

Nobel Prize 2009

To Willard S. Boyle and George E. Smith (Bell Laboratories) "for the invention of an imaging semiconductor circuit - the

CCD sensor"

Bell Labs researchers Willard Boyle (left) and George Smith (right) with the charge-coupled device, which transforms patterns of light into useful digital information and is the basis for many forms of imaging, including camcorders and satellite surveillance. Photo taken in 1974 (Alcatel-Lucent/Bell Labs)

Stressed Detectors

Reminder: Extrinsic PC -> Longer Wavelenaths

$$\lambda_c = \frac{hc}{E_g} = \frac{\text{Wavelengths}}{E_g[eV]}$$

Requires smaller E_g to get response to longer wavelengths

Impurity	Туре	Ge		Si	
		Cutoff wavelength λ_c (μ m)	Photoionization cross section σ_i (cm ²)	Cutoff wavelength λ_c (μ m)	Photoionization cross section σ_i (cm ²)
Al	р			18.5	8×10^{-16}
В	p	119	1.0×10^{-14}	28^a	1.4×10^{-15}
Ве	p	52		8.3	5×10^{-18}
Ga	p	115	1.0×10^{-14}	17.2	5×10^{-16}
In	p	111		7.9	3.3×10^{-17}
As	n	98	1.1×10^{-14}	23^{a}	2.2×10^{-15}
Cu	p	31	1.0×10^{-15}	5.2	5×10^{-18}
P	n	103	1.5×10^{-14}	27^{a}	1.7×10^{-15}
Sb	n	129	1.6×10^{-14}	29^{a}	6.2×10^{-15}

Not beyond 130µm!

Stressed Detectors

Long λ cut-off of a p-type photoconductor can be modified by applying physical stress on the crystal.

Principle: p-type \rightarrow conduction via migrating holes \rightarrow external stress "helps" the inter-atomic bonds to break

Most effective: the [100] axis of the diamond lattice:

115µm → >200µm GeGa

the practical yield stress of Ge:Ga is $\sim 700 \text{ N mm}^{-2}$

Important when applying forces:

- uniform pressure ("flat-field")
- constant pressure (thermal effects!)
- non-destructive!

Figure 6. MIPS 160 µm Stressed Ge:Ga Array

Stressed Detectors

Blocked Impurity Band (BIB) Detectors

Working Principle of BIB Detectors

BIB = Blocked Impurity Band

Conflicting requirements in extrinsic semiconductors:

Efficient absorption [a(λ) = $\sigma(\lambda)$ N_I] requires large N_I \rightarrow high conductivity Minimizing noise requires high resistance \rightarrow low conductivity

Solution: use separate layers to optimize the optical and electrical properties independently:

IR-active layer: heavily doped, typical species: Si:As, Si:Sb

Blocking layer: thin layer of high purity (intrinsic photoconductor)

Two Types of BIB Detectors

- (a) Front illuminated: transparent contact implanted into the blocking layer; back contact by growing detector on extremely heavily doped (conducting) substrate
- (b) Back illuminated: thin, transparent contact layer is grown underneath the active layer on a high-purity, transparent substrate.

BIB Detectors and Cut-off Wavelength

Heavy doping widens the impurity band and reduces the gap between impurity and conduction band.

→ Minimum required photon energy is slightly lower for BIB detectors than "bulk photoconductors" → response extends to longer wavelengths.

Some Advantages of BIB Detectors

- IR active layer is heavily doped → can be very thin (good for space!)
- extended coverage to longer wavelengths
- high impurity concentrations (without degraded dark current) → high quantum efficiency at shorter wavelengths
- → operation over broader spectral range
- lower impedances -> reduced dielectric relaxation effects

Sketch of a GaAs BIB pilot sample from the MPE GaAs BIB detector development program.

Noise of BIB Detectors

In bulk photoconductors the recombination occurs in the high resistance material \rightarrow G-R noise from photon statistics (G) + random recombinations (R)

In BIB detectors the recombination occurs in the *low* resistance material \rightarrow just noise from photon statistics (G)

- \rightarrow The rms noise current is reduced by a factor $1/\sqrt{2}$
- → This "generation only" noise is termed shot noise.

Operation of BIB Detectors

Apply positive bias voltage to blocking layer of n-type BIB detector. (BIB detectors are electrically asymmetric).

Quantum Efficiency of BIB Detectors

Remember: area close to the interface IRactive/blocking layer is depleted of charge carriers.

Depleted region → high Ē-field → any charge will drift rapidly – as it should be!

Beyond depleted region \rightarrow reduced \bar{E} -field \rightarrow inefficient collection of charges \rightarrow low QE.

In other words:

- The quantum efficiency depends on the width of the depletion region.
- The width of the depletion region depends on the bias voltage.

Importance of the Depletion Region

Density of charges is described by Poisson's equation: (where κ_0 = dielectric constant, ρ = charge density, ε_0 = permittivity of free space, and N_A is the density of the minority (p) carriers that get compensated (by the As) and contribute a counteracting space charge. Typically $N_A \sim 10^{13}$ cm⁻³).

$$\nabla D = \rho \Rightarrow$$

$$\frac{dE_x}{dx} = \frac{\rho}{\kappa_0 \varepsilon_0} = -\frac{qN_A}{\kappa_0 \varepsilon_0}$$

Width = distance from interface to where the \bar{E} -field becomes zero (with $dV/dx = -E_x$): (where t_b = thickness of blocking layer, and V_b = bias voltage).

$$w = \left(\frac{2\kappa_0 \varepsilon_0}{qN_A} |V_B| + t_B^2\right)^{1/2} - t_B$$

Note: the width of the depletion region (and hence the quantum efficiency) will increase with the bias voltage until it reaches the size of the IR-active layer $t_{\rm IR}$.

The maximum useful ("critical") bias voltage is:
$$V_{bC} = \frac{qN_A}{2\kappa_0\varepsilon_0} \left(t_{ir}^2 + 2t_{ir}t_B\right)$$

Pros and Cons of a high Bias Voltage

Cosmic rays damage blocking layer crystal structure \rightarrow increases I_{dark} .

Mitigation: use very pure blocking layers with $N_A < 10^{12}$ cm⁻³

- \rightarrow reduces required V_b to reach a certain depletion width
- \rightarrow lowering V_b reduces I_{dark} .

Typical V_b are in the order of a few Volts.

Typical mean free path in Si: As is ~200nm.

Given a strong local \bar{E} -field the e^- may gain sufficient energy to ionize neutral As impurity atoms.

- →additional atoms in the conduction band
- \rightarrow this process may repeat \rightarrow cascade of electrons created by a single photon.

<u>Careful</u> choice of V_b will produce photoconductive gains G > 1. Practically, one operates BIB detectors at $G \sim 5-10$ to overcome amplifier noise.

G > 1 and the Noise

High gains come with additional noise due to:

- statistics of the "avalanche"
- local effects of the "gain region"

Increase in noise is described by the gain dispersion β : $\beta = \frac{\langle G^2 \rangle}{\langle G \rangle^2}$

...which reduces the quantum efficiency η : $DQE = \frac{\eta}{\beta}$

Because BIB detectors have no recombination noise $\langle I_{G-R} \rangle$ is reduced by $\sqrt{2}$:

$$\langle I_{G-R}^2 \rangle = 4q^2 \varphi \eta G^2 \Delta f \rightarrow \langle I_{shot}^2 \rangle = 2q^2 \varphi \frac{\eta}{\beta} (\beta G)^2 \Delta f$$

Question about IRAS (1983) detectors

62 detectors covering 4 bands:

12μm Si:As 25μm Si:Sb 60μm Ge:Ga

100µm Ge:Ga

From the book "Ripples in the Cosmos: View Behind the Scenes of the New Cosmology" on COBE and IRAS by Michael Rowan-Robinson: [describing problems of IRAS before launch]

"As the launch date approached a group of detectors failed due to a shortcut. Jim Houck, a member of the US team from Cornell University, had the rescuing idea to reverse the detector polarity and to ground them again - and it worked."

Question: Could the IRAS detectors have been BIB detectors?

BIB and Stressed Detectors - a Comparison

Figure taken from "Germanium Detectors for the Far-Infrared" by Erick T. Young

Now: FIR → Vis/NIR

General problem of near-IR detectors: impossibility to achieve simultaneously high sensitivity (high G) and low noise (large R).

Basic Principle: p-n Junction

n-type: surplus of e- p-type: lack of e-

Thermal excitation \rightarrow e⁻ diffuse into p-type region \rightarrow space charge region \rightarrow depletion of charge carriers \rightarrow high resistance.

Diffusion process results in a voltage difference across the junction : contact potential V_0 .

Outside the depletion region (due to high doping levels): R and $\bar{\mathsf{E}}$ are low

Contact Potential across a Junction

The contact potential V_0 is determined by the difference in the Fermi levels: $\Delta E_F = q V_0$

Applying Reverse Bias

 Apply voltage such that it adds to the contact potential → reverse bias (positive voltage to n-type material)

Increases potential across depletion region

→ increases width and resistance

A modest reverse bias can bring $E_{\rm cn}$ below $E_{\rm vp}$ (conduction band in n-type below the ptype valence band).

Now, an e^- does not need to move to the conduction band (E_{cp}) - if the depletion region is thin (relative to the e^- wavefunction) tunneling can occur.

Applying Forward Bias

Apply voltage such that the contact potential is reduced → forward bias

Reduces potential across depletion region

A forward bias with V > V_0 will make E_{vn} > E_{Fn} , and the junction is strongly conducting.

General behaviour of a diode:

Photo-excitation in Photodiodes

- 1. Photon gets absorbed in p-type part
- 2. Absorption creates e- hole pair
- 3. e diffuses through material
- Voltage drives e⁻ across the depletion region → photo-current

Same if absorbed in n-type part but then the hole migrates through junction.

Wavelength Range of Photodiodes

Though constructed with extrinsic (doped) material, photodiodes work only through intrinsic absorption.

Typical optical/IR photodiode materials with interesting cutoff wavelengths at room temperature are:

Material ~/_{cutoff}
Si 1.1 μm
GaInAs 1.7 μm
Ge 1.8 μm
InAs 3.4 μm
InSb 6.8 μm

...and for the near-UV:

 $\begin{array}{lll} \text{Material} & \sim \textit{\Lambda}_{\text{cutoff}} \\ \text{GaP} & 0.52 \ \mu\text{m} \\ \text{GaN} & 0.37 \ \mu\text{m} \\ \text{Al}_{\text{x}} \text{Ga}_{1\text{-x}} \text{N} & 0.2 \ \dots \ 0.37 \ \mu\text{m} \end{array}$

 $Hg_{1-x}Cd_{x}Te \rightarrow \Lambda_{cutoff} = 1 ... 15 \mu m$

Varying x you can tune your HgCdTe detector response:

$$E_g(x,T) = -0.303 + 1.816x - 0.0962x^2 + 0.189x^3 + \frac{\left(6.3 - 15.84x + 6.29x^2\right) \cdot 10^{-4}T^2}{11 + 67.7x + T}$$

Commercial Applications of Photodiodes

From Wikipedia:

Heavily used in consumer electronics devices such as:

- compact disc players
- smoke detectors
- receivers for remote controls (VCRs and television)
- medical applications (computer tomography, blood gas monitors).

Photodiodes are often used for accurate measurement of light intensity in science and industry. They generally have a better, more linear response than photoconductors.

For higher temporal frequencies (e.g. optical communications) PIN diodes (see below) are preferred.

Wikipedia also writes: "P-N photodiodes are not used to measure extremely low light intensities. Instead, if high sensitivity is needed, avalanche photodiodes, intensified charge-coupled devices or photomultiplier tubes are used for applications such as astronomy, spectroscopy, night vision equipment and laser range finding." - not quite, though!

Summary: Properties of Photodiodes

Summary of characteristics of Photodiodes:

- Based on junction between two oppositely doped zones
- Two adjacent zones create depletion region with high impedance
- Can operate at high sensitivity at room temperature
- Intrinsic absorption → high quantum efficiency in small volumes
- Limited to λ < 15μm
- Can be constructed in arrays of millions of pixels
- Detectors of choice for 1 6 μm, visible and near-UV