

Overview of the course topics

The faintest sources detected in optical surveys

The Electromagnetic Spectrum

covered in this course

Wavelength ⇔ Energy ⇔ Detection Process

Three Basic Types of Detectors

1. Photon detectors

Respond directly to individual photons \rightarrow releases bound charge carriers. Used from X-ray to infrared.

Examples: photoconductors, photodiodes, photoemissive detectors, photographic plates

2. Thermal detectors

Absorb photons and thermalize their energy → modulates electrical current. Used mainly in IR and sub-mm detectors.

Examples: bolometers

3. Coherent receivers

Respond to electrical field strength and preserve phase information (but need a reference phase "local oscillator"). Mainly used in the sub-mm and radio regime.

Examples: heterodyne receivers

General Principle of Detecting EM Radiation

$$S(t) = S_0(t) + f \left[\int_{\Delta v} \phi(v) dv \int_{\Delta \Omega} I(\theta, v, t) P(\theta) d\theta \right]$$
Angular response of the detector Intensity of the radiation Spectral response of the detector Input-output relation of the detector Dark signal of the detector

Some Detector Performance Aspects

Some Performance Aspects of Detectors

- Spectral response
- Spectral bandwidth
- Linearity / saturation
- Dynamic range
- Quantum efficiency
- Noise
- Geometric properties
- Time response
- Polarization
- Operational aspects

Spectral Response and Bandwidth

Linearity and Dynamic Range

Quantum Efficiency n

$$\eta = \frac{\text{number of detected photons}}{\text{number of incident photons}}$$

Detected photons must:

(i) not be reflected at the detector surface, and

(ii) be absorbed (absorption coefficient $a(\lambda)$) within the sensitive detector layer of thickness / and refractive index n.

Quantum efficiency: $\eta = (1 - R)\eta_{abs}$

where: reflectivity at normal incidence: $R \approx \frac{(n-1)^2}{(n+1)^2}$

and photon flux at k $\frac{d\varphi}{dl} = -a(\lambda)\varphi \ \Rightarrow \ \varphi = \varphi_0 e^{-a(\lambda)l}$

Fraction of absorbed photons: $\eta_{abs} = \frac{\varphi_0 - \varphi_0 e^{-a(\lambda)l}}{\varphi_0} = 1 - e^{-a(\lambda)l}$

Noise

Most important:

 \leftarrow measured as (S+B)-mean{B}

 \leftarrow total noise = $\sqrt{\sum (N_i)^2}$ if statist. independent

Most relevant noise sources:

Photon noise follows Poisson statistics: $P(m) = \frac{e^{-n}n^m}{m!}$

(= probability to detect m photons in a given time interval where, on average, n photons \Rightarrow $S/N = \sqrt{n}$)

G-R noise: statistics of the generated and recombined holes and electrons, related to the Poisson statistics of the incoming photons.

Johnson, kTC or reset noise: thermodynamic noise due to the thermal motion of the charge carriers.

1/f noise (increased noise at low frequencies) due to bad electrical contacts, temperature fluctuations, surface effects (damage), crystal defects, JFETs, ...

Geometrical Properties

Geometrical dimension and pixel number $x \times y$

4 Generations of Raytheon Infrared Detectors

Historical distinction: two Detector Types

Single element detectors

- + same pixel = same sensitivity flat-field challenge
- scanning = time consuming + multiplexing speed Standard for radio receivers

Array size growing at sub-mm

Multi-channel detectors

Modulation transfer function

...or the "spatial response" of the detector

Assume the detector is exposed to a sinusoidal input signal:

$$F(x) = a_0 + a_1 \sin(2\pi f x)$$
 (a₀ mean height, a₁ amplitude, x distance)

The modulation of the signal is defined as $M_{in} = \frac{F_{\text{max}} - F_{\text{min}}}{F_{\text{min}} + F_{\text{min}}} = \frac{a_1}{a_2}$

The detected space frequency is $G(x) = b_0 + b_1(f)\sin(2\pi fx)$

where $b_1(f)$ describes the limited response to higher frequencies. Hence,

$$M_{out} = \frac{b_1(f)}{b_0} \leq M_{in}$$

Modulation transfer function (2)

The resulting MTF

 The MTF may vary across the array, be color dependent, and suffer from nonlinearities and latent images

Time Response

Astrophysical examples requiring time resolution:

- Stellar black-holes and neutron stars have innermost orbital periods
 ~ 0.001 seconds
- White dwarfs are eclipsed and pulsate in ~ 0.1 to 200 seconds

Typical exponential time response of a resistor/capacitor circuit:

$$v_{out} = \frac{v_0}{\tau_{RC}} e^{-t/\tau_{RC}}$$

with τ_{RC} =RC and the cutoff frequency

$$f_c = \frac{1}{2\pi\tau_{RC}}$$

where the signal drops to 1/J2 of its value.

Operational Aspects (1): Temperature

Needs active cooling \rightarrow 4K ... 80K Maximum temperature ⇔ Ey

Temperature dependencies of quantum efficiency and

Operational Aspects (2): Readouts

Number of readouts and readout frequencies

Typical "full frame readout times:

- NIR detector ~few seconds
- MIR space detector ~minute
- MIR ground detector ~10ms

May be problematic if the source moves (e.g., seeing) at the boundaries faster than the readout time.

Numbers Round the edge indicate Channel numbers. Arrows show start-corner of readout

Note that this is only one of many schemes

Orientation of Arrays in Focal Plane

Operational Aspects (3): Data Rates

Example: OmegaCam:

Mosaic of 32 2k×4k CCDs

Read out time: ~45s

Images/night: $10 \times 3600/45 = 800$

Number of pixels: $32 \times 2048 \times 4096 = 2.68 \times 10^8$

Digitization (16 bits/pixel)*: 16*#ofpixels/(8bits/byte)

→ Total: 429 Gbytes / night (stored data only!)

*****(2¹⁶ = 65536)

The Human Eye

The First Camera: the Human Eye

Angular resolution: Theoretical $\Theta \sim \text{A/D} \sim 0.5 \mu\text{m}/7\text{mm} \sim 14^{\circ}$

In practice: $\Theta \sim 1'$

Focal ratio f/D ~ 3.2

The Detector: the Retina

Four kind of detectors (~125 millions):

Rod cells ($\sim 2\mu m$): panchromatic, low light levels, make up 95%

3 types of cone cells ($\sim 6\mu m$): blue, green, red sensitive [1:4:8], concentrated to the center

- Wavelength range: 390nm ≤ Λ ≤ 780nm
- Readout frequency ~ 30 Hz
- High dynamic range: $10^9:1$
- Sensitivity: "dark adaptation" (t_{int}, η)
- Irregularities (artefacts):
 - averted vision (off-center)
 - latent images (eye⇔brain)
 - others: Purkinje effect, Haidinger's brush

Photographic Plates

Cross section of a typical photographic plate

Basic Principle

- 1. Expose grains of slightly soluble silver halide salts, e.g. $Ag^+Br^- + \gamma \rightarrow Ag^+ + Br + e^-$
- 2. e⁻ recombines: e⁻ + $Ag^+ \rightarrow Ag$ e⁻ + $Ag \rightarrow Ag^ Ag^- + Ag^+ \rightarrow Ag_2$ (critical size: 3-4 Ag atoms)
- 3. chemical development: (i) provides e^- for the "undeveloped" Ag^+ to reduce them to "inactive" metallic silver, and (ii) amplify the Ag grains by 10^8 10^9
- 4. Unexposed silver is eliminated by the "fixing" process

Wavelength Coverage

UV is limited due to absorption of the gelatine at $\Lambda \le 300$ nm

Bandgap E_g of AgBr is ~2.8 eV (Λ < 440nm for direct absorption)

Addition of iodine (\rightarrow silver iodobromide) reduces $E_g \rightarrow$ wider $\Delta \lambda$

Adding a dye to the emulsion \rightarrow green, red

Out to $1.2\mu m$ (Kodak 1-Z emulsions)

Advantages of Photographic Plates

- A 8" 10" plate can have 10¹¹ 10¹² grains, corresponding to 10⁹ "pixels"
- Plates are inexpensive
- Plates are their own data storage system
- Plates can be stable over very long periods of time

Disadvantages of Photographic Plates

- Low DQE (~2-5%) [e-may recombine, ionize Ag atom, react with gelatine]
- · Non-linearity
- Non-uniformity
- Time resolution
- Wavelength coverage
- Digitization

Observing with Photoplates

Analysis of Photographic Plates

Densitometer!

Nowadays using scanners, e.g. for the Digitized First Byurakan Survey (DFBS) →

Color Photography (1)

Exposure of the emulsion layers to the three primary colors

Depthwise superposition of emulsions

- top layer responds only to blue light
- yellow filter removes blue light (transmits green and red
- the dye-sensitized layers underneath respond to green and to red (either one)

Color Photography (2)

- yellow filter is removed
- · layer-by-layer dyes are produced in emulsion layers
- at the end, all silver has been removed and the image dyes remain For details see Rieke book, section 8.2.4