

Charge Transfer Efficiency (CTE)

High CTE = transfer all charges

Poor CTE = blurring of the image (charges trailing behind)

Time-dependent mechanisms that influence the CTE:

- <u>!</u> Electrostatic repulsion causes electrons to drift to the neighbouring electrode with time constant for charge transfer $au_{
 m SI}$.
- 2 Thermal diffusion drives electrons across the storage well at r_{th}
- <u>.</u>ω "Fringing fields" due to dependency of the well on the voltages of neighbouring electrodes (τ_{ff}).

Hence, electrostatic repulsion and fringing fields will dominate For a properly designed CCD with partially filled wells: r_{th} * T_{SI}, T_{ff}

Approximation for the CTE of a CCD with m phases: $CTE = \left(1 - e^{-t/\tau}\right)^n$

Noise from Charge Transfer

Noise from charge transfer inefficiency: $\varepsilon = (1-CTE)$

each transfer A total of ϵN_0 charges are "left behind" and the noise on them is $(\epsilon N_0)^{1/2}$ in

In *n* transfers the net uncertainty is $N_{n,TL} = \left(2 arepsilon n N_0
ight)^{1/2}$

fluctuations with noise interface. Noise from trapping of charge carriers in incomplete bonds in the Si-SiO₂ Traps will be occupied in equilibrium, but subject to statistical $N_{n,T} = \left(2kTnN_{SS}A\right)^{1/2}$

 $(N_{SS}$ is the density of traps, and A the interface area)

SiO₂. 0.1µm to reduce fringing fields electrode and well can be increased above Another advantage of buried channel \rightarrow Modify CCD structure to keep charges away from the SiO₂ layer \rightarrow buried channel CCD. CCDs is, that the distance between discussion) Rieke book p. 165-168 for a detailed Achieved by adding a 1µm thick n-type doped Si layer between p-type Si and A way to reduce the noise from trapping of charge carriers The two layers form a junction *(see* GAIA and CTE Side note: **Buried Channel CCDs** (a) (d) 매 щ. p-type silicon n-type -silicon 0000 SiO + < 2 <->P P

GAIA: Required Centroiding

Gaia requirements for end of mission parallax standard errors (G2V)

µarcsec	7	24	300
pixels in focal plane	1.2×10^{-4}	4.1×10^{-4}	51 >

transits), then the residual centroiding error per CCD transit is equivalent to... Assuming that each object is observed 75 times in 9 CCDs (= 675 CCD

Figure courtesy of Alex Short, ESA

other types of CCDs **D.** Variants and CCDS

CCDs at A<0.3µm

- <u>--</u> Extremely short photon absorption lengths \rightarrow charge collection problems
- 2. Many "transparent" electrode materials become absorbing
- .ω n(Si) <1) Anti-reflection coatings problematic (strong f(A), and at A<0.2 μm \rightarrow
- 4. Specifically developed UV/blue CCDs need a blocking filter for visible light
- S Photons at Λ <0.3 µm generate more than one electron \rightarrow for X-rays of the X-ray photon. the number of free electrons generated is a measure of the energy

CCD. CCD. To move a charge to the right, `3' is negative to act as channel stop,`1',`2', and`4' For TDI it would be desirable to move the charges in <u>any</u> direction to follow the image motion. This can be done with the OTCCD. clocking. directions: reversing the Moving to the opposite operated as a conventional stop,`1',`2', and`3' are negative to act as channel are operated as a conventional OTCCD operation: To move a charge up, `4' is and OTCCDs Pan-STARR Orthogonal Transfer CCDs (OTCCD) Side note: 4 4 2 N ω ω ω --4 4 2 2 ω ω S --4 4

The Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) is a wide-field imaging facility that will observe the entire available sky several times each month.

Scientific goal: to discover and characterize Earth-approaching objects, both asteroids & comets, that might pose a danger to our planet.

Pan-STARRS combines four 1.8m telescopes with the largest digital cameras ever built. Each camera has a 64 x 64 array of *CC*D devices, each containing approximately 600 x 600 pixels, for a total of about 1.4 *G*pix.

The Pan-STARRS Project (3)

Gain: significantly improved resolution and sensitivity.

Similar result as with a "tip-tilt" system, but by electronically shifting the image within the CCD rather than by moving a fast mirror.

Side note:

CMOS Imaging Arrays

manufactured in complementary metal-oxide-semiconductor (CMOS) devices Nowadays, transistors are tiny and high performance arrays can be

(similar to hybrid arrays but in one unit) ightarrow silicon photodiodes + readout circuitry produced on a single silicon wafer

- 70 80% fill factor ← not great for low-level signals
- •< 50 e⁻ read noise ← not great for low-level signals
- increased fill factors with micro-lens arrays

CMOS advantages:

- much less sensitive to radiation damage
- allow simplified systems design

Color CCDs

Essentially three ways to do it (from Wikipedia):

- <u>-</u> Take three exposures through three filters subsequently – only works for fixed targets (standard for astronomy).
- \sim Split the input beam in three channels, each with a separate and optimized *CCD* (*very* expensive cameras).
- ω Use a Bayer mask over the CCD - each subset of 4 pixels has one filtered red, one blue, and two green.

