Nobel Prize 2009 To Willard S. Boyle and George E. Smith (Bell Laboratories) "for the invention of an imaging semiconductor circuit - the CCD sensor" Bell Labs researchers Willard Boyle (left) and George Smith (right) with the charge-coupled device, which transforms patterns of light into useful digital information and is the basis for many forms of imaging, including camcorders and satellite surveillance. Photo taken in 1974 (Alcatel-Lucent/Bell Labs) ## Stressed Detectors ### Reminder: Extrinsic PC -> Longer Wavelenaths $$\lambda_c = \frac{hc}{E_g} = \frac{\text{Wavelengths}}{E_g[eV]}$$ Requires smaller E_g to get response to longer wavelengths | Impurity | Туре | Ge | | Si | | |----------|------|--|---|--|---| | | | Cutoff wavelength λ_c (μ m) | Photoionization cross section σ_i (cm ²) | Cutoff wavelength λ_c (μ m) | Photoionization cross section σ_i (cm ²) | | Al | р | | | 18.5 | 8×10^{-16} | | В | p | 119 | 1.0×10^{-14} | 28^a | 1.4×10^{-15} | | Ве | p | 52 | | 8.3 | 5×10^{-18} | | Ga | p | 115 | 1.0×10^{-14} | 17.2 | 5×10^{-16} | | In | p | 111 | | 7.9 | 3.3×10^{-17} | | As | n | 98 | 1.1×10^{-14} | 23^{a} | 2.2×10^{-15} | | Cu | p | 31 | 1.0×10^{-15} | 5.2 | 5×10^{-18} | | P | n | 103 | 1.5×10^{-14} | 27^{a} | 1.7×10^{-15} | | Sb | n | 129 | 1.6×10^{-14} | 29^{a} | 6.2×10^{-15} | Not beyond 130µm! #### Stressed Detectors Long λ cut-off of a p-type photoconductor can be modified by applying physical stress on the crystal. Principle: p-type \rightarrow conduction via migrating holes \rightarrow external stress "helps" the inter-atomic bonds to break Most effective: the [100] axis of the diamond lattice: 115µm → >200µm GeGa the practical yield stress of Ge:Ga is $\sim 700 \text{ N mm}^{-2}$ #### Important when applying forces: - uniform pressure ("flat-field") - constant pressure (thermal effects!) - non-destructive! Figure 6. MIPS 160 µm Stressed Ge:Ga Array #### Stressed Detectors # Blocked Impurity Band (BIB) Detectors #### Working Principle of BIB Detectors BIB = Blocked Impurity Band Conflicting requirements in extrinsic semiconductors: Efficient absorption [a(λ) = $\sigma(\lambda)$ N_I] requires large N_I \rightarrow high conductivity Minimizing noise requires high resistance \rightarrow low conductivity Solution: use separate layers to optimize the optical and electrical properties independently: IR-active layer: heavily doped, typical species: Si:As, Si:Sb Blocking layer: thin layer of high purity (intrinsic photoconductor) #### Two Types of BIB Detectors - (a) Front illuminated: transparent contact implanted into the blocking layer; back contact by growing detector on extremely heavily doped (conducting) substrate - (b) Back illuminated: thin, transparent contact layer is grown underneath the active layer on a high-purity, transparent substrate. #### BIB Detectors and Cut-off Wavelength Heavy doping widens the impurity band and reduces the gap between impurity and conduction band. → Minimum required photon energy is slightly lower for BIB detectors than "bulk photoconductors" → response extends to longer wavelengths. #### Some Advantages of BIB Detectors - IR active layer is heavily doped → can be very thin (good for space!) - extended coverage to longer wavelengths - high impurity concentrations (without degraded dark current) → high quantum efficiency at shorter wavelengths - → operation over broader spectral range - lower impedances -> reduced dielectric relaxation effects Sketch of a GaAs BIB pilot sample from the MPE GaAs BIB detector development program. #### Noise of BIB Detectors In bulk photoconductors the recombination occurs in the high resistance material \rightarrow G-R noise from photon statistics (G) + random recombinations (R) In BIB detectors the recombination occurs in the *low* resistance material \rightarrow just noise from photon statistics (G) - \rightarrow The rms noise current is reduced by a factor $1/\sqrt{2}$ - → This "generation only" noise is termed shot noise. #### Operation of BIB Detectors Apply positive bias voltage to blocking layer of n-type BIB detector. (BIB detectors are electrically asymmetric). #### Quantum Efficiency of BIB Detectors Remember: area close to the interface IRactive/blocking layer is depleted of charge carriers. Depleted region → high Ē-field → any charge will drift rapidly – as it should be! Beyond depleted region \rightarrow reduced \bar{E} -field \rightarrow inefficient collection of charges \rightarrow low QE. #### In other words: - The quantum efficiency depends on the width of the depletion region. - The width of the depletion region depends on the bias voltage. #### Importance of the Depletion Region Density of charges is described by Poisson's equation: (where κ_0 = dielectric constant, ρ = charge density, ε_0 = permittivity of free space, and N_A is the density of the minority (p) carriers that get compensated (by the As) and contribute a counteracting space charge. Typically $N_A \sim 10^{13}$ cm⁻³). $$\nabla D = \rho \Rightarrow$$ $$\frac{dE_x}{dx} = \frac{\rho}{\kappa_0 \varepsilon_0} = -\frac{qN_A}{\kappa_0 \varepsilon_0}$$ Width = distance from interface to where the \bar{E} -field becomes zero (with $dV/dx = -E_x$): (where t_b = thickness of blocking layer, and V_b = bias voltage). $$w = \left(\frac{2\kappa_0 \varepsilon_0}{qN_A} |V_B| + t_B^2\right)^{1/2} - t_B$$ Note: the width of the depletion region (and hence the quantum efficiency) will increase with the bias voltage until it reaches the size of the IR-active layer $t_{\rm IR}$. The maximum useful ("critical") bias voltage is: $$V_{bC} = \frac{qN_A}{2\kappa_0\varepsilon_0} \left(t_{ir}^2 + 2t_{ir}t_B\right)$$ #### Pros and Cons of a high Bias Voltage Cosmic rays damage blocking layer crystal structure \rightarrow increases I_{dark} . Mitigation: use very pure blocking layers with $N_A < 10^{12}$ cm⁻³ - \rightarrow reduces required V_b to reach a certain depletion width - \rightarrow lowering V_b reduces I_{dark} . Typical V_b are in the order of a few Volts. Typical mean free path in Si: As is ~200nm. Given a strong local \bar{E} -field the e^- may gain sufficient energy to ionize neutral As impurity atoms. - →additional atoms in the conduction band - \rightarrow this process may repeat \rightarrow cascade of electrons created by a single photon. <u>Careful</u> choice of V_b will produce photoconductive gains G > 1. Practically, one operates BIB detectors at $G \sim 5-10$ to overcome amplifier noise. #### G > 1 and the Noise High gains come with additional noise due to: - statistics of the "avalanche" - local effects of the "gain region" Increase in noise is described by the gain dispersion β : $\beta = \frac{\langle G^2 \rangle}{\langle G \rangle^2}$...which reduces the quantum efficiency η : $DQE = \frac{\eta}{\beta}$ Because BIB detectors have no recombination noise $\langle I_{G-R} \rangle$ is reduced by $\sqrt{2}$: $$\langle I_{G-R}^2 \rangle = 4q^2 \varphi \eta G^2 \Delta f \rightarrow \langle I_{shot}^2 \rangle = 2q^2 \varphi \frac{\eta}{\beta} (\beta G)^2 \Delta f$$ #### Question about IRAS (1983) detectors 62 detectors covering 4 bands: 12μm Si:As 25μm Si:Sb 60μm Ge:Ga 100µm Ge:Ga From the book "Ripples in the Cosmos: View Behind the Scenes of the New Cosmology" on COBE and IRAS by Michael Rowan-Robinson: [describing problems of IRAS before launch] "As the launch date approached a group of detectors failed due to a shortcut. Jim Houck, a member of the US team from Cornell University, had the rescuing idea to reverse the detector polarity and to ground them again - and it worked." Question: Could the IRAS detectors have been BIB detectors? #### BIB and Stressed Detectors - a Comparison Figure taken from "Germanium Detectors for the Far-Infrared" by Erick T. Young Now: FIR → Vis/NIR General problem of near-IR detectors: impossibility to achieve simultaneously high sensitivity (high G) and low noise (large R). #### Basic Principle: p-n Junction n-type: surplus of e- p-type: lack of e- Thermal excitation \rightarrow e⁻ diffuse into p-type region \rightarrow space charge region \rightarrow depletion of charge carriers \rightarrow high resistance. Diffusion process results in a voltage difference across the junction : contact potential V_0 . Outside the depletion region (due to high doping levels): R and $\bar{\mathsf{E}}$ are low #### Contact Potential across a Junction The contact potential V_0 is determined by the difference in the Fermi levels: $\Delta E_F = q V_0$ #### Applying Reverse Bias Apply voltage such that it adds to the contact potential → reverse bias (positive voltage to n-type material) Increases potential across depletion region → increases width and resistance A modest reverse bias can bring $E_{\rm cn}$ below $E_{\rm vp}$ (conduction band in n-type below the ptype valence band). Now, an e^- does not need to move to the conduction band (E_{cp}) - if the depletion region is thin (relative to the e^- wavefunction) tunneling can occur. #### Applying Forward Bias Apply voltage such that the contact potential is reduced → forward bias Reduces potential across depletion region A forward bias with V > V_0 will make E_{vn} > E_{Fn} , and the junction is strongly conducting. General behaviour of a diode: #### Photo-excitation in Photodiodes - 1. Photon gets absorbed in p-type part - 2. Absorption creates e- hole pair - 3. e diffuses through material - Voltage drives e⁻ across the depletion region → photo-current Same if absorbed in n-type part but then the hole migrates through junction. #### Wavelength Range of Photodiodes Though constructed with extrinsic (doped) material, photodiodes work only through intrinsic absorption. Typical optical/IR photodiode materials with interesting cutoff wavelengths at room temperature are: Material ~/_{cutoff} Si 1.1 μm GaInAs 1.7 μm Ge 1.8 μm InAs 3.4 μm InSb 6.8 μm ...and for the near-UV: $\begin{array}{lll} \text{Material} & \sim \textit{\Lambda}_{\text{cutoff}} \\ \text{GaP} & 0.52 \ \mu\text{m} \\ \text{GaN} & 0.37 \ \mu\text{m} \\ \text{Al}_{\text{x}} \text{Ga}_{1\text{-x}} \text{N} & 0.2 \ \dots \ 0.37 \ \mu\text{m} \end{array}$ $Hg_{1-x}Cd_{x}Te \rightarrow \Lambda_{cutoff} = 1 ... 15 \mu m$ Varying x you can tune your HgCdTe detector response: $$E_g(x,T) = -0.303 + 1.816x - 0.0962x^2 + 0.189x^3 + \frac{\left(6.3 - 15.84x + 6.29x^2\right) \cdot 10^{-4}T^2}{11 + 67.7x + T}$$ #### Commercial Applications of Photodiodes From Wikipedia: Heavily used in consumer electronics devices such as: - compact disc players - smoke detectors - receivers for remote controls (VCRs and television) - medical applications (computer tomography, blood gas monitors). Photodiodes are often used for accurate measurement of light intensity in science and industry. They generally have a better, more linear response than photoconductors. For higher temporal frequencies (e.g. optical communications) PIN diodes (see below) are preferred. Wikipedia also writes: "P-N photodiodes are not used to measure extremely low light intensities. Instead, if high sensitivity is needed, avalanche photodiodes, intensified charge-coupled devices or photomultiplier tubes are used for applications such as astronomy, spectroscopy, night vision equipment and laser range finding." - not quite, though! #### Summary: Properties of Photodiodes Summary of characteristics of Photodiodes: - Based on junction between two oppositely doped zones - Two adjacent zones create depletion region with high impedance - Can operate at high sensitivity at room temperature - Intrinsic absorption → high quantum efficiency in small volumes - Limited to λ < 15μm - Can be constructed in arrays of millions of pixels - Detectors of choice for 1 6 μm, visible and near-UV