Acceptor Energies

Donor	<u>Si</u> [meV]	<u>Ge</u> [meV]
Р	45	12
As	49	13
Sb	39	10
В	45	10
Ga	65	11
In	157	11

Observed donor E_d and acceptor E_a ionization energies:

Note:

- at room temperature: kT ≈ 26 meV ⇔ thermal excitation
- \Leftrightarrow intrinsic band gaps of ~1100 meV (Si), ~700 meV (Ge)

Another Way to look at it ...

Consider Bohr's hydrogen atom:

$$r = \frac{4\pi\varepsilon_0\hbar^2}{me^2}$$

In a semiconductor the electron moves in the Coulomb potential $e/\epsilon r$, where ϵ is the static dielectric constant. (1/ ϵ accounts for the reduction of the Coulomb force between charges).

Now replace $e^2 \rightarrow e^2/\epsilon$ and $m \rightarrow m_{eff}$

to get the "Bohr radius" of the donor:

 $a_d = \frac{4\pi \varepsilon \varepsilon_0 \hbar^2}{m_{eff} e^2}$

which is typically ~100 times larger than for the hydrogen atom.

Reference Properties of Semiconductor Materials

		E _g (eV)	μ _n (cm²/V-s)	μ _ρ (cm²/V-s)	m [*] _n/m _o (m _l ,m _t)	m [*] _p /m _o (m _{lh} ,m _{hh})	a (Å)	€ŗ	Density (g/cm ³)	Melting point (°C)
Si	(i/D)	1.11	1350	480	0.98, 0.19	0.16, 0.49	5.43	11.8	2.33	1415
Ge	(i/D)	0.67	3900	1900	1.64, 0.082	0.04, 0.28	5.65	16	5.32	936
SiC (α)	(i/W)	2.86	500	_	0.6	1.0	3.08	10.2	3.21	2830
AIP	(i/Z)	2.45	80	_	_	0.2, 0.63	5.46	9.8	2.40	2000
AlAs	(i/Z)	2.16	1200	420	2.0	0.15, 0.76	5.66	10.9	3.60	1740
AlSb	(i/Z)	1.6	200	300	0.12	0.98	6.14	11	4.26	1080
GaP	(i/Z)	2.26	300	150	1.12, 0.22	0.14, 0.79	5.45	11.1	4.13	1467
GaAs	$\left(\frac{d}{Z}\right)$	1.43	8500	400	0.067	0.074, 0.50	5.65	13.2	5.31	1238
GaN	(d/Z, W)	3.4	380	_	0.19	0.60	4.5	12.2	6.1	2530
GaSb	$\left(\frac{d}{Z}\right)$	0.7	5000	1000	0.042	0.06, 0.23	6.09	15.7	5.61	712
InP	$\left(\frac{d}{Z}\right)$	1.35	4000	100	0.077	0.089, 0.85	5.87	12.4	4.79	1070
InAs	$\left(\frac{d}{Z}\right)$	0.36	22600	200	0.023	0.025, 0.41	6.06	14.6	5.67	943
InSb	(d/Z)	0.18	105	1700	0.014	0.015, 0.40	6.48	17.7	5.78	525
ZnS	(d/Z, W)	3.6	180	10	0.28	_	5.409	8.9	4.09	1650
ZnSe	(d/Z)	2.7	600	28	0.14	0.60	5.671	9.2	5.65	1100
ZnTe	$\left(\frac{d}{Z}\right)$	2.25	530	100	0.18	0.65	6.101	10.4	5.51	1238
CdS	(d/W, Z)	2.42	250	15	0.21	0.80	4.137	8.9	4.82	1475
CdSe	(d/M)	1.73	800	_	0.13	0.45	4.30	10.2	5.81	1258
CdTe	$\left(\frac{d}{Z}\right)$	1.58	1050	100	0.10	0.37	6.482	10.2	6.20	1098
PbS	(i/H)	0.37	575	200	0.22	0.29	5.936	17.0	7.6	1119
PbSe	(i/H)	0.27	1500	1500	_		6.147	23.6	8.73	1081
PbTe	(i/H)	0.29	6000	4000	0.17	0.20	6.452	30	8.16	925