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CHAPTER 1

Introduction

The emission and absorption of light are inseparably linked with astronomy. Stars emit light
which travels through the interstellar medium before it passes through the earths atmosphere
and reaches our eyes and telescopes. As the light interacts with the gas and dust along the way,
it gets absorbed and scattered, changing its directionality and spectral characteristics. Hence,
the light we receive carries information of its origin as well as its journey and can be used to
study both.

Besides its role as messenger, light is a key constituent of our universe dominating the total
energy budget until the universe was about 70.000 years old. Knowledge of the interplay be-
tween radiation and matter is essential for our understanding of many phenomena studied by
astronomers and astrophysicists. Radiation can influence matter (generally gas) dynamically,
either directly by radiation pressure or indirectly through heating (cooling) leading to an in-
crease (decrease) of the gas pressure. On a microscopic level, the ionization- and excitation
state of gas can be changed by interaction with photons. Reversely, the gas itself can emit
radiation which makes the interplay between matter and radiation a highly coupled process.

We proceed with an introduction into two fields of astrophysics that are relevant for this
thesis and where the transport of radiation is especially important. These introductions are
followed by a brief discussion of several methods designed to solve radiation transfer problems
numerically. We postpone a description of our own radiative transfer algorithm, the SimpleX
method, to the next chapter.

1.0.1 Cosmological reionization

The birth of the universe

According to the concordance cosmological model that tries to explain how structures like
galaxies and clusters form, the universe came into existence about 13.7 billion years ago in
an event that is referred to as the ‘Big Bang’ and evolved according to the so-called Λ-cold dark
matter (shortly Λ-CDM) paradigm. With the expansion of the universe, the hot plasma that it
contained cooled down to the temperature where atoms can form (T ≈ 3000 K). This phase
transition is called cosmological recombination and happened roughly 380,000 years after the
Big Bang, at a redshift of z ≈ 1100 (see Sunyaev & Chluba 2008, for a recent review).



2 Connecting the dots

With the formation of the first atoms, the photons that had been ‘trapped’ by Thomson
scattering off free electrons were free to stream through the now transparent universe. We
observe this radiation today as the redshifted Cosmic Microwave Background (CMB) radiation
which provides a direct probe of the physical conditions at the time of recombination. The
temperature fluctuations (on a mean temperature of 2.725 K) in the CMB are of the order of
0.2 µK which confirms the large degree of isotropy predicted by the theory of cosmological
inflation.

The constituents of the universe

Recent observations suggest that the expansion rate of the universe is increasing. This is at-
tributed to a mysterious cosmological phenomenon which is known as dark energy or the cos-
mological constant for those who are more prosaic (see Frieman et al. 2008, for a recent review).
According to the Λ-CDM model, the present day universe consists of 74% dark energy, 26%
matter and a trace amount (< 0.1%) of radiation. The matter-part, in turn, consists for 83% of
an unknown material called dark matter. The remaining 17% of matter (and thus less than 5%
of the total content of the universe) is the baryonic matter that we are familiar with and consist
of ourselves.

Structure formation

Under the influence of gravity, the small fluctuations in the density of matter (both dark and
baryonic) start to contract. At first, when density contrasts are small, the evolution is linear
and can be calculated analytically. Depending on the size of the fluctuation, the collapse en-
ters a non-linear regime. This happens earlier for small-scale than for large-scale fluctuations;
the so-called hierarchical build up of structure (see Baugh 2006, for a recent review). In a
geometrical sense, the collapse of matter follows a hierarchical sequence as well. From the
three-dimensional clouds, the first structures to form are two-dimensional walls, which collapse
into one dimensional filaments which in turn stream into zero-dimensional knots. The resulting
structure is often referred to as the cosmic web, and follows from simple analytical considera-
tions (Icke & van de Weygaert 1987).

The first ionizing sources

The collapsed dark matter haloes at the nodes of the cosmic web provided the gravitational po-
tential wells where baryonic matter could cool and settle to form the first proto-galaxies. The
subsequent formation of the first sources of ionizing radiation marked the end of the cosmolog-
ical dark ages when the universe was about 300 million years old (Barkana & Loeb 2001; Loeb
& Barkana 2001; Ciardi & Ferrara 2005). Because of the primordial gas composition (roughly
76% hydrogen and 24% helium, with a very small fraction of trace elements), a portion of these
first stars are thought to be much heavier than those that we see today (Bromm et al. 2002;
Abel et al. 2002; Bromm et al. 2009). The properties of such Population III stars are not well
understood and are the subject of active research (see Bromm et al. 2009, for a recent review on
the first stars and galaxies).



Introduction 3

The Epoch of Reionization

It is probably these sources, together with the subsequent generation of stars and accreting
black holes (so-called Quasi Stellar Sources or quasars), that brought about the second major
phase transition in the history of the universe: cosmological reionization. During the epoch of
reionization (EoR), the neutral hydrogen gas around the sources was ionized to a high degree
(of about one part in 10−5 neutral fraction), which is the ionization state of the universe today.

As the radiation from the first sources heated their surroundings, gas clouds that had not
yet collapsed may be prevented from doing so due to extra pressure. This extra pressure raises
the Jeans mass below which clouds can collapse and form galaxies. This so-called Jeans fil-
tering (Shapiro et al. 1994; Gnedin & Hui 1998) may thus have direct implications for galaxy
formation and the mass function of galaxies in the present day universe.

If the emerging view that reionization is primarily due to stars in galaxies and quasars (and
not exotic sources such as decaying dark matter or evaporating black holes) is true, the process
is highly inhomogeneous. The morphology of reionization will be patchy, with the shape and
size distributions of ionized regions determined by the spatial distribution and character of the
sources and sinks of ionizing radiation. Most likely, the gas in the densest regions, close to the
sources, ionizes first. It is not yet settled if ionization progresses to ever lower densities with
the under-dense voids staying neutral longest (the so-called inside-out scenario e.g., Iliev et al.
2006b; McQuinn et al. 2007; Trac & Cen 2007; Zahn et al. 2007) or if the filaments, regions of
intermediate density with lower source density, are ionized last (the inside-out-middle scenario
e.g., Gnedin 2000; Ciardi et al. 2003; Finlator et al. 2009b; Petkova & Springel 2011). We will
return to this question in Chapter 7 where we investigate if differences in morphology can be
due to the methods of radiative transfer used.

Observational constraints

Although the epoch of reionization is a key period in our universe’s history, we know very
little about it. Currently the most important observational constraints are from Gunn-Peterson
troughs in absorption spectra towards distant (z & 6) quasars and the Thomson scattering optical
depth for CMB photons. Analysis of the Lyα forest in absorption spectra of distant quasars
revealed an increase in the optical depth for redshifts larger than z ≈ 6 (Fan et al. 2002, 2006).
Although this result has been interpreted by many as marking the end of reionization, this
interpretation is debated because the optical depth to z > 6 is high (> 105), making it very
difficult to accurately constrain the neutral fraction of hydrogen (Mesinger 2010). The same
spectra show that the evolution of the mean opacity of the Lyα forest, happens on a very short
time-scale which is compelling evidence for the change of the ionization state of hydrogen (Fan
et al. 2006). Such evolution may, however, also be possible without reionization coming to an
end (Becker et al. 2007).

The second major constraint comes from observations of CMB photons that Thomson scat-
tered off of the electrons freed by reionization. This scattering introduced the large-scale po-
larization anisotropies in the CMB which have been measured with the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite. A best fit model using the seventh year data results in a
mean reionization redshift of 10.5 ± 1.2 (Larson et al. 2011). The constraints on the WMAP
results are such that only a time of reionization can be deduced under the assumption that reion-



4 Connecting the dots

ization was an instantaneous event. There are, however, strong indications that reionization
was a gradual process, spanning hundreds of millions of years (e.g., Bolton & Haehnelt 2007;
Bowman & Rogers 2010). Together, these two observational results constrain the completion
of reionization to between 6 & z & 12, but reveal very little about the nature and morphology of
the process.

Outlook

The most promising upcoming observational results with respect to reionization will be those
obtained by radio observatories such as LOFAR, SKA, MWA, GMRT and PAPERS. These
telescopes will be able to detect the redshifted 21 cm signal due to the hyperfine transition in
atomic hydrogen as a function of redshift. Probably the first observational handle, due to its
relative simplicity, will be the power spectrum of the spatial fluctuations in neutral hydrogen.
When the sensitivity and background-removal techniques improve, it will be possible to con-
struct spatially extended H i maps, directly probing the morphology of reionization. For a recent
discussion of observational probes of reionization we refer the reader to McQuinn (2010).

Numerical simulations are essential to give proper interpretation to the existing and up-
coming observations. With the aid of simulations, we can identify the relationships between
the observed characteristics and values of the physical parameters involved, identify possible
degeneracies between parameters and explore the sensitivity of those parameters (see Trac &
Gnedin 2009, for a recent review of simulations of the EoR). The computational bottleneck
in simulations of the EoR is the inclusion of sufficiently realistic radiative transfer. In the next
chapter, we argue that the SimpleX algorithm that will be used in this thesis is well-suited for
this type of computations.

1.0.2 The enigmatic object ηCarinae

On the scale of stars, many interesting problems involving radiative transfer can be found. For
example, a whole field of research is dedicated to the detailed modeling of stellar atmospheres
and the spectra that emerge from them. Most of the work has been done with one-dimensional
codes that trace a wealth of spectral lines and subtle atomic physics such as charge exchange.
Closely related with these atmospheric processes are stellar winds and outflows, the driving and
shaping of which rely on momentum transfer between the stellar photons and the outer layers
of the star.

In this thesis we will focus on a particularly interesting star from the perspective of radiative
transfer: the putative binary system η Carinae. This enigmatic object has been classified as a
Luminous Blue Variable (LBV) or S Dor variable, and is one of the most extreme stars in the
nearby universe. It resides in the Carinae nebula roughly 2.3 kpc away (Allen & Hillier 1993;
Davidson & Humphreys 1997; Meaburn 1999; Davidson et al. 2001), and is one of the most
luminous infrared (IR) sources in the sky (Westphal & Neugebauer 1969; Aitken et al. 1995).
Almost all of the 5.0 × 106 L� is emitted at IR wavelengths, indicating that the light we observe
is reprocessed by dust that is irradiated by the central source (Cox et al. 1995). The bulk of this
dust is contained in the bipolar Homunculus nebula which resulted from a 20-year period of
mass loss and extreme brightening that occurred in the 19th century and is known as the Great
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Eruption.
Despite a huge amount of research, many fundamental questions about this system remain

unanswered. From the total light, a combined mass of the binary of at least 100 M� can been
derived but it is unclear how this mass is divided between the two stellar components. The
binary period has been determined by observations of the recurring spectroscopic events to be
5.538 yr (Damineli et al. 2008). From the position of the X-ray minimum in the lightcurve, the
eccentricity of the orbit has been constrained to be higher than 0.8 with a best fit value of 0.9
(Corcoran et al. 2001). It is unclear if the orbits’ extreme eccentricity is a result of the Great
Eruption or has another origin such as a gravitational interaction with a third object.

The Great Eruption and the Homunculus nebula

The Great Eruption is a puzzle in its own right; it is not clear what process is responsible for
the sudden brightening in 1837. With a peak apparent magnitude of −1, η Car was one of the
brightest sources in the sky at the time. Moreover, the brightening coincided with the expulsion
of a large amount of gas during a ∼ 20 year period centered around 1841.2 ± 0.8 AD (Currie
et al. 1996).

The resulting Homunculus (which translates to ‘little man’ and originates from observations
at low resolution, Gaviola 1950) nebula consists of two lobes that appear to be nearly spherical,
each with a diameter of about 8.5′′ ≈ 0.1 pc in 1950. The lobes are separated by an equatorial
skirt of elongated spikes and debris normal to the symmetry axis (Morse et al. 1998; Smith &
Gehrz 2000). The material in the lobes follows an approximate Hubble flow with an expansion
rate of about 0.66% per year (Currie et al. 1996; Morse et al. 2001).

The bipolar shape has been interpreted as the result of high gas densities in the equato-
rial plane (Konigl 1982; Frank et al. 1995). There is no consensus about the origin of this
material. Many authors suggest it to be induced by a close binary companion, while some
authors claim that can be caused by a single, moderately rotating, star (e.g., Lamers & Paul-
drach 1991; Bjorkman & Cassinelli 1993; Owocki et al. 1994). Another explanation hinging
on gravity darkening (von Zeipel 1924) has also been put forward and models incorporating
this effect reproduce the bipolar shape at least qualitatively (Owocki & Gayley 1996; Maeder
& Desjacques 2001; Dwarkadas & Owocki 2002; González et al. 2004). These models need
substantial enhancement of wind density and expansion velocity at the poles. This requires that
the star rotates close to its brake-up velocity. Therefore, the shape of the homunculus may be
a natural consequence of the combined effects of rapid rotation and the high luminosity of Eta
Carinae. The ellipsoidal form of the directly observed stellar surface (aligned with the bipolar
axis) supports this hypothesis (van Boekel et al. 2003).

Mass estimates of the Homunculus nebula

The total luminous output during the Great Eruption amounts to about 1049.5 ergs. Kinetic en-
ergy estimates based on measurements of the expansion velocities in the Homunculus and dust
mass estimates (discussed below) are of the order of 1049 ergs, only two orders of magnitude
less than a supernova explosion! These extreme values are beyond what well known, radia-
tion driven, mechanisms can produce, implying that the Great Eruption is the result of some
unknown effect.
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Figure 1.1: Left: Hubble Space Telescope image of Eta Car (Morse et al. 1998). Right: Eta
Car in the IR (at 24.5 µm; Smith et al. 2002).

Because of the many observational difficulties associated with the direct detection of highly
obscured gas, mass estimates have almost exclusively been based on measurements of the IR
radiation due to dust. The major uncertainties are the chemical composition and grain size
distribution of the dust and the gas-to-dust ratio.

The first attempts to determine the mass of the Homunculus were based on a spectral energy
distribution (SED) consisting of a handful of photometric flux measurements and yielded dust
mass estimates of the order of Md = 0.01-0.03 M� (Mitchell & Robinson 1978; Hackwell et al.
1986; Cox et al. 1995). Smith et al. (1998) inferred the spatial distribution of dust emission
from thermal-IR observations. They found that the Homunculus should contain at least 0.025
M� of dust. Three temperature components were derived; 200, 240 and 420 K for the bipolar
lobes, the skirt, and the core, respectively. Data obtained with the Infrared Space Observatory
(ISO; Kessler et al. 1996) led to substantially higher mass estimates of 0.1-0.15 M� by Morris
et al. (1999) because of the detection of a cool dust component of 110, in addition to a warm 190
K component. From MIRAC3 imaging and the ISO data from Morris et al. (1999), Smith et al.
(2003b) found in excess of 12 M� of mass of which about 90% is traced by a thin, cool (∼ 140
K) shell of molecular Hydrogen (Smith 2006). From sub-millimetre SCUBA observations,
Gomez (Née Morgan) et al. (2006) derives 0.3-0.7 M� of dust around Eta Carinae, however,
this may be situated in a volume larger than the Homunculus.

Assuming a canonical gas-to-dust ratio of 100, estimates of the Homunculus mass thus
range from 1 to 70 M�, where most of the uncertainty is due to insufficient knowledge of the
dust composition and the gas-to-dust ratio. We go deeper into these issues in Chapter 8 where
we derive possible chemical compositions for the Homuculus nebula and find a lower limit for
its total mass.
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Orbital parameters

One well established observational result is the binary periodicity of 5.538 yr, (Damineli et al.
2008) which also has been found in near-IR photometry (Whitelock et al. 1994), and radio
data (Duncan & White 2003). This periodicity could be related to the thermal timescale of the
outer layers (Davidson et al. 2005; Martin et al. 2006; Davidson & Humphreys 1997) but the
consensus view is that ηCarinae consists of more than one star. On the basis of radial velocity
variations, Damineli (1996) postulated that the system is a high eccentricity (e & 0.8) binary
with an orbital period of about 5.52 ± 0.01 yr. This has been confirmed by Davidson (1997),
and the evidence has been traced back as far as 1948.

Changes in the IR emission of the central region at two different times in the 5.52 year
period have been reported by Duncan et al. (1999) and Smith & Gehrz (2000). Observations in
the X-Ray domain show a minimum with the right periodicity, confirming the binary hypothesis
(Ishibashi et al. 1999; Corcoran et al. 2001).

Recently, significant progress has been made by fitting spatially resolved [FeIII] emission
using SPH simulations and Hubble Space Telescope (HST) data (Madura 2010). They were
able to determine for the first time the orientation of the orbit in three dimensional space. Their
results show that, within the uncertainty of the model of about 10◦, the orbital axis of the
ηCarinae binary coincides with the symmetry axis of the Homunculus nebula. This strategy
of combining high-quality spectrometric data with simulation seems to be the path forward in
order to place further constraints on the binary parameters such as mass-ratio. To improve on
the current results, detailed radiative transfer effects have to be incorporated in the models. We
will return to this question in Chapter 9.

1.0.3 The radiative transfer equation

Apart from the aforementioned wealth of interaction mechanisms, inclusion of radiation in
astrophysical simulations is further complicated by the high dimensionality of the equations of
radiation transfer (e.g., Eq. (1.2)). A beam of radiation is described by three spatial, two angular
one frequency and a time variable. Depending on the application, geometrical simplifications
can be made or the explicit time- and frequency-dependence can be dropped. Despite such
approximations, there are hardly any applications where an analytical treatment is possible. We
therefore turn to numerical methods for solving problems including complex radiative transfer.

With the advent of the computer as an important catalyst, a myriad of efforts to solve the
equations of radiative transport within a numerical framework have been developed. The re-
sulting algorithms cover a wide range of applications where generally a method is tailored to
a specific problem. In most cases, specialisation means either the choice of a specific physical
scale (consider detailed models of stellar atmospheres or large-scale cosmological simulations)
or emphasis on physical processes relevant to the problem at hand.

To describe the emission and absorption of radiation as a function of space and time, we
consider the gain and loss of energy in a beam of radiation due to source and sink terms. To
this end, we define the specific intensity Iν by stating that the energy flowing through a surface
area da located at position r in a time interval dt in a solid angle dΩ around direction vector n
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in frequency interval dν is given by

dE = Iv(r,n, t) cos θ da dΩ dν dt (1.1)

where θ is the angle between n and the normal of the surface element da. The equation of
radiative transfer for a medium whose properties can change both in space and time is then
given by

1
c
∂Iν
∂t

+ n · ∇Iν = ην − χνIν. (1.2)

where ην is the monochromatic emission and χν is the total opacity coefficient. If 1
c
∂Iν
∂t � 1, in

other words, if Iν is not explicitly time dependent or the time and space discretization is such
that c can be considered infinite, this equation simplifies to

n · ∇Iν = ην − χνIν. (1.3)

If we take the spatial derivative along the ray and divide by χν, Eq. (1.3) can be rewritten as

∂Iν
∂τ

= S ν − Iν, (1.4)

where we define the source function S ν ≡ ην/χν and optical depth dτ ≡ χνds and s parametrises
the distance along the ray. Eq. (1.4) can be solved numerically if ην and χν are known locally,
the meaning of ‘local’ depending on the type of discretisation of the volume. The form of
Eq. (1.4) suggests that the optical depth is the most natural variable to discretise. In general,
this will produce cells of unequal volume, and therefore, an irregular computational mesh. In
subsequent sections and Chapter 4 we explain in more detail how we generate a set of nuclei that
reflects the underying optical depth field and connect these nuclei with a Delaunay triangulation
to create such a mesh.

1.1 Numerical radiative transfer methods

We now give a short overview of methods that have been developed to solve Eq. (1.3) in its
various forms. As will be discussed in detail in Chapter 2, the SimpleX algorithm (the main
subject of this thesis) is particularly well-suited for applications in cosmological radiative trans-
fer. We therefore focus mainly on methods whose field of application is that of cosmological
reionization and galaxy formation. However, the SimpleX algorithm is not limited to this area
of application, as we will argue in the subsequent chapters. The application to interacting winds
in a binary stellar system in Chapter 9 also bears witness to this statement.

There exists a huge body of work dedicated to solving the radiative transfer equation in one-
dimensional geometries (e.g. stellar and planetary atmospheres) including a myriad of atomic
and molecular lines. In this text we will not discuss these but rather focus on those methods
whose main purpose is to transport ionizing radiation through complex geometries in three-
dimensional space.

This class of ‘cosmological’ radiative transfer codes has a set of requirements that are typical
for this area of research. First, they must be able to deal with a large range in length-scales
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(more than 7 orders of magnitude, Trac & Gnedin 2009). This is because the relevant absorbing
systems may be as small as a few kpc (Lyman limit systems), whereas the simulation volume
should be of the order of a Gpc to have a fair representation of rare quasars and not be dominated
by cosmic variance. To allow for this extreme dynamic range, the simulation method must be
able to dynamically adapt its resolution. To execute simulations including many (often more
than 1283) resolution elements implies large memory requirements greatly surpassing those
available on common desktop computers. Furthermore, the number of sources in these large
volumes can increase well into the millions. Furthermore, if recombination radiation is taken
into account, every resolution element might become a source implying billions of sources. For
these reasons, an ideal cosmological radiative transfer code should naturally adapt its resolution,
be able to deal with many sources, and run efficiently on distributed memory super-computers.

1.1.1 Long characteristics

Almost every radiative transfer method (with exception of so-called moment methods (see
Sect. 1.1.3)) aims at solving the radiative transfer equation along a pencil beam, making it
possible to drop the explicit angular dependence. The first attempts to do this go back to work
of Mihalas & Weibel Mihalas (1984), who introduced the long characteristics (LC) method.
In this approach, rays are cast from every source to every cell in the computational domain
and Eq. (1.3) is solved by integrating the optical depth between the source and target cell. Al-
though LC allows for very accurate results, the computational effort scales as NsNc where Ns

is the number of sources and Nc the number of cells in the domain, making it computationally
prohibitively expensive for large values of Ns.

It has been shown, however, that the computation time can be dramatically reduced if the
time-averaged optical depth along the rays is used (Mellema et al. 2006). This allows for very
long computational time steps in comparison to other methods.

1.1.2 Short- and hybrid characteristics

The LC method is inefficient in another sense as well; cells close to sources are traversed by
many rays (because every cell is connected to every source), resulting in many redundant cal-
culations. This redundancy can be alleviated by adding up optical depth when traversing cells
in an upstream fashion. The resulting short characteristics (SC; e.g, Kunasz & Auer 1988)
method is less accurate because of interpolation errors at cell boundaries, but this is outweighed
for most applications by its significant speed-up. The necessity of traversing cells outward from
the source complicates the parallelization of the SC methods, and approximations have to be
introduced to achieve this goal.

One implementation that combines the speed of the SC with the accuracy of LC has been
devised by Rijkhorst et al. (2006). This so-called hybrid characteristics method can work on
adaptive mesh refinement (AMR) grids and has been coupled to the FLASH hydro-code (Fryxell
et al. 2000).

Another method has been presented in Abel & Wandelt (2002). They use a ray-splitting
criterion that guarantees a fixed number of ray-intersections per cell. Several approximations
that reduce the linear scaling with Ns of this code have been introduced; grouping of adjacent
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sources (Razoumov & Cardall 2005), limiting the splitting of rays (McQuinn et al. 2007) or
merging near-parallel rays (Trac & Cen 2007).

With the exception of the hybrid characteristics method by Rijkhorst et al. (2006) and the
method of Razoumov & Cardall (2005), these methods can be used exclusively on regular
meshes severely limiting their scope of application. Motivated by this limitation and the pop-
ularity of smoothed particle hydrodynamics (SPH), several ray-tracing schemes that operate
directly on the SPH particles have been developed (Alvarez et al. 2006; Susa 2006; Pawlik &
Schaye 2008).

1.1.3 Moment methods

Another way to bring down the computation time for radiative transfer problems is to com-
pletely break the unfavorable scaling of computation time with the number of sources. One
popular approach that achieves this goal solves the radiative transfer equation by taking its first
two angular moments. These moments represent the photon number density and flux respec-
tively, and extended with a closure term, constitute a system of differential equations that can
be solved straightforwardly. The various implementations of this method differ mainly by their
method to compute the Eddington tensor used as closure term (Gnedin & Abel 2001; Aubert &
Teyssier 2008; Petkova & Springel 2009; Finlator et al. 2009a).

Moment methods have the advantage that the solving the RT equation does not scale with
the number of sources. The computation of the Eddington tensor, however, does scale with the
number of sources if done accurately. In its simplest form, this is done by time-independent
ray-casting (i.e., Finlator et al. 2009a). This breaks the time-dependent nature of the solution,
an approximation that is incorrect for rapidly varying emissivity. However, in most cases, the
sources do not evolve on a very short time-scale and one can get away with updating the Ed-
dington tensor only when the emissivity changes considerably.

More approximate calculations of the Eddington tensor such as the Optically Thin Variable
Eddington Tensor (OTVET) approach (Gnedin & Abel 2001) or Flux Limited Diffusion (FLD)
approximation (Aubert & Teyssier 2008) are less computationally intensive. These approxima-
tions are known to distort the shape of ionized bubbles around multiple sources.

Another advantage is that, assuming the Eddington tensor is computed, the solution is com-
pletely local. This simplifies domain-decomposition in parallel implementations because a CPU
only needs to receive information from CPUs that host neighbouring domains. Moreover, the
solution can be solved implicitly, which means that, in principle, a stable solution is attainable
without having to satisfy the radiative Courant condition.

1.1.4 Monte Carlo methods

A large and versatile class of radiative transfer methods use probabilistic means of solving the
radiative transfer equation; the so-called Monte Carlo methods. In this approach, discrete pack-
ets of radiation are sent in random directions and interact with the medium along the way (e.g
Ciardi et al. 2001). Monte Carlo methods are popular because of their relatively straightforward
implementation and the possibility to include physical processes in a probabilistic manner.
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In a sense, Monte Carlo methods are similar to LC because the number of photon packages
that every source needs to send scales with the number of resolution elements in the simulation.
In practice, this prohibitive scaling can be improved upon using so-called importance sampling
techniques, where more rays are cast into regions where higher resolution is needed. Another
disadvantage of Monte Carlo methods is that the signal to noise ratio improves slowly (with
the well-known inverse square-root of the number of rays cast). Monte Carlo methods for
cosmological reionization simulations exist for both regular meshes (Maselli et al. 2003; Maselli
et al. 2009), SPH particles (Semelin et al. 2007; Altay et al. 2008) and AMR grids (Cantalupo
& Porciani 2011).

1.2 This thesis

In this thesis we describe the analysis and improvements of the SimpleX algorithm for radiative
transfer (Chapters 2, 3, 4 and 5). Several applications are presented in Chapters 6, 7, 8 and 9.

1.2.1 Chapter 1

The central ideas behind the SimpleX algorithm are laid out. As they are essential to the method,
we give a concise introduction into Voronoi-Delaunay structures and show how SimpleX uses
them as the basis for efficient radiative transfer calculations. Three modes of transport are
described together with some examples of their application. We conclude with an overview of
the parallelization strategy and scaling properties of the parallel implementation.

1.2.2 Chapter 2

Four distinct systematic effects of the SimpleX method that arise due to local anisotropy of the
Voronoi-Delaunay grid are identified. Analytical descriptions of these effects are quantified and
verified with numerical calculations. This analysis leads to suitable corrections to the method
which are implemented and tested. Corrections include several weighting schemes and a grid
construction procedure that minimizes unphysical effects.

1.2.3 Chapter 3

We delve deeper into the specifics of the construction of computational grids optimized for Sim-
pleX radiative transfer. Examples of the most important systematic effects studied in Chapter 3
in realistic simulations are given. We start with a detailed description of our sampling technique
and apply it to both grid- and particle-based data.

1.2.4 Chapter 4

We describe the implementation of various physical processes relevant for the treatment of gas
of primordial composition. Specifically, the inclusion of heating and cooling prescriptions and
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a multiple frequency treatment of the radiation field is described. We discuss our strategy for
an optimal choice of frequency discretization.

1.2.5 Chapter 5

The SimpleX method can be re-formulated in the context of Markov chains on a Delaunay
graph. We discuss this dual description and the construction of the associated transport matrix.
For stationary solutions to radiative transfer problems in static media, it is possible find the
solution by direct diagonalization of the transport matrix. Preliminary tests suggest that this
solution method is much more efficient for the solution of equilibrium scattering problems in
inhomogeneous media than the iterative transport implemented in SimpleX.

1.2.6 Chapter 6

We apply the SimpleX algorithm on cosmological simulations from Finlator et al. (2009b) to
verify their controversial results with an independent and fundamentally different method. With
the SimpleX method, a consistently inside-out morphology is found whereas the method used in
Finlator et al. (2009b) finds a distinct reversal to outside-in morphology. We conduct a elaborate
resolution study and conclude that the results do not differ due to lack of spatial resolution in
the original study. With a side-by-side comparison of the two radiative transfer methods used,
we rule out several possible origins of the observed discrepancies.

1.2.7 Chapter 7

The composition and mass of the solid state matter in the Homunculus nebula of ηCarinae is
determined using fits of the spectral energy distribution observed with ISO. A comprehensive
fitting method is used where the fits are constructed by including or rejecting dust species based
on a χ2 criterion. We derive a lower limit for the total mass of the nebula based on condensa-
tional arguments.

1.2.8 Chapter 8

We apply the SimpleX algorithm to AMR and SPH data of the wind-wind interaction region
of the ηCarinae system. This paves the way to improved analysis of forbidden line emission
observed with the HST. In current studies, the size and shape of ionization regions in the system
are estimated based on simple geometrical criteria combined with a density threshold. We
conduct full RT post-processing of the hydrodynamical data, including the effects of both photo-
and collisional ionization for hydrogen and helium.
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Analysis and development of the SimpleX algorithm





CHAPTER 2

The SimpleX algorithm

C. J. H. Kruip, J.-P. Paardekooper & V. Icke
Part of this chapter consists of work that has been published in

Astronomy & Astrophysics 515, A78, 2010 and
Astronomy & Astrophysics 515, A79, 2010

W e present the latest incarnation of the SimpleX algorithm. This method
uses Voronoi-Delaunay structures for its computational mesh. Because

such meshes are scale-free, radiative transfer can be performed on complex
opacity fields with highly adaptive spatial resolution. The local nature of
SimpleX radiative transport makes the method computationally very efficient
and easy to parallelize. The computational effort of this algorithm does not
scale with the number of sources which makes SimpleX ideally suited for
simulations of large-scale reionization, and allows for self-consistent treat-
ment of diffuse recombination radiation.
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In this chapter, we describe the basic workings of the SimpleX algorithm which is the topic
of the next two chapters and the common theme of this thesis. Conceived by Ritzerveld &
Icke (2006), and implemented by Ritzerveld (2007), the SimpleX algorithm solves the general
equations of particle transport by expressing them as a walk on a graph. The method can
consequently be considered to be a Markov chain on a closed graph, as will be discussed in
Chapter 6. Transported quantities travel from node to node on the graph, where each transition
has a given probability.

This approach has several advantages that we will now highlight. More specifically SimpleX

• does not increase its computational effort or memory use with the number of sources in a
simulation and consequently treats, for instance, scattering by dust and diffuse recombi-
nation radiation without added computational effort;

• naturally adapts its resolution to capture the relevant physical scales, (expressed in photon
mean free path lengths);

• works in parallel on distributed memory machines;
• is compatible with grid-based as well as particle-based hydrodynamics codes (where the

latter is the more natural combination due to the particle-based nature of both SimpleX
and SPH);

• is computationally cheap because of the local nature of the Delaunay transport

2.1 Radiative transfer on unstructured grids

In this section we introduce the fundamentals of the SimpleX algorithm and the Voronoi-Delaunay
triangulation, which lies at the heart of our method and plays a central role in this text, specifi-
cally Chapters 3, 4 and 6.

Although the SimpleX algorithm is the first Voronoi-Delaunay-based radiative transfer method,
the advantageous properties of Voronoi tessellations (Dirichlet 1850; Voronoi 1908) and Delau-
nay triangulations (Delone 1934) have been recognized before in the context of (astro-)physical
and geophysical applications.

The adaptive nature of the Voronoi-Delaunay structures allows for the accurate represen-
tation of systems with large dynamic range such as the large-scale cosmological structure.
Ground-braking work has been done by Bernardeau & van de Weygaert (1996) that laid the
fundaments for the successful Delaunay Triangulation Field Estimator (DTFE Schaap & van de
Weygaert 2000) method. The DTFE has been shown to give density estimates far superior to
typical SPH-kernel based methods (Pelupessy et al. 2003) and has seen applications and further
development up to the present day (Romano-Diaz & van de Weygaert 2007; van de Weygaert
& Schaap 2009; Aragón-Calvo et al. 2010; Cautun & van de Weygaert 2011).

Another important field of application is that of hydrodynamics where either the Delau-
nay triangulation or the Voronoi tessellation is used as the hydro-mesh (Whitehurst 1995) and
(Springel 2010; Duffell & MacFadyen 2011) respectively. Such methods provide a natural im-
plementation of Lagrangian hydrodynamics and alleviate some of the problems encountered in
Eulerian and SPH codes (also see Heß & Springel 2010).
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2.1.1 A natural scale

The fundamental idea behind the SimpleX algorithm is that there exists a natural scale for the
description of radiative processes: the photon local mean free path

lmfp ≡
1
σn

, (2.1)

where σ is the total extinction cross-section and n the number density of the particles respon-
sible for that extinction. Since photons typically travel one mean free path before interacting
with the medium, information on a much smaller scale does not necessarily yield a deeper un-
derstanding of the physical problem at hand. Because the expectation value for the distance
travelled after unit optical depth is the mean free path (by definition), this statement is equiva-
lent to the observation that Eq. (1.4) suggests a discretisation of the radiative transfer equation
based on optical depth.

Following this line of reasoning, the next step would be to choose a computational mesh
that inherently carries this natural scale, in other words, use an irregular grid whose resolution
adapts locally to the mean free path of the photons travelling over it. For clarity, we limit
our current discussion to monochromatic radiation only, and postpone the description of our
multi-frequency implementation to Chapter 5.

2.1.2 The grid

This computational mesh or transport graph is constructed by first defining a point process that
represents the underlying (physical) problem and second by connecting these points according
to a suitable prescription.

The point process is defined by prescribing the local point field density as a function of the
scattering and absorption properties of the medium through which the particles propagate. To
avoid confusion, we distinguish between the number density of extinguishing particles (e.g.,
atoms or dust particles), n(x), and the number density of the points that constitute the basis for
our computational mesh, np(x).

To translate a given opacity field given by n to a point set, we make use of a modified Poisson
process which is locally homogeneous in the mean but changes its number density according to
n.

Suppose N(A) is the number of points in a non-empty subset A of the volume S ⊂ Rd, with
d the dimension. Then the probability to that A contains x points is

Φ = P(N(A) = x) =
np|A|e−np |A|x

x!
, x = 0, 1, 2, . . . (2.2)

The only parameter in this process is the point intensity np, which is a global constant and sets
the total number of points in the volume. Every region in the volume has the same probability
that points are placed there, which in our case corresponds to a constant opacity.

To account for different opacity regimes inside the computational volume, we use the non-
homogeneous Poisson process, defined as

P(N(A) = x) =
np(A)|A|e−np(A)|A|x

x!
, x = 0, 1, 2, . . . (2.3)
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where
np(A) =

∫
A

np(x)dx. (2.4)

The point intensity function np(x) follows the opacity of the medium on a global scale, while
locally it retains the properties of the homogeneous Poisson distribution. An alternative, and
possibly more physically intuitive, recipe for constructing the non-homogeneous Poisson pro-
cess can be written as

np(x) = Φ ∗ f (n(x)), (2.5)

that is, by defining the grid point distribution as a convolution of a homogeneous Poisson pro-
cess and a function of the possibly inhomogeneous medium density distribution n(x). We use
this recipe to construct the SimpleX grid. Grid points are placed by randomly sampling the
correlation function f (n(x)) that translates between n(x) and np(x). We will discuss the possible
choices for the correlation function shortly below, and in more depth in Chapter 4.

2.1.3 Voronoi-Delaunay structures

With the point-set obtained with Eq. (2.5) in hand we can construct the computational mesh
which forms the basis for the SimpleX algorithm. We have chosen to use the Voronoi-Delaunay
triangulation for this purpose.

The Voronoi tessellation of a set of nuclei xi in a D-dimensional space is defined as V = {Ci},
where

Ci =
{
y ∈ Rd : ‖xi − y‖ ≤ ‖x j − y‖ ∀ x j , xi

}
. (2.6)

This means that every point inside a Voronoi cell is closer to the nucleus of that cell than to any
other nucleus. The set of all points that have exactly two nearest nuclei n1, n2 is the Voronoi
wall between these nuclei. If D = 2, this wall is a line; if D = 3, it is a plane; and so on.

A Voronoi wall therefore separates two neighbouring Voronoi cells. The connection be-
tween these nuclei, called an edge, is the geometric dual of the wall. The set of all the edges is
the Delaunay triangulation of the point set and connects every Voronoi nucleus to its neigbour-
ing nuclei. An example of a Voronoi-Delaunay grid in the plane is shown in Fig. 2.1.

Both the Voronoi tessellation and the Delaunay triangulation can be used to partition space.
Other than the Voronoi tessellation, whose cells have no fixed number of walls, the Delaunay
triangulation exists of simplices which are a generalisation of triangles in Rd. So a simplex is a
triangle in R2 and a tetrahedron in R3. The Delaunay triangulation can be defined as the unique
triangulation of nuclei for which the interior of the circum-sphere of any Delaunay simplex
contains no other nuclei.

Miles (1970, 1974) and Møller (1989) have derived several properties for Voronoi-Delaunay
triangulations based on homogeneous Poisson processes. Additional properties and generaliza-
tions to non-Poissonian distributions have been derived by van de Weygaert (1991) and van de
Weygaert (1994). Because Eq. (2.5) is approximately homogeneous locally (we will discuss the
effects of non-homogeneity in Chapter 3), they are also applicable to our transport grid. Two re-
sults relevant for our purposes are the average number of neighbours of a vertex and the average
distance between two connected vertices. The expectation value for the number of neighbours
of a typical vertex in R2 and R3 is

E2D(E) = 6 (2.7)
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Figure 2.1: Voronoi tessellation of
the plane (solid lines). Each cell
contains all points that are closer to
its nucleus (indicated by a dot) than
to any other nucleus. The corre-
sponding Delaunay triangulation is
shown in dashed lines. Note: only
visible nuclei are included in the tri-
angulation.

and

E3D(E) =
48π2

35
+ 2 ≈ 15.54. (2.8)

The expectation value for the distance between two connected vertices in R2 and R3 is

E2D(L) =
32
9π

n−1/2
p ≈ 1.132n−1/2

p (2.9)

and

E3D(L) =
1715
2304

(
3
4

)1/3

π−1/3n−1/3
p ≈ 1.237n−1/3

p . (2.10)

For our application to transport theory, it is also important that the Delaunay triangulation
has a minimax property, i.e. it is the triangulation with the largest smallest angle between
adjacent triangle edges. Of all the possible triangulations of a given point set, the Delaunay tri-
angulation is the one that maximises the expectation value of the smallest angle of its triangles.
In more colloquial terms, the Delaunay triangulation has the least ‘sliver-like’ triangles, and the
most ‘fat’ triangles.

Construction of the grid

The construction of the grid itself is a task performed by dedicated software. Once the gener-
ating nuclei have been given, the Voronoi-Delaunay structure is unique. In creating the distri-
bution of generating nuclei, we can manipulate the properties of our computational grid. The
translation from a given density (opacity) field to a point-set suitable for SimpleX is thus a
fundamental part of the algorithm, but the grid construction can be done by any capable routine.

For the results in this thesis we have used the QHull package1, based on the Quickhull algo-
1www.qhull.org
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rithm (Barber et al. 1996). This package computes the Delaunay triangulation in any dimension
up to 8, including simplex properties such as volume and surface. It performs at the theoretical
limit of O (N log N), and is very stable against floating-point round-off errors in the event that
points lie very close to each other.

2.1.4 Three types of transport

In SimpleX , transport is always between neighbouring Voronoi cells, i.e., those connected by
the Delaunay triangulation. This choice is by no means dictated by the grid. We may as well
transport photons through the Voronoi-Delaunay structures by means of long characteristics or
randomly chosen directions as in Monte Carlo methods.

The main reason we use the Delaunay edges as paths for the radiation is that it allows us
to directly use the information carried by the Voronoi-Delaunay structures for the transport
process. Cell-to-cell distances (Delaunay edge-lengths), volumes (Voronoi volumes) and con-
nectivity are all known. The locality of the Delaunay transport method (radiation travels only
to neighbouring cells) makes the transport step itself very efficient. For every computational
cycle, which we refer to as sweep in the remaining text, all vertices take one transport step. The
global nature of the radiative transfer problem is retrieved after sufficient iterations of this local
transport.

When photons travel through a cell, the optical path length, l, is taken to be the average
length of the Delaunay edges of that cell. If the number density of atoms in the cell is given by
n, the fraction of photons that are removed from the bundle, Nrem, is given by

Nrem = Nine−nσl, (2.11)

where σ is the total cross-section that may be the result of multiple extinction processes.
In general, extinction can be subdivided into absorption and scattering. Radiation that is

removed by absorption processes will change both the temperature of the medium as well as its
physical state, but does not need to be transported further at this point. Photons that are removed
from the bundle by scattering should propagate to neighbouring cells, either isotropically or
with a certain directionality. This can be accomplished using the diffuse transport method
schematically depicted in the left panel of Fig. 2.2 and explained in more detail in Sect. 2.1.4. As
we will see in Sect. 3.3.4, anisotropic scattering processes can be simulated straightforwardly by
assigning weights to the outgoing edges so that more radiation is transported in the appropriate
directions. The radiation that is not removed from the bundle, however, needs to travel straight
onwards along the original incoming direction. For optically thick (∆τ > 1) cells, we simulate
this using ballistic transport (see the central panel of Fig. 2.2 and Sect. 2.1.4).

In regions of the grid where the cells are optically thin (∆τ < 1), ballistic transport becomes
too diffusive and we need to resort to direction-conserving transport or DCT (see the right
panel of Fig. 2.2 and Sect. 2.1.4). We now proceed by describing these transport methods in
more detail and show how they are combined in a general simulation.

Diffuse transport

We begin with the description of conceptually the most simple form of transport implemented in
SimpleX . For every sweep, the content of each nucleus is distributed equally among its neigh-
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Figure 2.2: Three principal means of transport used in the SimpleX method. Left: Diffuse
transport, photons from the incoming edge (not shown) are distributed outward along all edges
(including the incoming edge). Centre: Ballistic transport, photons are transported along
the D edges directed most forward with respect to the incoming direction. Right: Direction-
conserving transport, photons (indicated with the dotted arrows) are transported as in ballistic
transport but their direction is stored indefinitely in a global set of solid angles.

bouring nuclei (see the left panel of Fig. 2.2.) We call this kind of transport diffuse because it
has no memory of direction. For a homogeneous distribution of nuclei, the transported quantity
will diffuse outwards, spreading spherically from the position of a source. This type of trans-
port is appropriate for photons that are either scattered diffusely or absorbed and re-emitted in
random directions.

Photons due to recombination of electrons and ions are an example of diffuse radiation
relevant for simulations where the ionisation-state of the medium is important. In contrast
to methods where the computational effort scales with the number of sources, SimpleX can
treat recombination radiation self-consistently without significant added computational effort.
However, because the recombination photons originating in a cell will also be absorbed by the
gas in that cell, we use a sub-grid description of the escape fraction of diffuse radiation as a
function of optical depth,τ, of the cell

fesc(τ) =
3

8τ3 (e−2τ(1 + 2τ) − (1 − 2τ2)), (2.12)

which is derived in Appendix 2.A.

Ballistic transport

We now consider a group of photons that is transported along a Delaunay edge to a certain
nucleus. We assume that the nucleus represents a finite optical depth. A fraction of the photons
will be removed from the group by the interaction and another fraction will fly straight onward.
Diffusive transport is not suited to describing this behaviour, so we introduce ballistic transport.

In the ballistic case, the incoming direction of the photons is used to decide the outgoing di-
rection (introducing a memory of one step into the past). In the generic Delaunay triangulation,
there is no outgoing edge parallel to the incoming one, so the outgoing photons are distributed



22 Connecting the dots

over the D most forward pointing edges, where D is the dimension of the propagation space
(see centre panel of Fig. 2.2). As such, we ascertain that for an isotropically radiating source
the complete ‘sky’ is filled with radiation because the opening angle associated with each edge
on average corresponds to 2π/Λ or 4π/Λ in two and three dimensions, respectively2.

Because of the random nature of the directions in the Delaunay grid, we note that radia-
tion will tend to lose track of its original direction after several steps, a property that we call
decollimation, as it will steadily increase the opening angle of a beam of radiation as it travels
along the grid (see Fig. 2.3). This property renders ballistic transport appropriate for highly
to moderately optically thick cells only, where just a negligible amount of radiation has to be
transported more than a few steps. If we take unity as a lower limit to the optical depth of a cell
for which ballistic transport is used, at every intersection a fraction of (1 − 1/e) of the photons
becomes absorbed and the cumulative average deflection (decollimation) θ becomes

θ = θD

√√
∞∑

n=1

1
en = θD

√
1

e − 1
≈ 0.76 θD, (2.13)

where θD is the decollimation angle per ballistic step. In Sect. 3.4.1, we measure θD and describe
the consequences of decollimation in more detail.

Figure 2.3: Example of decollima-
tion in the plane for five ballistic
steps. The arrow indicates the ini-
tial influx of photons. According
to the ballistic transport mechanism,
photons are transported along the D
most forward edges with respect to
the incoming direction. The grey is
as follows: with every step the pho-
tons acquire a shade that is darker.
As the angle between adjacent edges
is large in 2D (60 degrees on av-
erage), the bundle loses track of its
original direction in only a few bal-
listic steps.

A visual extension of the statement given by Eq. (2.13) is shown in Fig. 2.4. From the figure,
it is evident that the fraction of photons that is (ever) deflected more than 45◦ centred around
the initial direction falls off sharply with the optical depth of a cell. Only for optically thin (say
0.2) cells, the fraction of photons whose deflection stay under 45◦ is lower than 0.5. In realistic
cosmological simulations, the effect of decollimation results in diffusion that softens shadows
behind opaque objects (e.g., filaments and halos). The diffuse radiation field will penetrate into

2Another way to look at this is that, for an isotropically emitting source, the number of nuclei that receive
radiation must scale as the square (cube) of the travelled distance for two (three) dimensions.
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0.3

0.4

0.5

0.6

0.7

0.8

0.9 Figure 2.4: The severity of decol-
limation as a function of two vari-
ables: the number of sweeps and the
optical depth. Fractions of photons
with a deflection angle within 45◦ of
the initial direction are indicated by
the contours. From the figure, it is
evident that decollimation of pho-
tons is only potentially problematic
when the cells are very optically thin
.

the opaque objects and ionise the high density gas inside. This results in too early ionisation of
dense structures and the stalling of the ionisation front farther from the source. The problem of
decollimation thus clearly necessitates the introduction of a means of transporting photons in
the optically thin regime.

Figure 2.5: Shadow behind a dense
filament irradiated by ionising radi-
ation (indicated as a black dot). The
hydrogen number density is plot-
ted logarithmically in greyscale and
ranges between 2.8 × 10−5 to 0.12
cm−3. The contours indicate where
the neutral fraction of hydrogen is
0.3. The dashed and solid white
lines are for ballistic and direction-
conserving transport (DCT) respec-
tively. The black line is obtained
with the C2-ray code (Mellema et al.
2006).
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Direction-conserving transport

If the cells are optically thin, the loss of directionality introduced by ballistic transport over
many steps becomes prohibitively large and we switch to direction-conserving transport (DCT
for short). Here the radiation is confined in solid angles corresponding to global directions
in space: if a photon has been emitted in a certain direction associated with a solid angle, it
will remember this direction while travelling along the grid. This effectively decouples the
directionality of the radiation field from the directions present in the grid (see right panel of
Fig. 2.2.) The actual transport of photons still occurs along the three most forward directed
Delaunay edges of the grid, where ‘forward’ is now with respect to the global directions of the
solid angles3. These edges may lead to nuclei that lie outside the solid angle associated with the
direction of the photons.

In this sense, we now have two types of angular resolution, in our method. The first is
related to the size of the solid angle in which radiation is confined spatially, which is set by
the number of Voronoi neighbours of a typical nucleus (15.54· · · in 3D). We call this ballistic
resolution and emphasize that it depends solely on the nature of the Delaunay triangulation and
as such, is not adjustable. The second type of angular resolution is set by the global division
of the sky into arbitrarily many directions (not necessarily constant along the grid), and we call
this the directional resolution. For the tests presented here, we use 40 directions (a directional
resolution of 40), implying a solid angle of π/10 sr for each unit vector.

A technical consequence of the approach sketched above is the need to divide space into
equal portions of solid angle whose normal vectors are isotropic. There are many ways to
divide the unit sphere into equal patches, but the requirement of isotropy in general cannot be
met exactly. Another drawback of the introduction of global directions in the simulation is
that they will give rise to artifacts much like those observed in hydrodynamical simulations on
regular grids. This must in turn be counteracted by the randomisation of these global directions
at appropriate time intervals, which makes DCT computationally relatively expensive.

For an example of the improvement of DCT over ballistic transport in a realistic case see
Fig. 2.5. The contour for DCT shows a sharp ‘shadow’ (in good agreement with the result
obtained with C2-ray (Mellema et al. 2006)) where the dense filament is left neutral whereas
ballistic transport results in a more diffuse, softer, shadow. Moreover, the ballistic ionisation
front stalls with respect to the DCT result. This is another symptom of spurious diffusion: the
positive radial component of the diffuse radiation is smaller than it should be, resulting in more
ionisations close to the source and less flux into the ionisation front.

As it is described above, DCT makes use of the most straightforward directions as prescribed
by ballistic transport. The most straightforward directions are computed using the directions of
the Delaunay edges along which the radiation streamed into the cell. More specifically, the
procedure is as follows: Whenever radiation travels from one vertex using DCT, one first looks
at the direction bin in which the radiation is stored. This direction bin has been associated with
the Delaunay edge closest to it in an angular sense. The radiation is now divided over the three
most straightforward neighbours of that closest edge.

This procedure does not maximally benefit from the accurate information concerning the
directionality of the radiation field that has been stored in the direction bins. The largest loss of

3DCT can thus be viewed as ballistic transport with complete memory of direction.
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information occurs at the moment when the high-resolution direction bin is associated to one
of the (on average 15.54 · · · ) Delaunay edges. It would be more sensible to compute the three
most straightforward neighbours directly from the direction bin.

We have implemented this slightly costlier possibility and performed a test which shows that
it leads to a substantial sharpening of shadows compared to default DCT. The test consists of a
box of 8.2 kpc filled with a homogeneous hydrogen gas with number density nH = 10−3 cm−3,
which is initially fully neutral with a temperature of 100 K. A homogeneous, dense (200 times
denser than the background) spherical slab with radius 0.56 kpc sits at a distance of 0.8 kpc in
the x-direction from the source. The source has a 105 K black body spectrum and emits 5×1048

ionising photons per second. We have checked that the results are converged for a time step
of 0.05 Myr. Fig. 2.6 shows contours of the ionisation front at 10, 30, 100, 200 and 500 Myr
for simulations where the straightest directions are calculated from the Delaunay edges (grey
contours) and from the direction bins (black contours). Both simulations use 42 direction bins.
The shadows are much sharper when the straightest directions are calculated from the direction
bins.

Figure 2.6: Slice through the domain at z = 4.1 kpc for the shadowing test described in the
text. The dense cloud is denoted in black. Grey contours show the position of the ionisation
front at 10, 30, 100, 200 and 500 Myr for simulations where the straightest directions are calcu-
lated from the Delaunay edges. Black contours show the ionisation front at the same times but
for straightest directions calculated from the direction bins. In this test, 42 direction bins are
used. This image is taken from Paardekooper (2010), where a more complete set of tests (with
different numbers of direction bins) can be found.

2.1.5 Combined transport

The three means of transport described above are applied simultaneously. If the total optical
depth τtot for a given cell is caused by multiple extinction processes

τtot =
∑

i

τi, (2.14)

the fraction, fi, of the incoming ray of photons that will be removed by process i is given by

fi ≡
τi

τtot
. (2.15)
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Depending on the physical nature of this process, the photons are either removed from the bun-
dle (to heat up the medium) or redistributed isotropically (or with some directionality) using
diffuse transport. The remaining photons (those that are not removed from the ray) are trans-
ported with either ballistic or direction-conserving transport, depending on the total optical
depth of the cell (ballistic if τtot ≥ 1 and DCT if τtot < 1). The fraction of the incoming photons
that is treated with one of the three transport methods is thus fully determined by the grid.

2.2 Parallelization

The SimpleX code is parallelized for distributed memory machines using MPI. Due to the lo-
cal nature of the SimpleX transport, communications between processors are limited to the
boundaries. The grid-construction is parallelized by dividing the domain into connected re-
gions containing roughly equal number of vertices using space-filling Hilbert curve, which is
also employed in other methods without a regular grid (Shirokov & Bertschinger 2005; Springel
2005, 2010).

Every processor constructs only that portion of the grid which belongs to its local points,
plus a layer of border-points from neighbouring processors. This layer connects the sub-
domains that exist on separate processors. To determine if this layer is thick enough to guarantee
a unique and unambiguous grid, the empty circumsphere property (also Delaunay criterium) is
used. This principle states that the circumsphere that passes through each vertex of a Delaunay
simplex, is devoid of vertices.

Communication of the radiation that crosses processor boundaries, happens at the end of
every radiative time step. The resulting chemistry is done locally, so no physical quantities
other than photons need to be communicated between processors.

2.2.1 Scaling tests

We have conducted three scaling tests that show how our implementation performs when the
load per processor is increased (Fig. 2.7). The number of processors is increased for the same
problem (left panel of Fig. 2.8, left panel), or the number of processors is increased at a constant
load per processor (Fig. 2.8, right panel).

The physical set-up is a simple homogeneous medium illuminated by a single source (in-
clusion of more sources would not change the results) in the centre of the domain. All the
simulations were conducted using AMD Opteron 246 64Bit CPUs of 2.6 Ghz with 4 GB of
memory per node. Although we only had 8 nodes available for these tests, they give a general
idea of the scaling.

From Fig. 2.7 we see that computation time increases linearly with the number of grid
points N for most components of the simulation. The triangulation algorithm (which scales as
O (N log N)) and the combined transport scheme are exceptions. The latter will always have
a computation time between that of ballistic (lower limit) and direction conserving transport
(upper limit). Where it lies depends on the fraction of the cells that are optically thin (and thus
treated with DCT).

The total computation time is dominated by that of the radiation transport, which takes
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triangulation
ballistic
direction conserving
combined
total ballistic
total direction conserving
total combined

Figure 2.7: Simulation time as
a function of the number of grid
points. Shown are the computa-
tion time of the triangulation (solid
curve), ballistic radiation transport
(dotted), combined radiation trans-
port (long dashed), direction con-
serving transport (short dashed),
total simulation time with ballis-
tic transport (dot-short dashed), to-
tal simulation time with combined
transport (short dash-long dashed)
and total simulation time with direc-
tion conserving transport (dot-long
dashed).

roughly one order of magnitude more time. This emphasizes that using the triangulation as
the basis for radiation transport accelerates the whole computation because the triangulation
provides many geometric quantities that are otherwise computationally intensive to calculate.

The left panel of Fig. 2.8 shows the strong scaling properties of the SimpleX algorithm. Here
we simulate the same physical problem as before, but this time the number of grid points is held
constant at 1283. Ideally, doubling the number of processors would halve the total execution
time. If we were then to plot the product of the total computation time and the number of
processors, the result would be a curve with zero slope. Deviations from this ideal case indicate
that the parallelization itself and the resulting communications use up computational resources.

From the figure we see that the triangulation is the only component that deviates consid-
erably from the ideal case. This can be understood directly when we realize that dividing the
domain into more volumes leads to extra boundaries, and this increases the total number of
points that need to be triangulated. This is not a serious issue because the computation time of
the triangulation remains an order of magnitude smaller than the radiative transfer components,
which is reflected in the slope of the accumulated time (dot-long dashed line).

The weak scaling properties of the SimpleX algorithm are shown in the right panel of
Fig. 2.8. In this test we keep the number of vertices per processor constant while increasing
the number of processors. In the ideal case, the total computation time stays constant and devi-
ations therefrom can be directly related to extra work due to the parallelization of the problem.

The radiation transport components remains constant (within a few percent), showing marginal
increase due to extra commucations. The main difference between this test and the previous one,
is that now the effects of a decreasing number of vertices per processor is eliminated from the
equation. One effect remains on the triangulation time, however. The parallelization results in
a change of the ratio of processors that share three, four, five or six walls with other processors
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triangulation
ballistic transport
direction conserving transport
combined transport
total ballistic
total direction conserving
total combined

triangulation
ballistic
direction conserving
combined
total ballistic
total direction conserving
total combined

Figure 2.8: Left: Simulation time as a function of the number of processors for a constant
number of grid points. The number of grid points is 1283. Most components of the simulation
scale very close to linear (resulting in a constant curve) as the number of processors increases.
An exception is the triangulation algorithm, due to the fact that every processor needs to trian-
gulate extra points in the boundary between processors. Right: Simulation time as a function of
the number of processors for a constant load per processor. The number of grid points at each
processor is 643. The computation time of the radiation transport components shows a marginal
increase as the problem size gets bigger due an increase in the number of communications in-
volved. The computation time of the triangulation increases more for reasons similar to those
explained for the strong scaling (see text for details).

(and thus need to compute and communicate these boundaries). This effect is smaller than in
the case of strong scaling because the number of boundary vertices is small compared to those
in the domain.

2.3 Summary

We have introduced our radiative transfer algorithm SimpleX . The SimpleX method naturally
adapts its resolution, does not scale computationally with the number of sources, and is paral-
lelized for distributed memory machines. For the number of processors used in our scaling test,
the parallel scaling properties are close to ideal. It is therefore well-suited for applications in
cosmological problems (for a realistic application see Chapter 7). Its scope of application is
not limited to large scales, however. As we will see in Chapter 9, the virtues of SimpleX are
also useful in the context of ionisation calculations in the complicated geometries that arise in
wind-wind interaction regions in massive binaries.
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l

b rθ Figure 2.9: Geometry of computational cell with
radius r, as used in the derivation of Eq. (2.12).
The path-length through the cell l depends on the
impact parameter b.

2.A Derivation of the escape fraction of diffuse recombina-
tion radiation

Because the recombination photons originating in a cell will also be absorbed by the gas in
that cell, we use a sub-grid description for the escape fraction of such radiation. Assuming a
constant emissivity of recombination photons, η, we can derive escape fractions as a function of
optical depth of the cell. We have chosen the cell to be spherical with radius r, an assumption
that is appropriate for SPH particles and a fair approximation of a typical Voronoi cell. Fig. 2.9
shows a schematic depiction the geometric variables used in the following derivation. With
these assumptions, the total intensity of emitted recombination photons in the cell, Ie, is given
by

Ie =
4πr3η

3
. (2.16)

The emerging intensity along a ray Iobs(l) through a medium with source function S ≡ η/χ is
given by

Iobs(l) = S (1 − e−τ), (2.17)

where τ = χl is the optical depth along the ray, χ is the opacity and l is the path length through
the sphere. We can find the emerging intensity by adding contributions of all lines of length
l perpendicular to the impact parameter b (see Fig. 2.9). Each intensity Iobs(l) contributes
2πbIobs(l) to the total emerging intensity. This can be seen as the cylinder traced by rotating
l over 2π around the centre of the sphere. To obtain the total emerging intensity we integrate
over impact parameter b:

Iobs,tot = 2π
∫ r

0
Iobs(l(b))bdb

=
2πr2η

χ

∫ π/2

0
(1 − e−2χr sin θ) cos θ sin θdθ,
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Figure 2.10: The fraction of ionis-
ing recombination radiation that is
able to escape from a computational
cell for different optical depths. The
solid line represents the analytical
solution of Eq. (2.19), while the
symbols represent simulations of
cells with different geometries.

where we have used that l = 2r sin θ and b = r cos θ. This expression can be integrated analyti-
cally, yielding

Iobs,tot =
πη

2χ3 (e−2rχ(1 + 2rχ) − (1 − 2r2χ2)). (2.18)

Normalizing Eq. (2.18) by Eq. (2.16) results in an escape fraction of

fesc(τ) =
3

8τ3 (e−2τ(1 + 2τ) − (1 − 2τ2)), (2.19)

where τ = χr is the optical depth in the cell. This function is plotted as the solid line in
Fig. 2.10. We have performed explicit numerical experiments using SimpleX to test to what
extent the escape fraction depends on the geometry of the cell. To this end we have calculated
escape fractions of radiation from a computational domain shaped as a single cubic cell with
sides of length L (appropriate for grid-based methods) and a spherical cell (appropriate for
particle-based methods). This has been done at several fixed optical depths where we have used
τ ≡ χL for the cubic domain. The results of these tests are shown in Fig. 2.10 together with the
analytical result of Eq. (2.12). The excellent agreement between the simulation with spherical
geometry and the analytical solution gives confidence in the correctness of the SimpleX radiative
transfer method to be able to compute the transport of photons in a wide range of optical depths.
The simulation of a cubic cell shows that the geometry of the cell does not have a significant
influence, escape fractions differ no more than 4% between the simulations. This difference
is largely due to the choice for the optical depth through the cubic cell which does not take
directionality into account.

These results show that the majority of recombination radiation escapes from a cell if the
optical depth is lower than ' 2. Recombination radiation will therefore play a role only in
cells where a significant number of recombinations takes place, that is, in cells that are highly
ionised and, consequently, have an optical depth much lower than 2. We conclude that the
majority of ionising recombination radiation is not absorbed in the computational cell where
it was produced, and that explicit treatment of such radiation may be important in realistic
applications.
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W e verify whether the SimpleX radiative transfer algorithm conforms
to mathematical expectations and develop both an error analysis and

improvements to earlier versions of the code. Our analysis leads us to con-
clude that it is possible to transport particles such as photons in a physically
correct manner with the SimpleX algorithm. This requires the use of weight-
ing schemes or the modication of the point process underlying the transport
mesh. We explore and apply several possibilities.
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3.1 Introduction

In the previous chapter, we introduced the fundamentals of the SimpleX algorithm. Three trans-
port methods (diffuse- ballistic- and direction conserving transport) and their range of applica-
bility have been discussed. All three transport methods are intimately connected to the transport
mesh which consists of Voronoi-Delaunay structures. We have discussed several advantages of
using Delaunay triangulations as the computational mesh for radiative transport. SimpleX trans-
port is very fast due to its local nature (cells are only connected to neighbouring cells) and the
resolution is highly adaptive. We have, however, not yet assessed the possible disadvantages of
our approach. In this chapter we take a closer look at the geometrical properties of our transport
algorithm to see if it conforms to our expectations. In other words, we want to obtain upper
bounds to the error properties of our method.

For the vast majority of numerical methods, errors are measured by comparing with a fidu-
cial run of the code. This is usually a simulation wherein many more time steps, and/or a higher
spatial resolution are used than would normally be feasible. Convergence of the result is stud-
ied which is accepted as the correct solution, at least within the limitations of the method. For
SimpleX we cannot perform a similar convergence test1. For a spatial resolution that is signif-
icantly higher than the resolution dictated by the local mean-free-path length of the photons,
a number of effects (described in Sect. 3.2) tend to make the radiation field more diffuse, de-
creasing instead of increasing accuracy. This property of SimpleX is not a weakness but a direct
consequence of the fact that the method uses a physically motivated mesh, wherein deviations
from its natural resolution can cause a deterioration in the solution. Because of its mathemati-
cally transparent nature, the SimpleX algorithm has the advantage that one can assess its error
properties analytically. The resulting prescriptions are quite general, and can be applied to dif-
ferent regions of parameter space, an advantage over the ‘numerical converge approach’ usually
applied in the error analysis of radiative transfer methods.

In this chapter we analyse the SimpleX algorithm in several idealized test problems using
both analytical and numerical techniques. In all the tests, we introduce gradients in the number
density of vertices which result in local anisotropies of the Delaunay edges. We study the effects
of these local anisotropies on diffuse-, ballistic- and direction conserving transport. We will
demonstrate that local anisotropy in the Delaunay triangulation introduces systematic errors
that manifest themselves as four distinct effects: diffusive drift, diffusive clustering, ballistic
decollimation, and ballistic deflection. For reasons of transparency we now briefly introduce
the four systematic effects, postponing their rigorous treatment to later sections. Figure 3.1
shows a cartoon representation of the four effects. In the figure, the gradient in the number
density of vertices points to the right.

• Diffuse drift: the systematic streaming of photons into a region with higher number den-
sity of vertices. This happens because locally more edges point toward that region. Be-
cause of diffuse drift, a cloud of photons will drift into the direction of the gradient.

• Diffuse clustering: the clustering of photons in regions with fluctuations in the number
density of vertices. Clustering occurs because photons experience diffuse drift toward

1This is possible, however, if the direction-conserving transport (see Sect. 2.1.4) is used. Alternatively, several
instances of the same simulation with a different random seed for the mesh construction can be averaged to obtain
error estimates as well.
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gradienta b
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Figure 3.1: Cartoon description of the four systematic effects introduced by local anisotropy in
the Delaunay mesh. Diffuse drift (a) is the systematic streaming of photons into a region with
higher number density of vertices. This happens because more edges point toward that region.
Diffuse clustering (b) happens because photons spread less easy in regions with fluctuations in
the number density of vertices. The solid line shows the distribution of photons in a gradient
whereas the dashed line shows the same distribution for a homogeneous vertex number density.
The vertical lines indicate the vertex-to-vertex distance which decreases from left to right in
the case of a gradient. Ballistic decollimation (c) is the loss of initial direction due to several
ballistic steps. This also happens in a homogeneous Delaunay grid (see Fig. 2.3). Ballistic
deflection (d) happens when photons move perpendicular to a gradient in the vertex number
density using ballistic transport. The photons curve into the region of lower number density of
vertices (to the left in this cartoon).
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higher density regions and have trouble escaping them.
• Ballistic Decollimation: the widening of a beam of photons due to deflections from the

original direction in ballistic transport. This effect has already been treated in Sect. 2.1.4.
• Ballistic Deflection: the deflection of photons moving perpendicular to a gradient. This

effect occurs because the most straightforward neighbours in ballistic transport are af-
fected by the gradient. The most straightforward neighbours to the left are (on average)
fewer and make larger angles with the original direction whereas the most straightforward
neighbours to the right are more numerous and make smaller angles with the original di-
rection. The net effect is a slight deflection antiparallel to the gradient (to the left in
Fig. 3.1).

3.1.1 Outline

We start with a general introduction into anisotropy in the context of inhomogeneous Delaunay
triangulations (Sect. 3.2) and derive a measure for the excess of edges in the direction of the
gradient (Sect. 3.2.1).

To treat the effects mentioned in the introduction, we adhere to the following structure:
introduction and analytical treatment followed by solution and numerical examples. We first
apply this structure to the effects on diffuse transport and then on ballistic transport. This seems
the most logical choice because, as we will see below, the same solution can be applied to both
diffuse drift and diffuse clustering. Remedies for ballistic decollimation and ballistic deflection
turn out to be similar as well and are also described in conjunction.

After the treatment of the four systematic effects, we continue with a general discussion and
summary. In Chapter 4, we demonstrate how the derived measures can be used to constrain the
representation of a physical problem as a transport graph in such a way as to avoid or minimise
errors.

3.2 Anisotropy and its consequences

Notwithstanding the ‘ideal’ properties of the Delaunay triangulation, the probability density
distribution of the angle between adjacent Delaunay edges is quite broad (Icke & van de Wey-
gaert 1987; Okabe 2000, Sect.5.5.4). This ensures that even though the average triangle is the
‘fattest’ possible, many ‘thin’ triangles will occur. This situation may be changed by iteratively
adapting the underlying point process in such a way that each nucleus comes to coincide with
the centre-of-mass of its Voronoi region (see Lloyd 1982, for such an algorithm), resulting in
so-called Centroidal Voronoi Tessellations (see e.g. Du et al. 1999). This procedure produces
‘most spherical’ Voronoi regions (hexagons if D = 2), but is generally far too costly for prac-
tical computations in which the triangulation must be re-computed frequently. Moreover, the
shifting of the nuclei implies that the connection with the physical properties of the underly-
ing medium is no longer entirely faithful. This could be alleviated by resampling the original
density field at the new (now Centroidally placed) nuclei.

Another reason to refrain from the use of Centroidal Voronoi Tessellations is the introduc-
tion of regularity and hence symmetry in the mesh. In two dimensions, for instance, the hexag-
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onal Voronoi cells tend to align, introducing globally preferential directions in the transport of
radiation. This will inevitably give rise to artifacts in the radiation field transported on such a
mesh.

On the other hand, if only a few (typically two) Lloyd iterations are used, the most severe
local irregularities disappear without regularizing the mesh too much. This approach can be
used to suppress noise and artifacts in the outcome of a SimpleX simulation (work along these
lines is also being done by Jakob van Bethlehem).

Although the Voronoi-Delaunay construction is the optimal choice for the tessellation of a
random (Poisson process) point set, this may not be true when the point set is inhomogeneous
or anisotropic. Inhomogeneity is, of course, the property we encounter in all practical cases.
The probability distribution of the directions of Delaunay edges pointing to a Poisson nucleus
is isotropic, but this is no longer the case when the distribution of the nuclei is inhomogeneous.

We must therefore face the consequences of the anisotropy bias on inhomogeneous point
processes. We note in passing that anisotropy of Delaunay edges will exist locally even in the
case of a homogeneous Poisson process. The reason is that because, due to shot noise, ev-
ery instance of a random point process is locally anisotropic. The difference is that the latter
anisotropy vanishes when many instances of the point distribution are averaged (or, alterna-
tively, when several Lloyd iterations are applied to the point distribution) while the former
anisotropy cannot vanish because it is inherent to the macroscopic distribution of nuclei.

3.2.1 Error measure

For a homogeneous Poisson distribution of nuclei, the expectation value for the number of
Delaunay neighbours (and thus edges), Λ, is 6 in two- and 15.54 · · · in three-dimensional space.
These Delaunay edges have no preferential orientation and their statistical properties are well
known (e.g., van de Weygaert 1991, 1994; Okabe 2000).

We now consider an inhomogeneous distribution of nuclei. Spatial gradients then appear
in the density of nuclei, n(x), and the Delaunay edges connecting these nuclei are no longer
distributed evenly over all possible orientations. For a given nucleus, there will be, on average,
more edges pointing towards high-density regions than away from them.

This can be quantified as follows. Without loss of generality, we may assume a number
density of nuclei that has a gradient in some fixed direction x, provided that the characteristic
length scale of the gradient is much larger than the mean distance between nuclei (a provision
we assume to be fulfilled from now on).

We take a cross-section perpendicular to the direction of the gradient through the box at an
arbitrary position x0. The resulting plane of surface S is pierced by Delaunay edges connecting
nuclei on either side of the plane. The number of edges piercing the plane can be estimated as
follows. The local density of edges is the product of the number density of nuclei and Λ. An
edge is able to pierce the plane when two requirements concerning its orientation are fulfilled:

1. Its projected length must be larger than the distance between its originating nucleus and
the plane.

2. It must point in the correct direction.
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The expectation value of the Delaunay edge length,D, is given by

D = ξn(x)−1/3 , (3.1)

in three dimensions, where ξ = 1.237 · · · (Ritzerveld 2007, Eq. (3.22)). An edge emanating
from a nucleus at position x will therefore only pierce the plane if its projected length exceeds
∆x ≡ |x − x0|. Consequently, the first requirement is fulfilled when

∆x ≤ D cos θ , (3.2)

where θ is the angle between the edge and the direction of the gradient. The orientation of these
edges is random2, so we must average the cosine over a half sphere, which yields a factor of one
half. As a result, the effective length of the edges isD/2, which implies that only nuclei inside
a slab of thicknessD, (centred at x0) contribute to the density of piercing edges.

The second requirement effectively excludes half (up to first order) of the edges because
they point away from the plane. This statement is equivalent to noting that every piercing edge
connects exactly two nuclei at opposite sides of the plane. By including both factors, we find
that the number of piercing lines, Np, is given by

Np(x) =
n(x)ΛDS

4
. (3.3)

The surface density of lines piercing the slab, σ(x), is now simply defined by

σ(x) =
Np

S
=

n(x)ΛD
4

. (3.4)

The sought-after fractional excess, E(x), of parallel (with respect to the gradient) over anti-
parallel Delaunay edges is thus given by differencing σ(x) over a sufficiently small3 interval ∆x
and division by Λn(x)

E(x) ≡
1

Λn(x)
∆σ(x)

∆x
=

ξ

4n(x)4/3

∆n(x)
∆x

, (3.5)

where we used Eq. (3.1) to eliminateD. The excess of edges pointing towards the higher density
regions may have a significant effect on quantities transported along these edges. In the next
three sections, we describe and quantify these effects. We note in passing that in many practical
applications (see also Chapter 4) the point density n(x) of nuclei is taken to be proportional to a
power α of the mass density ρ(x)

n(x) ∝ ρ(x)α . (3.6)

In that case, Eq. (3.5) becomes

E(x) =
ξ

4n(x)1/3

∆ log n(x)
∆x

=
αD

4
∆ log ρ(x)

∆x
. (3.7)

If α = 3, the length D is proportional to the mean free path of the photons (Ritzerveld & Icke
2006). In many respects, this is the ‘ideal’ case, because it is in fact ‘transport-homogeneous’ as
experienced by the photon, every step being of equal optical depth. However, Eq. (3.7) shows
that this ‘ideal’ case has a gradient asymmetry that is three times stronger than is the case when
n(x) ∝ ρ(x).

2The orientation may be correlated with the direction of the gradient, but we neglect this at the moment because
it would only influence our results to second order.

3We emphasize the discrete nature of this derivative by noting that ∆n = dn
dx ∆x = D dn

dx = ξn(x)−1/3 dn
dx etc.
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3.3 Effects on diffusive transport

In Sect. 2.1.4, we stated that for diffuse transport in a homogeneous distribution of nuclei, the
radiation propagates spherically away from a source. On a graph corresponding to an inhomo-
geneous distribution of nuclei, however, this is not the case. The spreading of the transported
quantity will no longer be spherical anymore for two reasons:

1. The Delaunay edges are shorter when the nuclei are spaced more closely together.
2. The orientation of the Delaunay edges is no longer isotropic: more edges point towards

the overdense regions.

3.3.1 Physical slow down

The first reason reduces the transport velocity and can be interpreted as a physical phenomenon.
If we were to identify the length of a Delaunay edge with the local mean free path of the
transported quantity (e.g. photons), the shorter edges would simply express that we have entered
a region of increased optical depth where it takes a greater number of mean free path lengths to
traverse a given physical distance. It has been shown (Ritzerveld & Icke 2006) that identifying
the average Delaunay edge length with the local mean free path of the relevant processes is a
natural choice when constructing the triangulation, and the observed behaviour is therefore both
expected and physical.

3.3.2 Diffuse drift

The second reason, quantified by Eq. (3.5), is an artifact of the Delaunay triangulation itself and
causes unphysical behaviour. When too many edges are pointing into the overdense regions,
the transported particles are deflected into those regions and the direction of propagation tends
to align with the gradient (see Fig. 3.2 for an example in the plane). We call this effect drift,
and now proceed to quantify its consequences for diffusive transport. A photon scattering at
a nucleus has the following probabilities of moving in the dense (subscript d) or underdense
(subscript u) direction:

pd =
1
2

+
E(x)

2

pu =
1
2
−

E(x)
2

. (3.8)

The expectation value dD of the drift per scattering event is therefore proportional to the E(x)
part of an outgoing edge in the direction of the dense region. The multiplication factor, which
can be found by integrating over a half-sphere, is 1/2 since not all edges point exactly to the
right. This gives

dD =
D

2
E(x), (3.9)

in whichD is again the expectation value of the Delaunay edge length (see Eq. (3.1)).
We consider a scattering experiment where a number of photons are placed at one position

of a triangulation with a density gradient. We expect the photons to diffuse outward with an
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ever decreasing radial velocity (the distance travelled, L, scales with the root of the number of
steps) while simultaneously drifting towards the dense region with a constant velocity. There
comes a time (or distance) at which the drift is equal in magnitude to the diffusion radius. We
define the drift length, Ldrift, as the scale on which the diffusion distance is equal to the distance
travelled through drift. Roughly speaking, diffusion dominates for L < Ldrift and drift dominates
for L > Ldrift. Setting the diffusion distance equal to the distance travelled through drift,

D
√

NE =
D

2
E(x) NE, (3.10)

we find that the number of steps at equality is given by

NE = 4/E2(x). (3.11)

Using Eq. (3.1) and (3.5) gives an equality length of

Ldrift(x) =
8n(x)
| ∇n(x) |

, (3.12)

independent of D. Therefore we have found a local expression for the relative importance of
the unphysical drift.

For a given density distribution n(x), the length Ldrift(x) can be evaluated everywhere4. This
parameter can be interpreted as follows. We define the minimum Ldrift(x) for all x to be N times
the box side length, such that the drift can be at most 1/N of a box side while the radiation
scatters throughout the box. Regardless, we must ensure that Ldrift(x) is much longer than the
box side length. Therefore, even if the density contrast is very small, it must not fluctuate too
severely.

We also note that it does not help to increase the number of nuclei, since both n(x) and ∇n(x)
in Eq. (3.12) scale with that number. Using more nuclei reduces the anisotropy per nucleus,

4It may surprise the reader that values for E(x) andD are taken to be local, while the argument seems to involve
a domain in which these values could change. What happens is that we adopt the local values for the whole domain
in Eq. (3.10).

Figure 3.2: Schematic example of a nucleus
and its edges subject to a gradient in the
number density of nuclei in the positive x-
direction. More edges point toward the over-
dense region (along the gradient). If ev-
ery edge were to transport an equal num-
ber of photons to neighbouring nuclei, the
anisotropy of outgoing edges would produce
an unphysical net flow along the gradient (in-
dicated by the arrow, which is the vector sum
of the edges scaled down by roughly a factor
of three).
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Eq. (3.5), but because the number of steps to be taken increases accordingly, the effect simply
adds up to the same macroscopic behaviour. Only the shape of n(x) determines the magnitude
of Ldrift(x).

To determine the resulting constraint on the mesh, we consider the case in which Ldrift(x)
does not depend on position. Setting Ldrift(x) = constant in Eq. (3.12) defines an exponential
density distribution, where the anisotropy is smeared out maximally over the domain. In this
case, if we wish the drift to be less than 1/8 of the box length, the density contrast must be less
than a factor e ≈ 2.71 · · · implying that the restrictions set by our isotropy demands are rather
stringent.

3.3.3 Diffuse clustering

We have seen that the spurious drift for diffuse scattering places restrictions on the density con-
trasts that can be simulated by the plain implementation of SimpleX introduced in Sect.(3.3.2).
We have assumed that the scale of the density fluctuations is comparable to the box size. This
is not a restriction: if we are interested in a case where the density fluctuations are of a much
smaller scale than the box size, we can just place an imaginary box around each density fluc-
tuation and use all the quantitative results from above. In doing so, we see that for any given
‘snapshot’ too many photons will be present in the local overdense regions, but if there are no
overall density contrasts on large scales, there will be no significant macroscopic drift. The
effect of the local drift on small scales can, however, still influence results on a large scale. Not
only does the drift influence the average position of the photons, it also influences the standard
deviation around this average. Isotropic scattering maximizes the spreading of photons, but
in an extreme case where, for example, at every nucleus 90% of the photons move in the same
general direction, they will stick together for a longer period and cause the size of a ‘light cloud’
to grow more slowly. This effect occurs if we have a highly fluctuating density field on small
scales, a case in point being the simulation of the filaments of large-scale cosmic structures.

We consider a density distribution that is homogeneous in the y- and z-direction but highly
fluctuating in the x-direction. For the probabilities to travel into the dense or underdense re-
gions, we again use Eq. (3.8) but with the difference that now d and u no longer denote global
directions. We describe the transportation process by a binomial distribution. If there are no
large scale-density contrasts, the drift is zero on average, but for the standard deviation we find

σ(N) = 〈
√

N p (1 − p) 〉

=

〈√
N

(
1
2

+
E(x)

2

) (
1
2
−

E(x)
2

) 〉
=

√
N

2

〈√
1 − E2(x)

〉
, (3.13)

where N is the number of sweeps. For small values of E, this reduces to

σ(N) ≈
√

N
2

(
1 −

ξ2

32

〈∣∣∣n′(x)n(x)−4/3
∣∣∣2〉) . (3.14)

This factor is always smaller than unity, indicating a reduction in the spreading of the photons.
This effect can be significant for small-scale fluctuations with either a very high amplitude or a
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very short length. The effect slowly becomes smaller if the number of nuclei is increased. The
value of E(x) comes close to unity or exceeds unity only if the characteristic density fluctuation
length is smaller than a Delaunay length, which we had pointedly excluded.

3.3.4 Correcting diffuse transport: weighting schemes

A straightforward solution for the problems addressed in Sects. 3.3.2 and 3.3.3 (diffuse- drift
and clustering, respectively) is to assign weights wi to the edges emanating from a given nu-
cleus in such a way that the anisotropy vanishes. This means that the fractions of the quantity
transported to the neighbours are no longer equal to 1/N but directly proportional to the solid
angle that the corresponding Voronoi face spans. We refer to Fig. 3.3 for an example in two
dimensions, the three-dimensional case being analogous. We explore this possibility and im-

Figure 3.3: Solid angles for two edges in the
case of the Voronoi weighting scheme (cell 3)
and the icosahedron weighting scheme (cell
1).

plement three different weighting schemes in our method, each with their specific virtues and
drawbacks:

1. Voronoi weights: based on the natural properties of the triangulation. Its advantages are
that it is automatically and ‘naturally’ adapted to the physics of the transport problem. Its
disadvantage is the statistical noise inherent to the procedure.

2. icosahedron weights: based on a division of the unit sphere using the icosahedron. Its ad-
vantages are that it is flexible (the procedure does not depend on the type of triangulation)
and that it can be easily refined. Its main disadvantage is that it is computationally more
expensive.

3. Distance weights: based on the distance to a neighbour squared. It main advantage is that
is very fast. Unfortunately we have only empirical evidence of its correctness.
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Centre of gravity weighting

In all three weighting methods, the sum of the weights equal unity, guaranteeing conservation of
photons. In addition, the vector sum of the weighted Delaunay edges emanating from a nucleus
should be zero to conserve momentum of the radiation field. We obtain this by adjusting the
weights of the (two) edges most parallel and anti-parallel to the ‘centre of gravity’, Ψ, of the
nucleus defined by

Ψ =
∑

i

wir̂i, (3.15)

such that in that direction the magnitude of Ψ vanishes. Here r̂i denotes the direction of the i-th
Delaunay edge (see Fig. 3.4). The vector sum of all (weighted) Delaunay edges (grey arrows) is
non-zero (short-dashed arrow). The Delaunay edges j and i are most parallel and anti-parallel to
this vector sum respectively. Their weights are adjusted such that the vector sum vanishes in its
current direction. To this end, the vector sum and its reflected counterpart (long dashed arrow)
are projected on j and i, indicated with the smaller black arrows. Half of this projection is added
to edge i and half is subtracted from j. The resulting vector (dot-dashed arrow) exactly cancels
the vector sum. The adjustment of weights can still result in a non-zero (although smaller)
vector sum in some other direction. The above procedure is repeated iteratively until the norm
of the vector sum is smaller than a predefined tolerance. In our experience, this procedure
reaches a (relative) tolerance of 10−7 within twenty iterations for the Voronoi method and about
ten for the icosahedron and distance weighting schemes.

θi

θj

i

j

Figure 3.4: Geometry of the COG
weighting procedure. See text for
details.
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Voronoi weighting

The Voronoi weighting scheme uses the faces of the Voronoi cells to calculate the wi for each
nucleus by estimating the solid angles subtended by the walls of the Voronoi regions, normalised
to unity. The weights are then

wi =
S i d−2

i∑
j S j d−2

j

, (3.16)

where S i denotes the surface of the Voronoi face perpendicular to the Delaunay edge connecting
the current nucleus and its i-th neighbour, and di is the length of that edge (the Voronoi face cuts
the Delaunay edge through the middle, 0.5di being the distance from the nucleus to the face). We
note that Eq. (3.16) is an approximate expression neglecting projection effects for large angles.
With some computational effort, this estimate could be refined. The solid angle subtended by
a Voronoi face depends on the size of the cell but also on the precise position of the nuclei.
Referring to Fig. 3.3, we see that cell ‘3’ has a relatively small surface because its nucleus is
close to that of its neighbour ‘4’ and its nucleus is slightly further from the central nucleus than
that of ‘4’. If that last statement were reversed, neighbour ‘4’ would have the smaller surface
and would thus get the smaller weight. This property may seem harmful at first but it is of a
stochastic nature, meaning that some noise will be introduced but no systematic error.

To demonstrate our method, we construct a Delaunay triangulation of 105 nuclei in three-
space with a linear gradient in n(x) along the horizontal direction which runs from 0.005 on
the left to 0.995 on the right. As a measure of the anisotropy in orientations of Delaunay
edges, we take the angle between an edge and the direction of the gradient and plot the number
of edges in an angular bin (see Fig. 3.5). Because we are interested in the relative deviation
from a horizontal line (which would correspond to the isotropic situation), the results are given
as a fraction of the average, f (θ). The data displayed in the topmost panel corresponds to
the weighting schemes described above, which can be thought of as a basic correction plus
a refinement thereof (the ‘centre of gravity’ correction). We show the effects on the angular
distribution of the edges as we apply these corrections cumulatively.

The initial anisotropy apparent from the inclination of the line labeled ‘unweighted’ is re-
duced significantly (to about half its original value) after applying the Voronoi weighting alone
(dashed line). After the application of the ‘centre of gravity’ correction, the scatter around
the isotropic value of unity is below 0.25%, except at the outer edges where the normalisation
dramatically increases the errors.

Apart from the anisotropy caused by the gradient, the triangulation itself shows some noise
of order 0.5% (the light grey areas around the uncorrected lines in the three panels having a
width of one standard deviation). After all weighting has been applied, some noise does remain
(a unit-standard deviation area is shaded in dark grey). This noise is related to features of the
triangulation itself. If the triangulation itself has more edges in a certain direction, this cannot
be corrected with a local weighting scheme because it is a global property subject to chance.
This noise can be reduced by either placing more points or by constructing several instances
of the same triangulation and averaging the results. Because all the information needed for the
Voronoi weighting scheme is intrinsic to the tessellation and its triangulation, the associated
computational overhead is potentially small. Unfortunately, in most tessellation software, the
areas of the Voronoi walls are not computed with the other properties of the tessellation. Calcu-
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Figure 3.5: Fraction of edges, f (θ),
with angle π − θ with respect to
the direction of the linear gradient
as a function of θ for different cu-
mulatively applied corrections with
the Voronoi (top panel), icosahedron
(middle panel) and distance weight-
ing scheme (bottom panel). The
results are averaged over 100 dif-
ferent realisations of the mesh to
suppress shot noise. Unit standard
deviation regions around the ‘un-
weighted’ curve and the final re-
sult are shaded in light and dark
grey, respectively. As a result of
the anisotropy of the triangulation,
more edges point towards the over-
dense region (to the right) in the un-
corrected case. Note that due to
normalization, the results at the ex-
treme ends are subject to noise.

lating these areas is computationally costly because in three dimensions the walls are generally
irregular polygons with M vertices where M ≥ 3.

Icosahedron weighting

The second method is based on an ‘independent’ division of the unit-sphere into M (approx-
imately) equal parts. We take the M vectors (originating in the nucleus under consideration)
that point to these parts and assign weights wi to the outgoing Delaunay edges as follows: we
take a vector and calculate the N dot products with the Delaunay edges. The Delaunay edge
that has the smallest dot product has a fraction 1/M added to its weight. In the icosahedron
scheme, the weight is thus proportional to the solid angle a Delaunay line occupies considering
the angular vicinity of its neighbouring edges (in 2D the solid angle is consequently bound by
the two bisectors shown as dotted lines in Fig. 3.3).
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We chose the icosahedron as the basis of our weighting scheme. We use vectors to the
middle of its 30 edges and its 12 vertices, yielding 42 reference vectors.

One significant advantage of the icosahedron method is that it is independent of the nature of
the triangulation and is therefore very flexible. It becomes more accurate as the division of space
is refined (M is increased) by taking other tessellations of the unit-sphere. The computational
cost, however, scales linearly with M, forcing us to trade off accuracy for speed. Unfortunately
this ‘independence’ also has a drawback: the reference vectors are oriented statically in space,
introducing a systematic bias in those directions. To reduce this effect, one is forced to add
some random noise to the procedure (for example, by applying random rotations of the whole
icosahedron, another computationally costly operation).

After the correction with icosahedron weights (see middle panel of Fig. 3.5, dashed line),
the anisotropy decreases below the 0.5% level. This immediately shows the strength of this
method over the more noisy Voronoi scheme (compare also the unit standard deviation regions
in dark grey).

Distance weighting

Empirically we found that in 3D the square of the distance between nuclei is also a robust
estimator of wi. This quantity is readily calculated and provides by far the most rapid solution
to the problem at hand. After the initial correction (see bottom panel of Fig. 3.5, dashed line),
the anisotropy of edges diminishes to values lower than 0.5% even slightly better than in the
icosahedron scheme. The deviations from the ideal isotropic case after the COG correction are
of the same order as in the Voronoi and the icosahedron case.

We could not find a valid explanation for the success of this method. Intuitively, one would
think that the opening angle, Ω, of a Voronoi wall with respect to its nucleus would scale as
r−2 rather than r2. To find a mathematical reason for the proportionality between Ω and r2, one
would have to delve more deeply into the field of computational geometry which is beyond the
scope of this text.

3.3.5 Numerical examples: diffuse drift

We now proceed by describing the numerical experiment designed to show the effects of diffuse
drift. The simulation domain of unity volume in three dimensions is filled with 5 × 105 nuclei
subject to a gradient in the point density of the form n(x) = x. We choose this linear form
because it locally approximates every other type of gradient. The number of nuclei results in
roughly 32 steps across the box along the gradient direction, and 38 in the directions perpendic-
ular to the gradient. These numbers allow for most of the photons to travel through the box for
more than 100 steps before being captured in the absorbing boundaries.

At the site closest to the centre of the domain, a number of photons are placed. Neither
the outcome nor the speed of our simulation depends on this number as we use floating point
numbers to represent photons.

Photons are transported over this mesh using diffusive transport without absorption. With
every sweep, the photon cloud is expected to grow in size. In the case of a homogeneous point
density, the photons will be distributed normally, as must be expected for pure diffusion. The
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gradient in the point density will distort the form of the distribution function for two reasons.
First, the mean free path on the mesh, D, scales with the point density according to Eq. (3.1),
allowing photons to diffuse faster into the underdense regions where the step sizes are larger.
Second, the drift phenomenon described in Sect. 3.3.2 will counteract this physical diffusion
and move the cloud into the overdense region.

To separate these two effects, we performed a one-dimensional Monte Carlo simulation of
2 × 106 ‘random walkers’ that take steps with a size given by the recipe of Eq. (3.1). The
experiment described above is emulated in one dimension but without the Delaunay mesh as
an underlying structure. The random walkers are thus expected to experience the physical
diffusion into the underdense region only. The unphysical drift is caused exclusively by the
Delaunay mesh and will not be present in our results.

In Fig. 3.6, the intensity-weighted position of the photon cloud (along the direction of the
gradient) versus the number of sweeps in the simulation is shown for SimpleX and the Monte
Carlo experiments both with and without weights5. We can see that the behaviour conforms
to our expectation. The weighting corrected SimpleX result coincides with the Monte Carlo as
shown in the bottom panel.

Furthermore, we took our drift description Eq. (3.5) and applied it to the Monte Carlo ex-
periment thus introducing a drift toward the overdense region similar to that experienced by a
photon in SimpleX . The effect counteracts the physical diffusion into the underdense region
resulting in a positive slope for the position of the photon cloud as a function of sweeps (see top
panel of Fig.3.6). This procedure therefore provides a direct quantitative check of the correct-
ness of Eq. (3.5).

The slopes of the Monte Carlo experiment agree to within a thousandth of a degree with the
SimpleX results for both the uncorrected and weighted results. This implies that the weighting
schemes discussed in Sect. 3.3.4 do not only correct the orientation of the edges in a statistical
sense (as shown in Fig. 3.5) but also allow for correct transport over these edges. This may
seem a trivial statement, but despite everything being fine in a global sense, local anomalies
may prevail. The transport of photons, however, depends strongly on the local correctness
of the weighting scheme and is thus a more stringent test. Furthermore, the recovery of the
SimpleX results with the Monte Carlo experiments suggests that Eq. (3.5) describes the drift
phenomenon accurately in a quantitative sense.

3.3.6 Effects on diffuse transport: clustering

As seen in Sect. 3.3.3 the expansion of a photon cloud is stalled by small (relative to the sim-
ulation domain) scale gradients in the mesh. To illustrate this effect performed the following
experiment. The simulation domain is again given by the unit cube with a large number of
photons at the centre. The 5×105 nuclei are distributed according to the probability distribution

n(x) = 0.2 + 0.8 sin2(ω|x|), (3.17)

where ω = 20. The density of nuclei thus inhibits concentric variations with a amplitude of 0.8
on a homogeneous background of 0.2.

5We used icosahedron weights in this case but this choice does not influence the results.
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Figure 3.6: Intensity-weighted po-
sition of a photon cloud released in
the centre of a simulation domain
with a linear gradient in the num-
ber density of nuclei as a function of
the number of sweeps. Results ob-
tained with SimpleX are shown with
filled symbols and results obtained
by the Monte Carlo experiments are
indicated with open symbols. We
use triangles and squares in the cor-
rected and uncorrected case, respec-
tively.

We now prepare a similar simulation with a homogeneous distribution of nuclei where the
box-size measured in units of D is the same. A comparison of the spread of the photon cloud
in the homogenous setup with that given by Eq. (3.17) provides a direct measure of the effect
described by Eq. (3.14).

Application of a weighting scheme for diffusive transport described in Sect. 3.3.4 should
remove the difference between the spread of the cloud in the two cases described above. As a
check, we also compare the results to the analytical result given by Eq. (3.13) and the expected
spread of the photon cloud in the homogenous case (which is simplyD

√
N/2) .

In Fig. 3.7, the spread of the photon cloud in terms of the normalised standard deviation
in the intensity-weighted positions is shown for the inhomogeneous point density given by
Eq. (3.17) (solid lines) and the analytical prediction (dashed line). The data are obtained from
twenty runs with different realisations of the mesh.

Figure 3.7: Normalised standard
deviation of the intensity-weighted
positions of a photon cloud ex-
panding in a distribution of nu-
clei with small-scale gradients with
and without weights (thick and thin
solid lines, respectively) and the an-
alytical expectations according to
Eq. (3.13) (dashed line). A dotted
line at σ/σhom = 1 is included to
guide the eye. open arrows is longer
than the length of the dotted line,
which is corrected for by a global
factor.
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As expected, the photon cloud expands (almost 6%) more slowly when no weights are used
in the case of small-scale gradients (thin solid line). Application of the weighting scheme results
in a cloud that (after a slow start) conforms to the expected size (dotted line at σ/σhom = 1).
The analytical model predicts this behaviour to within 3% after 30 sweeps, and increasingly
poorly for fewer sweeps (although the deviation remains below 10%). The larger deviations for
fewer sweeps are caused by the cloud size (expressed in standard deviations) being small and
the results are divided by this small number. We note that the unit standard deviation region for
the weighted case is narrower in the weighted case (light gray) than the unweighted case (dark
gray). This is expected because the weighting scheme corrects for local anisotropies and thus
reduces the noise in the diffusive transport.

In the homogeneous case we have verified that applying a weighting scheme does not alter
the expansion speed of a photon cloud significantly, as expected. We can thus conclude that,
although clustering can impose a substantial effect on the expansion of diffuse radiation, our
weighting scheme corrects for it appropriately.

3.4 Effects on ballistic transport

For ballistic transport, problems similar to those of diffusive transport arise but the picture is
further complicated due to locally anisotropy of the transport. We first describe some properties
of this kind of transport on a homogeneous mesh to appreciate deviations from the ‘normal’
case later on.

We identify two distinct phenomena that photons travelling ballistically may experience:
deflection and decollimation. Deflection is here understood as ‘loss of direction’, where the di-
rection is given by the vector sum of the three most forward pointing directions. Decollimation
is defined to be the effect of the increase in the opening angle of a beam of photons as they
are transported ballistically. The first phenomenon depends on the evolution of the vector sum
of the three most forward directions, whereas the second phenomenon is related to the angular
separation between these directions individually. In the case of a homogenous distribution of
nuclei, the net effect of deflection will vanish because there is no preferential direction in the
mesh.

3.4.1 Ballistic decollimation

Ballistic decollimation has already been described in Sect. 2.1.4 as the motivation for direction
conserving transport. The discussion here merely gives additional information; primarily on
the distribution of most forward directions. As previously stated in Sect. 2.1.4, the angular
resolution, and therefore the minimal opening angle, is a property of the Voronoi cell and is thus
fixed for the chosen triangulation. To exemplify this, we consider a typical Voronoi nucleus in
3D, connected to Λ neighbouring nuclei. The expectation value for the solid angle, Ω, subtended
by each edge is thus

Ω =
4π
Λ
≈
π

4
. (3.18)

In Fig. 3.8, the distribution of angles is given for a mesh of 105 homogeneously placed nuclei
in three dimensions. For the vector sum, the average departure from the incoming direction is
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about 15◦ (solid line). This implies that a photon loses all knowledge of its original direcion in
typically (90/15)2 = 36 steps.

For the distribution of the three separate most forward edges, we find a standard deviation
of about 39◦ , which means that after (90/39)2 ≈ 5 steps the photon has lost all memory of its
original direction. We note that the width of the vector sum of the weighted edges is smaller
than that of the most forward directed edge (indicated by ‘1’ in the figure) alone.

In general, the gradual loss of direction is not a major concern since most sources emit
isotropically anyway, but the effect becomes important when many edges are traversed, as it
causes the photons to behave diffusively. Simulations in which the mean free path for scattering
or absorption is much smaller than 5 edges are fine in this respect, as the ballistic photons never
enter this random walk regime (see also the discussion in Sect. 3.5).

3.4.2 Ballistic deflection

We are now ready to quantify the effect of the anisotropy of the triangulation on the ballistic
transport of photons, which travel along the three edges closest (in angular sense) to the incom-
ing direction. For the sake of simplicity, we estimate the deflection for radiation travelling along
the most forward pointing edge and discuss the applicability to three edges afterward.

We consider photons streaming perpendicular to the gradient direction (see Fig. 3.9 for the
geometry of this situation). The standard deviation in the deflection of the outgoing edge with
respect to the incoming direction is typically 15◦ (see Fig. 3.8) for a homogeneous mesh, but
in general depends on the local value for the gradient. Referring to Eq. (3.18), the expected
opening angle depends on the effective number of outgoing edges in that direction. In other
words, as the anisotropy increases, the number of edges pointing toward the overdense region
and the angular resolution increases accordingly. This motivates one to define the direction-

Figure 3.8: Normalised distribu-
tion of angles between the incom-
ing direction and the vector sum
of the (three) most forward point-
ing edges (solid line) and the sep-
arate most forward edges (dotted,
dashed and dot-dashed lines) for
a homogeneous distribution of nu-
clei. The distribution of the most
forward edges added is shown as
the long dot-dashed line with label
‘Added’ and is related to the decol-
limation effect. The standard de-
viation (FWHM/

√
ln 256) is about

39◦ for the added edges and 15◦ for
the vector sum of the edges.
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θu θdθd

Su Sd

du

Figure 3.9: Geometry of radiation travelling
perpendicular to the gradient direction. The
deflection angle toward the underdense re-
gion, θu, scales with the radius of the area Su

and similarly for the deflection angle towards
the overdense region, θd.

dependent number of outgoing edges, Λeff , to be

Λeff(φ) = Λ[1 + E(x) cos φ], (3.19)

where φ is the angle with the gradient direction. If we interpret the solid angle as a projected
circular area on the unit sphere, we can estimate the maximal deflection angle, θd, for ballistic
transport as

θd = arcsin

√
4

Λeff(φ)
. (3.20)

For a homogeneous distribution of nuclei, this angle equals approximately 30◦ with a typical
value of 15◦ being expected from the analysis shown in Fig. 3.8. If we include this empirical
factor of one half in Eq. (3.20) and approximate the arcsine by its argument (correct to within
1% for angles smaller than π/12), we obtain

θd = (Λ[1 + E(x) cos φ])−1/2, (3.21)

where we have used Eq. (3.19) to substitute for Λeff . This result can be approximated to first
order by

θd ' Λ−1/2[1 −
E(x) cos φ

2
]. (3.22)

To obtain the deflection per step over the mesh, we average θd over azimuthal angle while
projecting along the direction of the gradient

θeff =
1

2π

∫ 2π

0
θd cos φdφ (3.23)

= −
E(x)

4
√

Λ
. (3.24)
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The sign of θeff is negative, which means that the resulting deflection can be found in the region
of lower density. This result may at first surprise the reader. One could naively predict the pho-
tons to deflect into the direction of higher density (similar to the diffuse drift), but the situation
is exactly the reverse for ballistic deflection.

We note that this effective deflection angle acts as an upper limit for the deflection encoun-
tered in a simulation for the following reasons. The effect is maximal for radiation travelling
perpendicular to the direction of the gradient, and this is the situation we have used as a starting
point for the above derivation of θeff. Secondly, the fact that θd < θu increases the likelihood
of selecting edges in the overdense region, effectively diminishing the deflection, an effect that
we have neglected in the derivation above. To include this effect, one would have to know the
distribution of outgoing edges as a function of angle with the gradient, and assign a probability
to the selection of an edge accordingly. As we see in Sect. 3.4.6, the omission of this effect does
not seem to be of much importance to our predictions.

Sending radiation along three edges rather than one decreases the effect of deflection. This
is expected because the deflection of one edge is larger than that of the vector sum of three
outgoing edges (as we saw in the case of a homogeneous mesh).

The growth of the deflection when traversing the mesh can be found by dividing Eq. (3.24)
by the typical step-size,D

∆θeff

∆l
=

1

16
√

Λ

∇n(x)
n(x)

. (3.25)

As for the drift length of Eq. (3.12), we can define a deflection length, Ldef, at which the
cumulative deflection is equal to say, π/4,

Ldef =
4π
√

Λn(x)
∇n(x)

≈ 50
n(x)
∇n(x)

. (3.26)

Comparing with Eq. (3.12), we see that both the diffuse drift and the ballistic deflection place
approximately the same restrictions on the box size, the only difference being a factor of 50
instead of 8. The interpretation, again, is simple. If Ldef(x) is strictly larger than say five times
the box size, the deflection will be less than one-fifth of π/4 when travelling across the box in a
‘straight’ line. We recall that this effect is added to the expected decollimation from Sect. 3.4.1.

3.4.3 Correcting ballistic transport: weighting schemes

Assigning weights to the outgoing edges as described above removes the drift and clustering
problems for diffusive transport described in Sect. 3.2.

The effects of anisotropy in the ballistic case are intrinsically more challenging to correct
because it is not a priori clear how the anisotropy of all outgoing edges of a nucleus should be
used to choose three weights for the outgoing edges. As described in Sects. 3.4.1 and 3.4.2, in
the ballistic case we must distinguish between decollimation and deflection, the first of which
dominates the overall ‘loss of direction’. To diminish the decollimation of a beam, we can assign
weights to the most forward pointing edges. If we make these weights somehow proportional
to the inner product of the edge and the incoming direction, the most forward pointing edges
transport most of the photons.
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There are many possible ways to assign weights to the D most forward directed edges,
each of which optimise different aspects of the transportation process. If the exact direction
is important, for instance, the weights should be chosen in such a way that the vector sum of
the resulting edges points straight ahead. On the other hand, minimising the decollimation will
generally yield a different set of weights, namely those that maximise the length of the vector
sum.

From this myriad of possibilities, we choose a very simple and computationally cheap ap-
proach. To edge j we assign the weight w j given by

w j =
cos(θ j)/ sin(θ j)∑
j cos(θ j)/ sin(θ j)

, (3.27)

where θ j is the angle between the incoming direction and edge j. The division by the sine of
the angle places extra emphasis on the edges with the smallest inner product.

Applying this weighting scheme to the point distribution used to produce Fig. 3.8 yields
the distribution of edges shown in Fig. 3.10. As specified by Eq. (3.27), the ballistic weights
have the desired effect of decreasing the width of the distributions of the edges used in ballistic
transport.

In Fig. 3.11, evolution of the step-size of ballistic transport in the weighted case is shown
with crosses. The decollimation angle per step is substantially smaller than in the case without
weighting (26◦ compared to 39◦ ). This decrease in decollimation angle consequently relaxes the
requirement that the number of ballistic steps must remain below 5. Including ballistic weights
typically allows for up to 12 ballistic steps before the original direction is lost. Finally, there are
cases where the anisotropy of edges emanating from a cell cannot be solved by any weighting
scheme. If there is no edge in a given direction, the radiation cannot go there, regardless of the
weight values. One should begin with a reasonably isotropic triangulation to apply a weighting
scheme in a useful way. In the case of Delaunay triangulations in three-space, this is almost
always the case.

3.4.4 DCT throughout the mesh

A conceptually different solution to the problems described in Sect. 3.2 is to apply the direction-
conserving transport from Sect. 2.1.4 throughout the simulation domain. As the angular direc-
tion of the radiation is effectively decoupled from the mesh in this approach, all drift, cluster-
ing, decollimation, and deflection are resolved at once. The cone containing the nuclei that
receive radiation will, however, still be dependent on the mesh itself as already pointed out in
Sect. 2.1.4.

3.4.5 Numerical examples: ballistic decollimation

To observe the loss of direction of photons transported over many edges with ballistic trans-
port, we construct a triangulation of a random point distribution containing 105 homogeneously
placed nuclei in a cube of unit dimension. In the centre, we define a small spherical volume
of radius 0.05 and place a number of photons in each nucleus contained in this volume. The
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Figure 3.10: Normalised distribu-
tion of angles between the incom-
ing direction and the vector sum
of the D most forward pointing
edges (solid line), and the separate
most forward edges (dotted, dashed
and dot-dashed lines) for a homo-
geneous distribution of nuclei with
ballistic weights. The distribution of
the sum of the most forward edges
is shown as the long dot-dashed line
and labeled ‘Added’. The stan-
dard deviation (FWHM/

√
ln 256) is

about 26◦ for the added edges, and
16◦ for the vector sum of the edges.
Note that the width of the distri-
bution of the single most forward
pointing edge poses a definite lower
limit to the width of the ‘Added’
lines.

photons are assigned a direction by sending them along the edge whose direction is maximally
parallel to one of the coordinate axes (we select the positive x-axis). When applying our bal-
listic transport method, the photons begin to move in the positive x-direction with a step-size
equal (on average) to D cos θD, where θD is the mean decollimation angle. Every step means a
multiplication by a factor cos θD, until after infinitely many steps the effective step size in the
x-direction is zero. In Fig. 3.11, the step-size as a function of sweeps is shown together with a
fitting function of the form

f (Ns) = A cos(θD)Ns , (3.28)

where Ns is the number of sweeps. We find that without ballistic weights (filled squares; see
Sect. 3.4.3 for the description of ballistic weights) θD = 0.67± 1% (39◦ ± 1%), in accordance
with the value obtained from the mesh statistics presented in Fig. 3.8.

Sharp gradients

An extreme case of decollimation is encountered if strong gradients in the point density occur.
In this case, a large cell may find itself surrounded by much smaller cells (see Fig. 3.12 for an
example in 2D). Because of the sharp contrast in size, two out of the three most straightforward
edges of the smaller cells in the direction of the large cell are actually directed around the large
cell. If no ballistic weights are used, this scenario results in too few photons flowing into the
large cell.

It is precisely this effect that caused the anomalous result of the first incarnation of the
SimpleX algorithm in test 4 of the first cosmological radiative transfer comparison project (Iliev
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Figure 3.11: A least squares fit
of the projected step-size in the x-
direction as a function of sweeps
for the unweighted ballistic trans-
port (solid line) and with ballistic
weights as described in Sect. 3.4.3
(dashed line). A region indicat-
ing unit standard deviation is shaded
in grey around the markers. Er-
ror bars correspond to σ/

√
N − 1,

where σ is the standard deviation
and N the number of experiments
executed. For the uncorrected case,
the fitted value for the deflection an-
gle θD in Eq. (3.28) is 39◦ ± 1%.
For the weighted case, we find θD =

26◦ ± 3%.

Figure 3.12: Voronoi-Delaunay
mesh around a sharp gradient. The
solid grey arrow indicates the in-
coming direction into the large cell.
The three most straightforward di-
rections with respect to the incom-
ing direction are shown as dashed
grey arrows. Note that we have
used three most straightforward di-
rections for this illustrative exam-
ple whereas we normally would use
only two in 2D.

et al. 2006a). Observe for instance the chunky artifact in the upper left corner of Fig. 33 in
that work. Here the voids are under-resolved in the SimpleX mesh resulting in cells that are
orders of magnitude larger in volume than the surrounding ones. We will return to this issue in
Sect. 4.3.2.
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3.4.6 Numerical examples: ballistic deflection

To study whether anisotropy has any effect on the direction of a beam of photons, we consid-
ered a triangulation of a random point distribution containing 5 × 105 nuclei placed in a cube
of unit dimensions with a linear gradient along the x-direction. In the centre, we included a
spherical volume of radius 0.05 and place a number of photons in each nucleus contained in
this volume. The photons were assigned a direction by sending them along the edge whose
direction is maximally perpendicular to the x-axis. The simulation was executed with ballistic
transport using both one and three outgoing edges and in addition with the direction-conserving
implementation of SimpleX (as described in Sect. 2.1.4). Every run was repeated 10 times with
different instances of the mesh to suppress shot noise and obtain error estimates.

Figure 3.13: Mean angular directionality of a photon cloud as a function of the number of
sweeps. In this simulation, a linear gradient in the density of nuclei is present and the angle is
measured relative to the direction of the gradient, so smaller values of the angle point toward the
denser region. As expected, the direction-conserving implementation of SimpleX (as described
in Sect. 2.1.4, indicated by filled squares) has no long-term loss of directionality, although it
shows some oscillatory behaviour that dampens with time. Ballistic transport with one edge
(open triangles) shows a deflection towards larger angles for number of sweeps of order 5 ×
10−4 π rad/sweep in accordance with predictions. Using three outgoing edges (filled triangles)
diminishes the effective deflection by a factor of five. Unit standard deviation regions are shaded
in grey for the three simulations.

When applying our ballistic transport method, the photons undergo small angular deflec-
tions into the underdense region as predicted in Sect. 3.4.2. Using Eq. (3.24), the expected
effective deflection for this setup is θeff = 5× 10−4π rad/sweep, which yields a cumulative result
of approximately 0.025 π rad after 50 sweeps. This estimate is consistent with the result of
the simulation with one forward edge denoted by the open triangles in Fig. 3.13. As expected,
sending radiation along three edges decreases the deflection and fluctuation of the angular di-
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rection in general because radiation is distributed over many (3Ns) edges, which quickly reduces
shot noise with time. When using the direction-conserving implementation of SimpleX (filled
squares), the radiation does not suffer from ballistic deflection.

3.5 Discussion

After identifying and correcting the various effects caused by anisotropy in the Delaunay mesh,
we discuss their implications in a broader context.

3.5.1 Prevention versus correction

It is impossible in general to define the perfect mesh. As already pointed out, a large dynamic
range inevitably leads to gradients that, in turn, produce the unphysical effects described in this
text. Although we have shown that these effects can be corrected by weighting schemes, these
corrections are not fail-safe if the gradients are too strong. In particular, when the density of
nuclei changes appreciatively on length scales smaller than the Delaunay edge length D, the
lack of edges towards the underdense region may lead to extreme decollimation as there are
simply hardly any edges that point that way. In this case, a weighting scheme is not feasible as
there are no edges to assign weights to in the underdense direction. We therefore need to begin
with a fairly well behaved mesh in the first place.

One could argue that if the mesh is constructed such that the unphysical effects are below a
predefined tolerance, the deployment of weighting schemes can be circumvented. On the other
hand, this places rather tight constraints on the mesh and it may be preferable to retain a greater
dynamic range (and thus structure) in the mesh at the expense of the need for weighting.

An intermediate solution will often be the most viable option, where we retain the dynamic
range of the data as much as possible while weighting schemes and DCT are employed at
certain locations in the simulation domain only.

3.5.2 Relative importance of systematic effects

Although we have analysed the various systematic effects in isolation, in real-life simulations
they will appear simultaneously. It is therefore relevant to know which effect will dominate the
others in what situation. Both diffuse drift and ballistic deflection allow for a description where
we can derive a typical length at which they start dominating the transport. The appropriate
expressions are given by Eq. (3.12) and Eq. (3.26) where the former is a factor 50/8 ≈ 6 more
severe. So, diffuse drift is a bigger problem than ballistic deflection.

To put this statement into proper perspective, however, we must look at several aspects of
our real-life simulation. First, we must ask ourselves if our computational mesh is comparable
to the idealized linear gradient for which the above equations have been derived. In most cases,
we will have gradients that are local (spanning maybe less than 10% of the box size) and not
global. Therefore, the effects of drift and deflection may be only visible locally. Secondly, we
must take into account the amount of radiation that we are sending with either diffuse or ballistic
transport. In most cases, diffuse transport will only be used to transport diffuse recombination
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radiation from ionized gas. The majority of photons will travel ballistically. If diffuse drift
is a big problem compared to ballistic deflection, it will be a big problem for a small number
of photons. Moreover, recombination radiation will often be absorbed nearby its position of
emission and will thus not have time to experience much diffuse drift. We therefore conclude
that diffuse drift is not likely to affect the outcome of realistic simulations unless they include
many diffuse photons that can travel many edge lengths.

What about diffuse clustering? From Fig. 3.7, we can directly see that deviations in the
spread of photons is maximally of the order of 5% for our test setup (see Sect. 3.3.3). We have
tweaked this test to maximise the effect of diffuse clustering and are therefore confident that 5%
is a robust upper limit for most applications. Moreover, diffuse clustering can be easily aided
with a simple weighting scheme.

The systematic effect that we need to worry about in almost all practical applications is
ballistic decollimation. The loss of direction of the ballistic photons results in softening of
shadows and over-prediction of ionisation rates inside ionised regions. Fortunately, ballistic
decollimation can be aided in several ways. First we must try to use this transport mode only
in regions of high optical depth. This requirement can be met in two ways, either by reducing
resolution (so cells become larger and, therefore, optically thick) or by using ballistic weights
or DCT to conserve direction if the cells become optically thin. We have implemented this last
idea as a switch between ballistic- and direction conserving transport in the SimpleX code. The
switch is based on the simple requirement that DCT replaces ballistic transport as soon as the
optical depth of a cell becomes smaller than unity.

3.6 Summary

We now summarize the main insights and results from the above analysis.

• The mathematically transparent nature of the SimpleX algorithm allows a rigorous and
general assessment of its systematic effects to be performed. Although only some of
the described effects (diffuse drift and ballistic decollimation) need to be considered in
typical applications (see Paardekooper et al. 2010), we have investigated all four in detail
for completeness.

• The use of a random Delaunay triangulation in the radiative transfer method SimpleX
introduces global errors when the point-density is inhomogeneous. We have identified and
quantified four distinct effects: ‘drift’ and ‘clustering’ of photons in diffusive transport,
and ‘decollimation’ and ‘deflection’ in ballistic transport.

• We have shown how diffuse drift and clustering can be adequately corrected for by adopt-
ing a weighting scheme. Three weighting schemes for diffusive transport have been dis-
cussed and compared.

• We have shown that decollimation become troublesome only when the number of tra-
versed edges becomes larger than roughly 5 steps. This implies that one either preclude
this regime or, when this is undesirable or impossible, correct for the unphysical be-
haviour.

• The use of direction-conserving-transport (introduced in the previous chapter) can pre-
vent loss of angular direction in optically thin regions (i.e., ballistic decollimation). DCT
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also provides a means of correcting for deflection, drift, and clustering. The compu-
tational cost and need for additional randomisation of the solid angle directions make
the employment of DCT computationally more expensive than weighting schemes. We
therefore adopt it only in situations where it is necessary.

• A weighting method for ballistic transport has been shown to decrease the effect of decol-
limation significantly by pushing the limit for correct transport from 5 to 12 steps. This
is a computationally efficient alternative for direction-conserving-transport.
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CHAPTER 4

The SimpleX mesh

C. J. H. Kruip, J.-P. Paardekooper & V. Icke
Part of this chapter consists of work that has been published in

Astronomy & Astrophysics 515, A78, 2010 and
Astronomy & Astrophysics 515, A79, 2010

W e present the construction procedure for the SimpleX radiative trans-
fer mesh. The parameters of this function can be constrained by the

diagnostics developed in Chaper 3. We present a total of six case studies
that exemplify several issues related to the construction of a mesh suitable
for radiative transfer with the SimpleX algorithm. The studies focus on the
accuracy of density representations and the prevention of harmful effects due
to geometrical properties of the mesh.
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4.1 Introduction

The Voronoi-Delaunay mesh lies at the heart of the SimpleX method. Speed, accuracy and
stability of the method all depend vitally on its properties. The local resolution, for example,
depends on the local number density of mesh-points. But every mesh-point can be placed only
once. Hence, high resolution in one place immediately implies lower resolution in another. The
speed of the method depends heavily on the ionization and recombination time scales in the
computational cells. These time scales in turn depend on the local radiation field and the opacity
of the cells. Stability issues are rarely encountered in SimpleX but they may occur in the mesh
construction phase where computational domains are stitched together allowing for distributed-
memory parallel computations. Here it is vital to ensure that the boundaries of the various
sub-domains are convex. If this is not the case, the topology of the triangulation of a region
will differ between adjacent boxes prohibiting their connection. The central question is thus
how to place the available points in the computational domain without sacrificing either speed,
accuracy or jeopardizing the stability of the computation. In this chapter we will discuss various
methods and strategies designed to obtain the point distribution that satisfies the aforementioned
criteria.

To represent the given medium (generally a density-field) by a discrete point-distribution,
we introduce in Sect. 4.2 a sampling function with adjustable parameters. We will describe its
use and give some examples of the influence of its parameters and how they can be constrained
meaningfully. In almost all cases of interest, the computational mesh represents a physical
medium. This physical medium can be obtained from analytical models, mesh- or particle-
based hydrodynamics. We should therefore take good care that the relevant properties of the
medium are captured by our mesh. To this end we employ several diagnostic methods that allow
us to compare the original medium with our mesh.

When we talk about the SimpleX mesh, we mean both the geometrical properties of the
mesh (encoded in the Delaunay triangulation) and the density field that is to be stored on the
nodes or vertices of that triangulation. In order to construct a computational mesh that is both
suitable for accurate RT and captures the density field of the original data accurately we need to
keep these two properties in mind. We will give working examples of how this can be achieved
in Sect. 4.3 and Sect. 4.4.

We introduce our main sampling procedure in Sect. 4.2 and give some examples of its use.
In Sect. 4.3 and Sect. 4.4 we present a total of six case studies that focus on issues such as sam-
ple power (Sect. 4.3.1 and Sect. 4.3.2) and mass inclusion methods (Sect. 4.3.3 and Sect. 4.4.2.
A study of the effects of resolution and adaptivity of the mesh in the context of density repre-
sentation (Sect. 4.3.4) and of geometry (Sect. 4.4.1) is also included.

4.2 Sampling function

As already mentioned in Chapter 2, the connection between a density field given by n(x) and
a point density field np(x) is determined by the currently un-specified function f (n(x)) used in
Eq. (2.5). The accuracy and efficiency of the SimpleX algorithm depend vitally on the choice of
this function. As we have seen in Chapter 3, strong gradients in the point-density np give rise
to un-desirable systematic effects in the solution of the radiative transfer problem (e.g. ballistic
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decollimation and ballistic deflection). On the other hand, gradients in the point density are
a direct consequence of the adaptive nature of the SimpleX mesh and are therefore a desirable
feature. We thus face a trade-off between maximizing dynamic range and minimizing the strong
gradients this inevitably introduces. In other words, we must investigate the effects that different
sampling functions have on the triangulation and its transport properties.

4.2.1 Mean free path sampling

As mentioned in Sect. 3.3.2, the average Delaunay edge length can be associated with the mean
free path of the photons in a very natural way. This is achieved when n(x) scales with the opacity
(or number density) to the D-th power (Ritzerveld & Icke 2006, Eq. (14), cf. Eq. (2.5))

np(x) = Φ ∗ nD(x), (4.1)

where Φ denotes a homogeneous Poisson process, D is the dimension of the propagation space,
and ∗ denotes the convolution. This particular choice for the sampling function has one espa-
cially elegant property. Because the mean free path for photons is now a global constant of the
mesh, every cell thus has the same optical depth. This greatly simplifies the calculation of the
absorption fraction during radiative transfer as it is always the same factor 1/e.

4.2.2 Hybrid sampling

One major drawback of using Eq. (4.1) is that the resulting point process, given a substantial
density contrast, places many nuclei in dense regions and very few in underdense regions. For
many applications, simulating the true mean free path may thus require a number of nuclei
that is prohibitively high (see also the middle panel of Fig. 4.2). We therefore adopt a more
flexible sampling function, based on the harmonic mean of two sampling functions, that behaves
differently for the extremal densities of the mesh. According to this function, the number density
of nuclei that generate the Voronoi mesh is given by

np(x) = 2Φ ∗
(
y−α + y−D

)−1
, (4.2)

where y ≡ n/n0 and n0 is a reference density that marks the transition between the two regimes
of sampling power. In our applications, α will always be smaller than D (and even smaller than
unity) to prohibit the over-emphasis on high density regions. Using the sampling function of
Eq. 4.2, the overdense regions of the medium are sampled with the power α, whereas the un-
derdense regions are sampled with power D. The parameter n0 determines where the transition
between over- and underdense is located.

4.2.3 Constraints on α and n0

According to Eq. (3.12) and (3.26), the quantity that links the properties of the mesh (number
density of nuclei and gradients therein) to the systematic effects described in the previous sec-
tions is Qn ≡ np/|∇np| (note that we have dropped the subscript p in Qn for simplicity although
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it describes the point number density). We are now in the position to define, in a way analogous
to Qn, the quantity

Qy ≡ y/|∇y|, (4.3)

which can be measured over the physical density field. As the sampling function of Eq. (4.2)
maps the physical field to the number density of nuclei, the measured value of Qy and the upper
limit of Qn (posed by the maximally acceptable value for either Ldrift or Ldef) constrain the
sampling parameters α and n0.

From Eq. (4.2), we can derive an expression that links the measured value of Qy to Qn and
thus to the sample parameters, given by

Qn = Qy
y−α + y−D

y
(
αy−α−1 + Dy−D−1) . (4.4)

Solutions for Qn = Qy exist only for certain pairs of α and n0 as can be seen from the limit of
Eq. (4.4),

Qlim
n = lim

y→∞
Qn =

Qy

α
. (4.5)

If we were to choose α at its maximal value of αlim ≡ Qy/Qlim
n , we would therefore effectively

enforce that n0 → 0, resulting in the limit where all density regimes are sampled with the same
power α. Choosing α to be smaller but close to its extremal value maximises the dynamic range
in the high density regions and allows n0 to attain values where a substantial volume of the
density field (namely the voids) is sampled with the advantageous power D (keeping the optical
depth per cell constant in those regions). In Fig. 4.1 we show the effect of different values for
Qn and α (as a fraction of αlim on the sampling of a r−2 density distribution. The value of n0

is fixed by the choice of these two parameters. For comparison, we also show the result of the
‘mean free path’ sampling function of Eq. (4.1). Clearly, this sampling strategy has a tendency
to under-resolve low density regions.

The columns in Fig. 4.1 show the influence of increasing Qn (from top to bottom). Higher
values of Qn result in a more extended distribution of points. Looking at the rows, we increase α
from left to right at fixed Qn. A lower value of α implies a higher value for n0 resulting in a less
pronounced density peak. This shift of emphasis has two reasons. First, lower values of α place
relatively fewer points in the high density peak. Second, lower values of α imply higher values
of n0 which means that a larger range of densities is sampled with the D-th power resulting in
less emphasis on the lowest values in that range. In other words, the strong density dependence
of Eq. (4.1) results in emphasis of the density values close to n0.

In summary, the hybrid sampling function makes it possible to control the slope of gradients
in the point density. Higher values of Qn result in shallower gradients and thus higher effective
resolution in low-density regions. Given the fact that the total number of points in a simulation
is generally fixed by memory or speed requirements, this increased resolution at lower densities
goes at the expense of the resolution in high-density regions. One should therefore choose the
lowest Qn value for which numerical errors due to undersampling in low density regions are
within a predefined tolerance set by the requirements of the simulation (e.g., Eq. (3.12) and
(3.26)). Furthermore, for fixed Qn, the value of α regulates at which n0 the transition between
the two sampling powers occurs. This implies that it is crucial to choose an α value that ensures
that no strong density gradients exists at n < n0.
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Figure 4.1: Examples of application of our hybrid sampling function (Eq. (4.2)) for different
values of α and Qnp . First row: Density field with a single density peak and a r−2 profile
with Qy = 1.44 and the sampling according to the d-th power of the density (mean-free-path
sampling). In this example, d = 2. Second row: sampling with Qn = 1.44 and αlim = 1.0.
Third row: sampling with Qn = 5.0 and αlim = 0.29. Fourth row: sampling with Qn = 12.0 and
αlim = 0.12.
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4.2.4 Cosmological density field

We now apply this idea to a more realistic example and see what this all means in practice.
A typical application wherein the strength of the SimpleX algorithm can be fully deployed is
the epoch of reionization (see Chapter 7 as well as Paardekooper et al. (2010) for an account
of relevant test cases). Both the wide range of densities (four to five orders of magnitude) and
the large number of sources (hundreds to thousands in realistic cosmological volumes) can be
treated naturally by SimpleX due to the adaptive nature of the Delaunay mesh and because the
computational effort does not increase with increasing number of sources.

We consider a (0.5/h Mpc comoving) cosmological volume (as used in test 4 of Iliev et al.
(2006a)) and construct a representative point set using constraints from analysis of the original
data. In this specific case, the cosmological density field was presented as a regular grid of 1283

equal size cells. Given the regular grid, the quantity Qy can be determined for every pair of
adjacent cells. The mean value of Qy obtained is 1.61.

This value implies that if we would use a linear correspondence between the mass density of
the original data and the number density of the nuclei of the Delaunay mesh, the equality length
(see Eq. (3.12)) would become 8 × 1.6 ' 13 and the deflection length of Eq. (3.26) becomes
50 × 1.6 ' 81. This means that radiation can travel 13 box-lengths before diffuse drift starts
to dominate the transport of radiation, and 81 box-lengths before ballistic deflection reaches a
cumulative magnitude of π/4.

This linear sampling could be performed using α = 1 and ρ0 → 0 in Eq. (4.2). Linear
sampling is hardly ever desirable in a cosmological setting, however, as it tends to place the
bulk of the nuclei in high density regions resulting in oversampling (many nuclei per cell of the
original grid) of filaments and clumps and under-sampling of voids.

We proceed by finding optimal values of our sample parameters, given the measured value
of Qy and a chosen value for the maximum allowed equality length. An upper limit to the
equality length, by means of Eq. (3.12), immediately implies a maximal Qn.

For example, if we set Ldrift = 40 (and consequently Ldef = 250), we see that we need to
choose α and n0 such that Qn = 5.

Solving Eq. (4.5) for Qy = 1.6, we find α = 0.32 to be the maximal value. Taking the
somewhat smaller value of 0.3, the corresponding value for n0 = 3.7 × 10−5 cm−3 which is
significantly higher than the lowest density in the cosmological field, which is about 2.4 ×
10−5. With these parameters, the point density in the lowest density regions is equivalent to
a resolution of approximately 773 for 1283 grid points. In the right panel of Fig. 4.2, a cut at
z = 0.5 through the sampling defined by these parameters is shown. The middle panel shows
the point distribution one obtains when sampling with α = D = 3 throughout the grid. This
distribution does not accurately reproduce the low-density regions, placing almost all points in
the dense filaments and their intersections. In contrast, the ‘hybrid’ sampling method provides
sufficient resolution in both the low- and high-density regions. For the α = D sampling, the
cell size in the filaments and dense clumps is many times smaller than that of the original
regular grid. No information is carried, however, by this extra resolution, effectively wasting
computational resources.

1If the mean is not representative for the whole grid, we can use the maximal value of Qy but we have found
that using the mean gives excellent results in all tested cases.
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Figure 4.2: Cut through a cosmological density field (left panel; grey scale indicates number
density in logarithmic scale) sampled with 1283 points using the sampling function of Eq. (4.1;
middle panel) and Eq. (4.2; right panel) with the parameters obtained from analysis of the
underlying density field.

4.3 Creating the SimpleX mesh: regularly gridded data

Hydrodynamical data is either stored as discrete particles (in the case of SPH) or on a mesh,
possibly with an AMR structure. In this section we discuss some of the issues that naturally
occur in the process of translating hydrodynamical data to the SimpleX mesh used for RT. We
focus on two distinct but related properties of the mesh that are important to keep in mind: the
geometry and the density representation.

With geometry we mean everything related to the placement of the vertices that form the
basis of the mesh. Their placement determines the local resolution but also the anisotropies
in the connecting edges. As we have seen in Chapter 3, the central issue with the creation of
point sets suitable for SimpleX transport is that of strong gradients and we have studied the
consequences of these gradients in isolated and idealized problems.

Even if the geometrical properties of the point set are such that the RT is not affected by
systematic effects, the outcomes of a simulation can be wrong if the original density field is
not represented faithfully. There are different ways to quantify if a field is represented well.
In zeroth order, we can check if the mass of the original mesh is conserved. The first order
requirement could be that this mass is in the right places. We don’t want that our translation
‘smears out’ sharp features in the density for example. On the other hand, we don’t want
anomalies in the tessellation to result in high density spikes not present in the original data.

In the following sections we give examples of these two issues and show how they can
produce some of the unphysical systematic effects of Chapter 3. In this respect, this section is
the practical counterpart of the more idealized descriptions in Chapter 3. We begin with the
description of issues related to gridded data and continue with particle based data afterwards in
Sect. 4.4.
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4.3.1 Case study 1: a simple regular grid

To get from grid-based data to the SimpleX mesh, we simply extend our sampling prescription
Eq. (2.5) to the case where n(x) is discrete. Vertices are placed randomly inside the cells of the
original grid and attain the value of that cell. Therefore, the density is represented perfectly at
the resolution of the original data.

If all the cells of the regular grid are sampled with one or more vertices, the mass of the
original data is conserved almost perfectly. The conservation is not perfect because the (ir-
regular) volumes of the Voronoi cells are in general not equal to the cells of the original data.
Fortunately, these fluctuations tend to cancel each other out and no systematic bias of the total
mass is expected.

With regard to the geometry of the mesh we still need to tread carefully, however. The
Poissonian nature of the SimpleX mesh is retained in this procedure unless the original data
has large density steps between adjacent cells and the sampling power in that region is a strong
function of density. In such cases, the distribution of vertices exhibits discontinuities that may
lead to the problems discussed in Chapter 3. A simple example of this issue is shown in Fig. 4.3
where Eq. (4.1) is used to sample a 3×3 grid with a density contrast of 3.6 (the density increases
by this factor across a cell boundary). The discontinuities in the point set are strong (almost a
factor 4) when Eq. (4.1) is used. When linear sampling (np ∝ n) is deployed, these discontinuous
jumps are much smaller (density jumps are lower than a factor 1.6 for all cell-cell interfaces).

Figure 4.3: Example of the problem that a strong dependence of the sampling function on
density of the original data can lead to a discontinuous point set. Left: The density grid with
grey-scales indicating a density contrast of 3.6. Central: Use of Eq. 4.1 on this density field
leads to differences in the point density of a factor of 3.7 maximally between adjacent cells.
Right: Same as central panel but with a sampling power, α, of unity. The discontinuities do
now stay under a factor 1.6.

Such sharp discontinuities are expected to yield artifacts in the RT solution because of the
local anisotropy of Delaunay edges. We focus here on the problems related to ballistic trans-
port because this is the primary transport method employed in realistic simulations. The two
systematical effects that we may expect are ballistic decollimation and ballistic deflection as
described in Sect. 3.4.1.
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We have performed the following test to verify whether the expected systematical effects
play a role in a mesh with sharp discontinuities in the vertex density. A single source of ionizing
radiation is placed in the centre of the domain and is allowed to create a spherical ionized region
that stabilizes at a diameter of roughly half the box-size. The ionization front thus travels from a
moderate number density of vertices towards lower values (to the lower-right) and higher values
(to the upper-left). The number density of atoms is kept constant throughout the mesh so we
expect the resulting ionised region to be spherical. We have performed the test with the mesh
obtained with a sampling power of 3. A mesh with 5 × 104 and one with 5 × 105 vertices has
been used for simulations employing ballistic transport and DCT in separate runs. In Fig. 4.4,
these runs are shown with contours indicating a neutral fraction of 0.5 for both ballistic transport
(black dashed curves) and DCT (grey curves).

Figure 4.4: Example of the RT artifacts due to a discontinuous point set for the mesh obtained
with a sampling power equal to 3. Contours show the equilibrium ionisation front. The solid
contour indicates the DCT result and the dashed curves are for the ballistic transport result.
Left: Grid containing 5 × 104 vertices. Right: Grid containing 5 × 105 vertices.

In the low resolution result (left panel of Fig. 4.4), the ionisation front is highly aspherical
with a protrusion into the low resolution section of the mesh. The artifact is visible in both
ballistic and DCT result suggesting that it has to do with a local anomaly in the mesh that
influences both transport methods. This is not surprising because in both cases, the radiation is
transported along the Delaunay edges. If these edges are very anisotropic, the transport in both
cases will be hampered in one direction. It is difficult to say, even in this simple situation, how
much of this a-sphericity is due to ballistic decollimation and how much to ballistic deflection
but it is clear that we are dealing with problems due to local anisotropy of the mesh.

This becomes more obvious if we look at the inner ionisation structure of the Strömgren
‘spheres’ shown in Fig. 4.5. The ballistic result shows several artifacts due to local anisotropies
in the mesh that are not present in the DCT result which is to be expected as DCT is less
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Figure 4.5: Example of the RT artifacts due to a discontinuous point set for the mesh obtained
with a sampling power equal to 3. Left: Ballistic result. Right: DCT result.

susceptible to such anisotropies.
One straightforward solution to this type of geometrical problem is to use a sampling func-

tion that depends less sensitively on the density and thus yields a smoother distribution of
vertices. Another solution is to simply use more vertices (keeping the sampling function the
same). The contours of the same test using 10 times as many points is shown in the right panel
of Fig. 4.4. Increasing the number of vertices yields a Strömgren region with a more spherical
shape. This is somewhat surprising because the discontinuous jumps in the number density are
of the same magnitude. If the artifacts shown in Fig. 4.4 and Fig. 4.5 are indeed systematic
and result from the jumps, we would see their effect in the high resolution result as well. We
are thus led to conclude that the observed artifacts are due to chance ‘glitches’ in the mesh, the
influence of which decreases as the number of vertices increases, providing more paths for the
light to travel along.

The test presented above shows an ionisation front that travels along the boundaries of sev-
eral cells of different vertex number density. For completeness we have performed a similar
test but ‘zoomed in’ on one such cell boundary. In this case the contrast in number density is
chosen to be twice as big as in the previous case, a factor of 8 between the low and the high
number density regions. Again the number density of gas is kept constant throughout the mesh.
We have placed two sources in the domain, one in the high and one in the low resolution region.
The radiation travels with DCT only for this test. Any negative effects due to the sharp jump in
resolution would distort the Strömgren spheres. Moreover, we can directly assess if there is a
difference between the direction with which an ionisation front crosses such discontinuities.

In Fig. 4.6, the neutral fraction of the stable Strömgren spheres is shown for the setup de-
scribed above. The employed direction conserving transport can cope surprisingly well with
this challenging setup as the deviations from sphericity are only of the order of the local cell
size. Although somewhat academic, this result has some relevance for the (post-)processing
of AMR data. In AMR meshes, a single refinement step is usually achieved by dividing each
dimension in two, which yields cells that are eight times smaller. If we were to generate a RT
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Figure 4.6: Strömgren sphere test for a grid with a resolution discontinuity of a factor 8. The
sources are shown as black dots and the expected ionisation-front position is shown as a dashed
white circle. The source is placed in the high (left) and low (right) density halve of the grid
respectively. The grey scale indicates the neutral fraction of the material.

mesh that follows the refinement of the original mesh, steps of 8 in resolution occur naturally.
The test shown here suggests that such a simple approach would not be unfeasible because of
problems in the RT.

4.3.2 Case study 2: Undersampling in grid-based data

As already mentioned in Sect. 3.4.5, sharp gradients in the point number density can result in
large cells receiving too few photons. The reason for this is simply that the D most straightfor-
ward pointing outgoing edges are directed almost perpendicularly to the direction into the large
cell (see Fig. 3.12). This can be regarded as a problem of ballistic decollimation in one step.
Such extreme gradients can occur if insufficient points are used to resolve the regions of lowest
density.

In Fig. 4.7 a result of the first incarnation of the SimpleX algorithm in Test 4 of the first
cosmological radiative transfer comparison project (Iliev et al. 2006a) is shown alongside the
improved result using the same version of the method and ballistic transport without weights.
The only difference is the sampling strategy used to obtain the point distribution. The result
published in Iliev et al. (2006a) (their Fig. 33) is obtained with 1283 points and a sampling
function f (n(x)) =

√
n(x). The new result uses Eq. (4.2) with the parameters derived in this

section resulting in the point set depicted in the right panel of Fig. 4.2.
Evidently, there exist large cells in the ‘old’ mesh that stay neutral due to the lack of in-

flowing photons. These artifacts are completely absent in the ‘new’ result obtained with hybrid
sampling. Although grid-based data is used in this example, the problem of undersampling low
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Figure 4.7: Comparison between the result with a uniform sampling power as was performed
for the Radiative Transfer Comparison Project (Iliev et al. 2006a, left) and the hybrid sampling
function of Eq. (4.2) (right). The number of mesh points is in both cases 1283. To facilitate
their comparison, both meshes have been interpolated to a regular grid of 1283 cells. Note that
the interpolation to the structured grid introduces some artefacts close to the boundary. Shown
is a slice through the z = zbox/2 coordinate of the computational domain at t = 0.2 Myr, as the
influence of the incorrect sampling is most pronounced at that time.

density regions can occur in SPH simulations as well. Especially when a subset of the total
number of particles is used for the RT.

4.3.3 Case study 3: 3D hydro of Eta Car

In practice it is hardly ever desirable to place one or more vertices in every cell of the regular
(AMR) mesh (as in the previous section) because of the memory requirements of RT are in
general more stringent than for the hydrodynamics. Moreover, the full flexibility of the SimpleX
mesh can only be exploited if we allow the sampling algorithm to represent less interesting
regions with Voronoi cells that are (much) larger than those of the original grid.

If cells of the original data are not sampled by a SimpleX vertex, their mass must be ac-
counted for somehow to ensure mass conservation. We could use either a zero-th or higher
order interpolation method for this purpose. Below we explore two possibilities, one zero-th
order and one first-order interpolation method which we will call the Voronoi and Delaunay
method respectively. We incorporate the density estimate without mass-conservation in our dis-
cussion as a reference and we will call it the density conserving method because it simply copies
the densities of the original grid to the vertices.

In all cases, the situation is initially as follows. A subset of the original cells has been
sampled by placing vertices inside them. These vertices make up the RT mesh which, at this
point, does not include all the mass of the original grid. The cells that have not yet been included
in the RT mesh are flagged. Using the flag, the un-sampled cells are included in the RT mesh
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except for the case of the density conserving method.
The Voronoi method consists of finding the un-sampled grid cells within each Voronoi cell

of the RT mesh (that consists of all vertices that have been used to sample the data) and assigns
the mass of these cells to the corresponding vertex. The density of the cell is found by dividing
the mass of the cell by its Voronoi volume

ρ =
m

VVor
. (4.6)

Because of the definition of a Voronoi cell, this is equivalent to a loop over all un-sampled cells
and finding the closest vertex for each of them. We have implemented this using an octree
which optimizes the search in 3D space. We note that we do not account for the geometrical
overlap between the regular cells and the Voronoi cells. If the centre of a regular cell lies within
the Voronoi cell, its mass goes completely to the nucleus of that Voronoi cell.

In the Delaunay method, one searches for the Delaunay simplex in which every un-sampled
cell is located. The mass of the cell is divided equally over the four vertices that define the
simplex. Every vertex thus gets mass from un-sampled cells within its so-called contiguous
Voronoi cell. The volume WVor of a vertex is now defined as the joint volume of all Delaunay
simplices that share that vertex, WVor ≡

∑N
i VDel,i, where N is the number of neighbours of the

vertex. With this adjustment, Eq. (4.6) transforms to

ρ =
m(D + 1)

WVor
(4.7)

where the factor (D + 1) comes in because every Delaunay simplex has (D + 1) vertices where
D is the dimension. We note that the manifestly mass-conserving Delaunay Triangulation Field
Estimator (DTFE Schaap & van de Weygaert 2000) uses the same contiguous Voronoi cells
combined with linear interpolation for accurate representation of point-based data. Given the
fact that this Delaunay method uses a form of linear interpolation to assign ‘missed’ mass to
the RT mesh, we expect the resulting density field to be smoother than the Voronoi equivalent.
In Fig. 4.8, a visual comparison of the density fields obtained with the three methods described
above is shown. The top left panel shows the original AMR data with an effective resolution
of roughly 2003. A total of 2 × 105 (approximately 603 and thus a factor 40 smaller than the
original cells) vertices is used to construct the RT mesh. We have chosen a relatively low
number of vertices in order to demonstrate more clearly the areas where issues do arise.

The vertices are placed according to a sampling function that has a shallow (square-root)
dependency on the density in except for the high density region very close around the central
source which was sampled with a constant number density. This density cutoff is a necessary
evil because the density around the central source is a factor of 100 higher than that in the contact
discontinuity and the majority of vertices would be placed there even with a low sampling
power such as used here. Note that (with the obvious exception of the original data) all density
fields shown in Fig. 4.8 use the same SimpleX mesh and differences are solely due to different
density estimates. In this section we thus concern ourselves with an optimal representation
of the original density field while keeping the geometry constant (in contrast to the previous
section where the situation was reversed).

To obtain the field shown in the top right panel, every vertex was assigned the density of
the cell it was placed in. Accordingly, the result is an almost literal copy of the original grid
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but with a different resolution and no guarantee of mass conservation. In regions where the
density changes gradually (in particular the subtle waves in the primary wind in the upper part
of the simulation domain) are reproduced extremely faithfully as must be expected from this
procedure. Problems arise, however, in the regions where density discontinuities occur, e,g.,
in the wind-wind interaction region. Because a vertex placed around a discontinuity can attain
either the high or the low value but nothing in between, these regions look puffy and crudely
represented.

The Voronoi method for including the un-sampled cells does a much better job in reproduc-

Figure 4.8: Top left: Density field of the original data in log-scale. Top right: Density conserv-
ing RT mesh (without mass conservation). Bottom left: Mass conserving RT mesh with octree-
based mass inclusion (Voronoi method). Bottom right: Mass conserving RT with simplices-
based mass inclusion (Delaunay method).
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ing these regions of sharp density contrast. The density discontinuity is better resolved as the
un-sampled cells can correct the initial density estimate of the sampling procedure. In regions
where there are relatively few cells per vertex, however, the density of a Voronoi cell depends
sensitively on the number of un-sampled cells that are included by it. This can be seen as the
grainy structure in the un-shocked primary and secondary wind. The severity of this ‘noise’
depends on the problem at hand. If the number of un-sampled cells per Voronoi cell is large, the
noise is small relative to the total density but if there are only few un-sampled cells per Voronoi
cell, density spikes can emerge that were absent in the original data. If the recombination rate
(which depends on the square of the density) is important, these density spikes may seriously
affect the result of a RT simulation.

The Delaunay method seems to strike an optimal balance between the non-mass-conserving
sampling and the noisy Voronoi method. Because of its first order interpolation (based on the
contiguous Voronoi cell), noise is suppressed while detail on small scales is retained almost at
the same level as in the Voronoi method. Apart from several small density spikes close to the
primary star, the smooth un-shocked winds are represented faithfully without compromising the
accuracy in the contact discontinuity.

Figure 4.9: Left: Volume weighted probability density function (equivalent to mass) as a func-
tion of number density of the hydro-data and corresponding SimpleX meshes using different
mass-inclusion procedures. Right: Same as left panel but normalized by the PDF of the original
data.

In Fig. 4.9, a more quantitative measure for the difference between the density representa-
tions discussed above is given. The figure shows the probability density function of the volume-
weighted density. This is a graph of the fractional contribution from each density bin to the total
mass. The density PDF shows us on a global scale if mass is ‘where it should be’ and which
densities dominate the total mass.

The left panel of Fig. 4.9 shows the four PDFs plotted together. We can immediately see that
the Delaunay method overlaps with the original data over the whole density domain. The other
methods show some scatter at the high density part of the PDF, but this is inevitable and of no
concern as the density cut-off was placed at 5 × 1010 cm−3 and anything beyond that density is
only sampled with a few vertices. The curve of the Voronoi mesh lies systematically above the
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original data for densities higher than the ≈ 5×108 cm−3 exactly where the spikes in the primary
wind show up. This simply means that some mass is transferred (most probably from the mean)
to this density range. Also, the Voronoi method does not reproduce most of the wiggles in the
original data that are captured accurately by the Delaunay method and to a lesser extent by the
density conserving method.

The right panel shows the same data as the left panel but normalized to the original result.
The solid line is unity and shown for reference and the other line-types are as for the left panel.
Deviations from the original data are largest for the density conserving method (up to almost
a factor of ten) where the mass is over-estimated for the low and medium density and under-
estimated for densities larger than 109 cm−3. The Voronoi method performs better but fails to
reproduce some of the more subtle wiggles in the PDF. The Delaunay method clearly shows
superior performance with all fluctuations below the 5% level (except above the cut-off density
where the result is not to be trusted anyway).

4.3.4 Case study 4: Cosmological data

Although the density in the hydrodynamic data used in the previous section ranges about five
orders of magnitude, strong density fluctuations are few except in the wind-wind interaction
region. Such data is relatively easy to represent in stark contrast to the cosmological data used in
this section. Cosmological density fields have a distinct web-like structure consisting of clumps
connected by filaments which are in turn connected by walls. Density gradients increase on all
scales with decreasing redshift due to the gravitational attraction of matter.

The data that we use in this section has 643 cells and serves as the basis for several runs
in that chapter and is taken from Finlator et al. (2009b). It represents 16h−1 comoving Mpc
at redshift z = 6 and contains densities that span more than two orders of magnitude. This is
much less than the five orders of magnitude of the original data because of the relatively crude
gridding.

In the left panel of Fig. 4.10 a slice of the SimpleX mesh consisting of 643 vertices is shown.
The sampling power is set to zero in order to eliminate (down to the level of Poisson fluc-
tuations) the possible influence of adaptivity of the mesh. The volume-weighted Probability
Density Functions (PDFs) of the original grid are compared to those of three SimpleX meshes
of different resolution in the right panel. If the regular grid is sampled with fewer points than
the number of grid-cells (for example the ‘Vor 32’ PDF), content of high and low density cells
is smeared out increasing the importance of average densities. Furthermore, the peak of the
DPF shifts about 0.1 dex to higher densities. In this case, information of the original grid is not
conserved, with possibly severe errors in the resulting radiation transfer solution. Recombina-
tions, for instance will be systematically under-estimated by the ‘Vor 32’ mesh, which leads to
incorrect speeds of ionisation fronts in simulations of reionization.

The solution to the problems described above is trivial, the number of points that sample
the original data must be equal or larger (both the Vor 64 and 128 PDFs are almost perfectly
converged with that of the original data) to capture all relevant details.

If we want to fully exploit the advantages of the adaptive resolution of the SimpleX mesh,
we must abandon the constant sampling function (α = 0) and allow the point number density
to adapt itself to fluctuation in the underlying medium. As an example, we have used a simple
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Figure 4.10: Left: Slice through the homogeneous SimpleX mesh at z = Lbox/2. The Delaunay
simplices are shown.Right: Density probability density functions of the 643 grid used in Finlator
et al. (2009b) (Fin 64) and the derived SimpleX meshes (Vor 32, 64 and 128) where the number
indicates the cube-root of the number of vertices. A constant sampling is used (α = 0 in
Eq. (4.2). The PDFs are stored as 50 logarithmically spaced bins.

linear sampling function. The resulting mesh (again containing 643 vertices) is shown in the
left panel of Fig. 4.11. In contrast to the mesh shown in Fig. 4.10, the number density of
vertices is inhomogeneous. This inhomogeneity allows SimpleX to treat dense regions with
higher precision, but it comes at a price. Because there are in this example just as many vertices
as cells in the original data, every refinement implies an under-sampling of (lower density)
regions. This under-sampling of low-density regions shows up clearly in the density PDF shown
in the right panel of Fig. 4.11. The curve indicated by Vor 64 lies under the original curve for
almost the entire underdense part of the abscissa.

4.4 Creating the SimpleX mesh: particle based data

In the case that the density field is given by discrete SPH particles, we might obtain an estimate
of the density at any position in the domain using a typical SPH kernel function W(r, h)

ρ(r) =
∑

j

m jW(|r − r j|, hi), (4.8)

where h is the smoothing length and m j is the mass of particle j. We note that the summation
is not necessarily over a fixed number of neighbours here, hence the range is omitted. Using
this kernel function we can thus sample the data with our usual tools (e.g., Eq. (4.2)) and the
statements of Sect. 4.3.2 apply directly to the resulting point set.

Unfortunately, there is a serious drawback to this approach. The majority of kernel functions
in the literature and applications has a spherical symmetry. Such kernels have the tendency to



76 Connecting the dots

Figure 4.11: Left: Slice through the adaptive mesh at z = Lbox/2. The Delaunay simplices
are shown. Right: Density probability density functions of the 643 grid used in Finlator et al.
(2009b) (Fin 64) and SimpleX meshes (Vor 32, 64 and 128) where the number indicates the
cube-root of the number of vertices. The sampling function used looks like np ∝ n. The PDFs
are stored as 50 logarithmically spaced bins.

smooth out anisotropic features in the density field. A related disadvantage is that smoothing
leads to poor resolution of physical density discontinuities. Differences with less dissipative
density estimates such as the DTFE can become as large as several orders of magnitude (Pelu-
pessy et al. 2003). Aside from these issues, the SPH kernel does not strictly conserve the total
mass of a continuous density field. These features of SPH kernel based density estimates may
directly influence the outcome of radiative transfer calculations which makes them less well-
suited for our purposes.

Given these drawbacks and the fact that the original data is already particle-based, it might
be more natural to use the particles themselves as the generating nuclei for the Voronoi-Delaunay
mesh. In that case we do not need to use the intrinsically diffusive Eq. (4.8) to estimate the den-
sity but a more direct estimate can be provided by division of the particle mass by the Voronoi
volume of its corresponding cell as described by Eq. (4.6) or Eq. (4.7). We come back to the
differences in these density estimates in Sect. 4.2.4. Another advantage is that, due to pressure
forces, the particles in an SPH simulation are in general positioned more regularly than for a
pure Poisson process. Finally, we note that with future applications of radiation-hydrodynamics
in mind, a coupling of SimpleX with an SPH method is most natural when the radiation transport
is applied directly on the SPH particles so that no spurious interpolation is needed.

4.4.1 Case study 5: Undersampling in SPH data of Eta Carinae

We have already seen in Sect. 3.4.5 and Sect. 4.3.2 how under-sampling can have a negative
effect on the outcome of an RT simulation. The same problem holds In principle for particle
based data.
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To check if our results of Chapter 9 are prone to such issues, we use a typical snapshot
including 5 × 105 particles that show densities ranging roughly ten orders of magnitude. In the
left panel of Fig. 4.12, a density cut through the SimpleX mesh of the original data at half the
box size is shown. For the sake of clarity, densities above 107 cm−3 have not been included in
the plot (they occur closely around the primary star and are not of interest to our study of the
wind-wind interaction region). More important are the sharp discontinuities in both density and
number density of SPH particles seen along the low-density ‘fingers’ that permeate the volume.

In this section we take a pragmatic approach and simply increase the resolution of the
sparsely sampled regions in the data. If the RT result turns out to be sensitive to sharp gra-
dients, we expect significant differences between the simulation with increased resolution and
the original simulation.

Figure 4.12: Number density of hydrogen in the SPH particles in the WIND900 simulation
(Madura 2010) at half the box-size. Left: Original data. Right: Data with increased resolu-
tion. Besides an increase in resolution, the number density becomes slightly higher due to the
interpolation.

We augment the resolution of the sparsely sampled regions as follows. First, a triangulation
of the SPH particles has been constructed. For every tetrahedron in this triangulation that is
larger than a tolerance volume, an additional vertex is placed in the centre of the tetrahedron
and 1/5 of the mass of the four vertices that constitute the tetrahedron is given to the new vertex.
This procedure is thus manifestly mass conserving and regularizes the mesh in regions of low
resolution.

In the right panel of Fig. 4.13, an example of mesh obtained with this procedure is shown.
The lower limit of the resolution has been taken to be 1003 in this case. So, tetrahedra larger
than 10−6 of the total volume (which is approximately unity) will be subdivided into four by the
insertion of a vertex in their centre. The resulting (number) density field is compared to the orig-
inal in Fig. 4.12. Although the difference is not large, the overall density in the aforementioned
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Figure 4.13: Left: Cut through the Delaunay triangulation of the mesh shown in Fig. 4.12.
Right: Same as left panel but with extra sample points in the low number density region East of
the central source.

Eastern region is slightly enhanced by the interpolation.
To study the influence the procedure has on the radiative transfer we have performed a

preliminary RT simulation including flux from the secondary star only. The result after 0.1 yr2

of physical time is shown in Fig. 4.14. Although the overall shape of the ionised regions does not
change, the ionisation fraction in the region most affected by the added resolution is somewhat
lower after the procedure. This is consistent with the notion that the interpolation increases
the density somewhat in this region with a higher recombination rate as a consequence. These
results suggest that (locally) increasing resolution does not change the overall shape and size of
the ionised regions. It nevertheless affects the ionisation structure in the affected regions. At first
glance, this change is related to the increased density in regions of lowest density resulting from
interpolation. We are therefore confident that the RT results of Chapter 9 are not susceptible to
systematic effects related to strong gradients in the particle number density.

4.4.2 Case study 6: Sampling cosmological data

Because of the high computational cost of radiative transfer compared to, for example, gravity
or hydrodynamics, it is often impossible to perform RT on all particles of the original data. We
must therefore resample the density field to obtain a new point-set or select a subset of these
particles. We focus here on the latter option because it retains many of the advantages of using
the SPH particles directly for RT. The first most notable advantage is that each particle can be
assigned a unique ID which is necessary when information must be carried from one snap-shot

2This ionisation structure does not evolve much after this time which corresponds roughly to the inter-snapshot
time of the original SPH simulation.
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Figure 4.14: Same as Fig. 4.13 but for the neutral fraction of hydrogen for the stable Strömgren
region induced by the secondary star. The ionised part of the simulation volume is fairly robust
to the increase in resolution. As expected, the Eastern region is less ionised after adding the
extra vertices because the extra density results in increased recombinations.

to the next as is often the case in post-processing or radiation-hydrodynamics. The second is
the previously mentioned regularity of SPH particles resulting from their hydrodynamic inter-
actions.

When selecting a sub-set of SPH particles to obtain a suitable set, care must be taken that
mass is conserved and, more subtly, mass is conserved ‘in the right places’. We now show a
example of how we ensure mass-conservation in our mesh-creation procedure in a manner that
minimizes the inevitable loss of information related to degrading resolution.

If the selected subset is representative of the original set, in other words: if the density
PDF of the subset is close to the original, we could do the following. For every particle in the
subset, take the density estimate of the original data (obtained with e.g., Eq. (4.8)) and assign
this density to the Voronoi volume of that particle in the SimpleX mesh.

Unfortunately, this hardly ever gives the correct answer. With decreasing number of par-
ticles in the subset, ever larger structures present in the original data are replaced by a single
particle. This single particle now takes the volume of, for example, a halo of 128 original
particles. Assume now that the subset has been selected at random. This implies that the par-
ticle selected to represent the halo is probably one with a density above the average (because
there are, per definition, more particles per unit volume in the high density regions). When its
density is assigned naively to the according Voronoi volume, the mass of that region is always
over-estimated.

The most direct way to deal with this issue is to abandon the original density estimate and
work with the masses of the SPH particles instead and use Eq. (4.6) or Eq. (4.7) for the density
estimate. To conserve mass, we now have to associate the mass of every un-sampled particle to
its closest neighbour in the subset. We use the octree-based Voronoi method for this purpose.



80 Connecting the dots

Figure 4.15: Scatter plots of the quo-
tient of volume estimates for the SPH
data used in Chapter 7. Mean values
with ±1σ ‘error’-bars are shown for
20 logarithmically spaced bins. Top
panel: All particles are included (al-
though only every 64-th particle is
plotted to avoid clutter). Centre panel:
As for the top panel but now a a 643

particle subset of the data is used. All
densities (and, accordingly, volumes)
are scaled up linearly to make the to-
tal volume equal to unity. Bottom
panel: As for the centre panel but now
the masses of un-sampled particles are
added to their nearest neighbour in the
sampled set.

An example of the issue described above is shown in Fig. 4.15. Instead of the densities, we
plot the volumes that are estimated by the SPH kernel and the Voronoi tessellation3. We show
the quotient of SPH and Voronoi volume estimates for a typical cosmological density field as
used in Chapter 7. We have taken a snapshot at redshift z = 6 including 5123 particles that
show densities ranging roughly five orders of magnitude. The top panel of Fig. 4.15 shows the
scatter plot for all data points. Grey dots represent values for the quotient of the Voronoi and
SPH volume and mean values are indicated with black dots with ±1σ ‘error’-bars.

Even when all particles are included, the Voronoi and SPH volumes differ. The deviations
from unity are largest for intermediate (over-)densities but these are small compared to the
scatter. The Voronoi volumes are slightly (less than 0.15 dex) larger for intermediate densities.
This is a consequence of the SPH kernel over-estimating the density in underdense regions close

3This is completely equivalent because in both cases, the density is defined as the quotient of mass and volume
and mass is equal for the two methods.
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to overdensities.
In the case that a subset of particles is chosen we have multiplied the original SPH volumes

by a constant factor in order to make their sum equal to the total volume of the Voronoi cells for
sake of easy comparison (middle panel). In the slightly overdense ( roughly between 0 and 1)
regions, we clearly see the effects of the sampling preference for particles with high densities
(and thus small volumes), the Voronoi cells can be more than an order of magnitude larger.
For the underdense regions the Voronoi volumes are generally smaller than the SPH volumes
because they compensate for the lost volume in the high density regions when the SPH volumes
are scaled up. Particles with the highest overdensities are surrounded by particles with similar
densiities. These particles have a high probability of being selected and in these regions the
SPH and Voronoi estimates are in good agreement again.

The bottom panel of Fig. 4.15 shows the volume quotients for the subset with correct in-
clusion of the un-sampled mass. Although the scatter is somewhat larger than for the complete
particle set, it stays under 0.2 dex and the mean is consistent with the original data. In Chapter 7
we will use this technique to reduce the number of SPH particles in cosmological density fields
from 5123 to 1283 and even 643.

4.5 Summary

• We have introduce our main sampling procedure in Sect. 4.2 and given some examples
of its use. The central idea is that often a density field exhibits two regimes in number
density that need to be sampled with a different relation between density of vertices and
number density for optimal result. Our sampling procedure smoothly links these two
regimes based on two adjustable parameters.

• Unwanted geometrical effects due to (a too high) sample power have been investigated in
Sect. 4.3.1. We showed how the shape of an ionised region can become deformed due to
discontinuous jumps in the vertex number density. This can be prevented by increasing
the number of vertices or by using DCT which is less sensitive to geometrical artifacts in
the mesh.

• In Sect. 4.3.2 we have looked at the effects of incorrect sampling of cosmological data.
The high dynamic range of the original data results in neighbouring cells with very dif-
ferent volumes. This can result in severe problems where radiation effectively by-passes
large cells, leaving them too neutral.

• We have discussed several mass-inclusion methods (Sect. 4.3.3) and argue that the De-
launay method based on the contiguous Voronoi cell gives more satisfactory results than
the non-mass-conserving ‘density conserving’ and noisier Voronoi method.

• A study of the effects of resolution and adaptivity of the mesh in the context of density
representation (Sect. 4.3.4) and of geometry (Sect. 4.4.1) has also been included. These
two sections are complementary to the studies of Chapters 7 and 9 and justify the mesh-
construction criteria of those chapters.
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CHAPTER 5

Heating, cooling and multiple frequencies

5.1 Introduction

In this chapter we present several extensions to and improvements of the physics module of
SimpleX. Most notably the incorporation of helium and dust (in addition to hydrogen), heat-
ing and cooling functions appropriate for a primordial composition and a multiple frequency
treatment of the radiation field.

The original version was limited to monochromatic ionization of hydrogen only without
temperature evolution. Even with such approximate physics, state-of-the art cosmological sim-
ulations are possible because the refinements described in this chapter are not of vital impor-
tance for many applications. The large-scale distribution of ionized material as a function of
redshift is fairly un-sensitive to these approximations for example.

There are, however, many problems in galaxy- and star formation where a detailed treatment
of the temperature of the gas is essential. The collapse of gas clouds, subsequent formation of
molecules and the resulting onset of nuclear processes that comprise the essential steps of star-
formation are all highly sensitive to temperature. The same is true for feedback effects of stellar
radiation on the gas such as the expansion of H ii regions due to photo-heating and collisional
destruction of molecules.

Also, the thermal state of the interstellar medium (ISM), intergalactic medium (IGM) and
intracluster medium (ICM) is an important observable and its evolution can be studied in a cos-
mological context. The thermal evolution of the cosmic gas is, for instance, strongly determined
by the details of reionization and, as such, can be used to distinguish between reionization sce-
narios (e.g. Miralda-Escudé & Rees 1994; Theuns et al. 2002; Hui & Haiman 2003; Tittley &
Meiksin 2007).

Because we live in the era where the first direct observational handles on reionization be-
come within reach (McQuinn 2010), it is timely to concern ourselves with the modeling of the
expected signal as to aid its interpretation. The first step to this goal is to include a proper
treatment of relevant physical processes.

This chapter is structured as follows. We describe the processes that determine the ionization-
state of the gas, such as photo- and collisional ionization and recombination, and how we
evolve it in Sect. 5.2. In Sect. 5.3 we show how we follow the thermal state of the gas. How
the ionization-state and temperature depend on the use of multiple frequencies is the topic of



84 Connecting the dots

Sect. 5.4. We end with a summary and give explicit expressions for the rates and cross sections
used in the appendix.

5.2 Ionisation-state of the gas

In this section we describe the physical processes that we include in our physics treatment and
the specifics of their implementation.

5.2.1 Ionisation

In a gas with cross section for photo ionization σ(x, ν) at position x, the local photoionization
rate, ΓP,i(x) (which gives the number of photoionizations per second per atom of species i in
units [s−1]), is given by (e.g., Osterbrock & Ferland 2006):

ΓP,i(x) ≡
∫ ∞

0

4πJν(x)
hν

σi(x, ν)dν, (5.1)

where Jν(x) is the local mean intensity and the three (i = 1, 2, 3) species capable of absorbing
ionizing photons are H i , He i and He ii . In addition to these species, a contribution to the
opacity due to dust can be included analoguously.

In addition to photoionization, we include collisional ionizations due to the interaction of
free electrons and neutral atoms. As this is a kinetic process, the collisional ionization rate, ΓC

depends on the thermal state of the electrons and is given by

ΓC = ne

∑
i

Γi(T )ni, (5.2)

where the collisional ionization rates Γi(T ) are given in Tab. 5.2 and ne is the electron number
density. The total ionization rate is thus given by the sum of photo- and collisional ionization
rates, Γ = ΓP + ΓC.

Discretization of the ionization rate

Implementing ionization processes in a numerical code requires that the relevant equations can
be expressed in a discretised form. In particular, we need to know the ionization rate in each
cell of our computational grid. More precisely, we need the ionization rate per species and per
frequency.

In SimpleX, ionizing radiation travels from cell to cell along the Delaunay edges. At the
nucleus of each Voronoi cell, photons are taken away from the incoming radiation field and
their energy is used to ionize the neutral atoms of that Voronoi cell and heat the gas. Given the
number densities of these species, nH I, nHe I and nHe II and the path length through the cell l, the
monochromatic optical depth of ionizing radiation τν is given by

τν ≡ (nH IσH I + nHe IσHe I + nHe IIσHe II)l. (5.3)
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The total number of ionizations per unit time, Ṅion for a cell with optical depth τν is then given
by

Ṅion =

∫ ∞

0
Ṅγ(ν)(1 − exp(−τν))dν, (5.4)

where Ṅγ(ν) is the number of ionizing photons per unit time streaming into the cell. To quantify
how much of the resulting ionizations is due to a particular species, we can use the contribution
to the total optical depth of that species. The number of ionizations of species i per unit time is
given by

Ṅion,i = Ṅion

∫ ∞

0

τν,i

τν
dν (5.5)

If we divide this by the number of neutral atoms of species i in the cell, Ni, we have the spatially
discretized equivalent of Eq. (5.1)

ΓP,i =
Ṅion,i

Ni
. (5.6)

Discretising this result in frequency can be done by simply evaluating Eq. (5.4) and (5.5) for a
set of bins, each bounded by two values of ν. The optical depth, τi, j, thus carries two indices,
one for the species and one for the frequency bin.

For a frequency bin j, the total number of ionizations per unit time is simply given by

Ṅion, j =
τ j

τ
Ṅion, (5.7)

where τ j ≡
∑

i τi, j is the optical depth of the j-th frequency bin and τ is the total optical depth
(integrated over frequency and summed over species). To find the number of ionizations for a
species i, we need to sum over all frequency bins and select the contribution of that species

Ṅion,i =
∑

j

τi, j

τ j
Ṅion, j =

Ṅion

τ

∑
j

τi, j, (5.8)

where we have substituded Eq. (5.7) in the last step. In other words; once we know τi, j, we can
quickly find the ionizations for a frequency bin and for a species.

Dust extinction

The procedure described above can be extended trivially to include absorption due to dust parti-
cles. We use the empirical dust model described in Gnedin et al. (2008). The extra opacity due
to dust particles effectively removes photons from the radiation field because we do not follow
the possible re-emission of thermal radiation from the dust.

To avoid technicalities related to size distributions and shape of the grains, Gnedin et al.
(2008) use measurements of extinction towards the Small and Large Magellanic Clouds to
model dust extinction. The cross section of dust is taken relative to the either the neutral or
total hydrogen abundance. The first choice is motivated by the observation that most dust will
not form at temperatures typically seen in ionized gas.

Although we will not go into specifics here, we note that in most cosmological applications,
dust will not have a large influence on the ionizing radiation field because of two reasons. First,
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hydrogen

SMC dust

LMC dust

Figure 5.1: Cross section of hy-
drogen (solid), SMC dust (dotted)
and LMC dust (dashed) as function
of frequency normalised to the fre-
quency of the Lyman limit.

the cross section of dust is orders of magnitude smaller than that of hydrogen at the ionization
frequency (see Fig. 5.1). Second, the metallicity in the early universe is lower than in Milky
Way. The difference in cross section between SMC and LMC dust is mainly due to the higher
metallicity of the latter.

5.2.2 Recombination

The inverse process of ionization is recombination. This free-bound interaction of electrons
and ions depends on temperature and number density of ions and electrons. The number of
recombinations per unit time per hydrogen atom [s−1] is given by

Ri = neαi(T ), (5.9)

where αi(T ) is the recombination coefficient of species i.
In many astrophysical applications, the recombination transition to the ground-state is ex-

cluded from the recombination coefficient because this transition produces a photon capable of
ionizing hydrogen. This is called ‘case B’ in contrast to ‘case A’ where all recombinations are
included. The assumption underlying use of the ‘case B’ recombination coefficient is that the
radiation associated with this transition is absorbed nearby again resulting in a new ionization.
This is called the ‘on-the-spot’ (OTS) approximation. In other words, the environment is as-
sumed to be optically thick with respect to Ly-continuum radiation. The OTS approximation is
popular because it circumvents the explicit treatment of recombination photons which is pro-
hibitively difficult for most radiative transfer methods as every resolution element can become a
source. In SimpleX , recombination photons can be included without additional computational
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effort (because of the locality of cell-to-cell transport) and we have implemented both case A
and case B recombinations rates.

The validity of the OTS approximation has been investigated analytically in Ritzerveld
(2005), who concludes that recombination radiation can dominate source photons close to the
ionization front, especially for sources with a spectrum that peaks around the Lyman limit. This
statement is verified numerically in Williams & Henney (2009); Cantalupo & Porciani (2011)
and Paardekooper (2010). In the latter study the SimpleX method, including the effects of heat-
ing on the gas, was used. They found only marginal influence of the OTS approximation on
large-scale reionization simulations but concluded that effects on smaller scales, relevant for
star-formation, can be important.

5.2.3 Evolution of the ionization-state

Together, ionizations and recombinations determine the ionization-state of the gas described by
the following three coupled differential equations and three closure relations

ṅH I = nH IIRHI − nH IΓHI (5.10)
ṅHe I = nHe IIRHeI − nHe IΓHe I (5.11)

ṅHe III = −nHe IIIRHeII + nHe IIΓHe II (5.12)
nH = nH I + nH II (5.13)

nHe = nHe I + nHe II + nHe III (5.14)
ne = nH II + nHe II + 2nHe III. (5.15)

This set of equation does not have a general analytical solution and must thus be solved numeri-
cally. For this purpose we adopt a sub-cycling scheme described in Pawlik & Schaye (2008). In
this scheme, ionizations and recombinations are evolved on a time-scale that is smaller than the
ionization- or recombination times-scales tion and trec. During a radiative transfer time step, the
ionizing flux is assumed to be constant making the procedure manifestly photon-conserving.
This allows for radiative timesteps, ∆trt that are much large than the dominant timescale gov-
erning the evolution of the ionization-state. The sub-cycling time step is harmonic mean of the
ionization and recombination rates

∆tsub ≡
tion + trec

tiontrec
. (5.16)

Because the procedure is analogous for each species, we here give the explicit example for the
integration step for hydrogen only. A time tsub ∈ (trt, trt + ∆trt) the rate equation is given by

dn(tsub)
H II = n(tsub)

H I Γ
(tsub)
H ∆tsub − n(tsub)

e n(tsub)
H II αH(T )∆tsub, (5.17)

where the photoionization rate at tsub is given by

Γ
(tsub)
H = ΓH

1 − e−τ
(tsub)

1 − e−τ

 nH I

n(tsub)
H I

, (5.18)

where ΓH and τ are the photoionization rate and optical depth at the beginning of the subcycling
and τ(tsub) = τ n(tsub)

H I /nH I. By defining the photionization rate in this way, the ionizing flux in
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the cell is constant during the radiative transfer time step. This sub-cycling scheme becomes
computationally expensive when ∆tsub � ∆trt, but photoionization equilibrium is generally
reached after a few subcycles. It is then no longer necessary to explicitly integrate the rate
equation, but instead use the values of the preceding subcycle step. This way of subcycling
ensures photon conservation even for large radiative transfer time steps. For clarity we have
omitted the frequency dependence in Eq. (5.17) and (5.18) but the procedure can be trivially
extended to multiple frequencies by treating every bin separately.

5.2.4 Time stepping

The current implementation of SimpleX solves the time-independent radiative transfer equation
(Eq. 1.3). This implies that the speed of light is infinite. In practice this means that radiation
must be able to travel through the simulation volume on a timescale that is much shorter than
the fastest physical timescale that needs to be captured. For a simulation to correctly trace
the propagation speed of ionization fronts, the ‘speed of light’ of that simulation must be much
faster than that of those fronts (but could be much lower than the actual speed of light in vacuum,
c, Abel et al. 1999). We must convince ourselves that the radiative transfer time step, ∆trt,
is sufficiently small to satisfy the time-independent transfer equation. For the physical tests
presented in this thesis, we have checked this requirement explicitly.

The sub-cycling scheme described above allows for time steps that are much larger than
needed to satisfy the time-independent transfer equation. This is very useful in simulations
where the photons are allowed to travel more than one Delaunay edge per time step, for example
in case one needs to solve the time-dependent transfer equation. However, this was not done for
the work presented in this thesis.

5.3 Thermal state of the gas

Energy exchange between the radiation field and the gas can occur through various interac-
tion processes. We have implemented heating and cooling processes relevant for a primordial
composition of gas. First collected by Black (1981), these are photo-heating, recombination
cooling, dielectric recombination cooling, excitation cooling and collisional ionization cooling.
We also include a prescription of cooling due to non-relativistic free-free interactions.

For a gas parcel of fixed volume, the change in internal energy per unit mass is

du
dt

=
n2

H

ρ
(H + C), (5.19)

whereH and C are the (normalised) radiative heating- and cooling function respectively. These
functions are defined such that n2

HH gives the rate of energy gain per unit volume and n2
HC

gives the rate of energy loss per unit volume. Assuming an ideal gas, the internal energy and
the temperature are related by

u =

3
2kBT
µmH

, (5.20)
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where kB is Boltzmann’s constant, mH is the mass of the hydrogen atom and µ ≡ m/mH is
the mean molecular weight, with m the average mass of a gas particle. The average mass per
particle depends on the ionization-state of the gas through

m '
mH(nH I + nH II + 4nHe I + 4nHe II + 4nHe III)

nH I + 2nH II + nHe I + 2nHe II + 3nHe III
, (5.21)

where we have used that mHe ' 4mH.

Heating processes

In this work we limit ourselves to photo-heating so this is the only contribution toH

H =
∑

i

ni

n2
H

εγ,i with i = H i , He i , He ii . (5.22)

Here εγ,i is the photoheating coefficient of species i, given by

εγ,i =

∫ ∞

ν0,i

4πJνσi(ν)(hν − hν0,i)
hν

dν = ΓP,i〈Ei〉, (5.23)

where we have used Eq. (5.1) to define the average excess energy of the ionizing photons

〈Ei〉 ≡

(∫ ∞

ν0,i

4πJνσi(ν)(hν − hν0,i)
hν

dν
) (∫ ∞

ν0,i

4πJν
hν

σi(ν)dν
)−1

, (5.24)

and ν0,i is the ionization energy of the atom. In case of multiple frequency bins the excess
energy is calculated in every bin separately.

Cooling processes

The normalised cooling function C is determined by the sum over the cooling rates of individual
processes that contribute to the cooling. Here we consider recombination cooling, collisional
ionization cooling, collisional excitation cooling and cooling from free-free emission:

C =
∑

i

ci, (5.25)

where i runs over all contributions due to different processes and species. The different contri-
butions and their origin are given in Tab. 5.3 in Sect. 5.A.

Implementation

The evolution of the internal energy, Eq. (5.19), is explicitly integrated in step with the evolution
of the ionization state of the medium. This yields accurate results in almost all cases because the
heating and cooling time-scales are generally much larger than the ionization and recombination
time-scales. In the rare case that this is not true, we solve Eq. (5.19) on a time-scale that
guarantees a stable solution.
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If the sub-cycling scheme described in Sect. 5.2.3 is used, the following situation may occur.
The sub-cycling converges to ionization equilibrium before the end of the radiative transfer time
step. In this case, we evolve the internal energy (on the thermal time scale) until the end of the
time step, assuming a constant ionization state of the medium. Once the internal energy of
the medium at that final time is known, we then set the ionization state of the medium to the
equilibrium values appropriate for that internal energy. Because the radiative transfer time steps
are not much larger than the thermal time scale in almost all cases, we only need to take several
explicit steps to correctly solve for the internal energy.

Comparison to CLOUDY

To test our implementation of helium cross sections and recombination rates, we compare the
ionization fractions of hydrogen and helium with those obtained with the well-established code
CLOUDY (Ferland et al. 1998). Because CLOUDY incorporates many additional processes,
we can check whether our implementation captures the most important contributions.

The test set-up is as follows. A black-body source with 5 · 1054 photons capable of ioniz-
ing hydrogen per second placed within a homogeneous neutral medium. The medium con-
sists of hydrogen with number density nH I = 10−3 cm−3 and helium with number density
nHe I/nH I = 0.1. The CLOUDY results represent the equilibrium solution whereas we have
ended the simulation at 2 Gyr when equilibrium is not fully established yet. We allow the tem-
perature to evolve due to the cooling processes given in the Appendix and we include photo-
heating. In Fig. 5.2 we show the results of this test.

Figure 5.2: Ionised and neutral
fractions for our one-dimensional
RT code (black curves) compared
to CLOUDY (grey curves). Our
results are calculated at 2 Gyr
whereas CLOUDY results represent
the equilibrium solution.

The positions of the ionization fronts of both helium and hydrogen are in good agreement
between the two codes.

In the inner regions, deviations are all under several percent with the largest differences
seen in the He i fractions. Outside of the ionization-front, the CLOUDY curves fall off less
steep when compared to our results. This is because our result is not completely converged to
the equilibrium value for this time.
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5.4 Proper treatment of the spectrum

As we discuss below in Sect. 5.4.1, a one-frequency-bin or ‘grey’ approach to the radiative
transport of ionizing photons is a useful approximation in many applications. For problems
where detailed heating or spectral hardening are important, the form and evolution of the radia-
tion spectrum needs to be followed and we must use a multiple frequency description. We have
a certain freedom in the discretization of the spectrum that we might turn to our advantage. In
Sect. 5.4.3 we discuss possible choices and their merit.

5.4.1 Two grey approximations

In numerical simulations involving radiation it is often necessary to approximate the contin-
uous spectrum of radiation with a finite number of discrete frequency bins due to memory
requirements. The extreme (but often employed) limit of one single frequency bin is commonly
referred to as the ‘grey approximation’. Although in the grey approximation all spectral infor-
mation is lost, it is still possible to enforce the conservation of a quantity of importance such as
the number of ionizations per unit time or the energy deposition into the medium per unit time.

The conservation of energy is accomplished by defining the effective (grey) cross section
for species i, σE,i, as

σE,i = 4π
∫ ∞

0
σi(ν)Jνdν

/
J, (5.26)

where the energy rate per surface area (which is the frequency integrated mean intensity), J, is
defined by

J ≡ 4π
∫ ∞

0
Jνdν. (5.27)

If we want to know the amount of energy injected into the medium per unit time due to ioniza-
tions of species i, Ė, we simply multiply the grey cross section with J

Ėi = σE,iJ. (5.28)

Alternatively, the source function can be divided by the energy per photon, hν, to keep the
number of ionizations per unit time constant

σI,i = 4π
∫ ∞

0

σi(ν)Jν
hν

dν
/
Ṅ (5.29)

where Ṅ is the rate of ionizing photons per surface area defined by

Ṅ ≡ 4π
∫ ∞

0

Jν
hν

dν. (5.30)

The phototionization rate is thus given by

ΓP,i = σI,iṄ. (5.31)

Both the energy- and the ionization-conserving definitions have their merit. Intuitively, the
conservation of ionizations leads to a better solution if the problem is sensitive to the ionization
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state of the medium. On the other hand, if the temperature of the medium is most important,
the energy conserving choice would be more appropriate because in the vicinity of ionizing
sources, photo-heating is the dominant source of thermal energy.

The correctness of the grey approximation depends on the spectrum and the cross sections
that are used. It works best for spectra and cross sections that peak sharply around the same
energy, and are thus well approximated with a single frequency bin covering that energy. For
spectra that fall-off slowly (power-laws with small powers for instance) and cross sections with
contributions separated by large ranges in frequency, the need for a multiple frequency descrip-
tion becomes more pressing. We furthermore note that the grey approximation does not allow
for different types of sources to be used in the same simulation because the effective cross
section is photon conserving for a single type of spectrum only.

5.4.2 Spectral hardening

In the vicinity of ionizing sources, photo-heating is the dominant source of thermal energy. For
every ionization of a given atom, the liberated electron carries an energy of

Ethermal = h(ν − ν0,i) (5.32)

where ν0,i is the ionization energy of the atom. Reproducing Eq. (5.23) but now with frequency
limits that represent multiple bins, the effective thermal energy added to the medium due to
ionization of species i, for a photon in bin j, is

εγ,i, j =

∫ ν j+1

ν j

4πJνσi(ν)(hν − hν0,i)
hν

dν. (5.33)

Replacing Eq. (5.23) with Eq. (5.33) and the related discretisation of the cross section, will have
several related physical effects on the transport of ionizing radiation. Because the cross section
is a strongly frequency-dependent function, the absorption of photons in different frequency
bins will happen at different depths in the medium. Photons with energies much higher than ν0,i

will be able to travel further than the ionization fronts, depositing their (significant) surplus of
energy to the thermal bath of the medium. This effect is known as spectral hardening because
the spectrum shifts to more energetic ‘harder’ photons when progressing through the medium.
Spectral hardening results in significant heating beyond the ionization front and, consequently,
a lower recombination rate there. The effect of this suppression of recombinations in turn is a
more extended ionization front.

5.4.3 Choice of bins

In the previous section we have seen that the multiple frequency scheme in SimpleX compares
excellently to other methods. The solutions for the ionization and temperature structure show
significant change when we go to multiple frequency bins. But how many frequency bins should
one use to obtain this solution (given some tolerance)? The answer is that the number of bins
depends on the choice of intervals in frequency space, the cross section and the type of spectrum.
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In general, we would like the frequency bins to capture the behaviour of the product of
the spectrum and the cross section in sufficient detail. Bins can be wide when this product is
small and/or changes slowly and must be narrow otherwise. For the moment we concentrate
primarily on the amplitude of the product of σ and J, striving to keep either the number of
ionization events (e.g., Eq. (5.31)) or energy transfer per unit time (e.g., Eq. (5.28)) constant
across bins. We can choose the width of the frequency bins such that the energy-absorption rate
is constant across bins

ΓE,i = ΓE, j ∀ i , j where ΓE,i = 4π
∫ νi+1

νi

σ(ν)Jνdν, (5.34)

where we have omitted reference to species to avoid cluttering. Equivalently, we can force the
ionization rate is constant across bins

ΓI,i = ΓI, j ∀ i , j where ΓI,i = 4π
∫ νi+1

νi

σ(ν)Jν
hν

dν. (5.35)

Alternatively, we can choose logarithmically spaced bins. This would make sense in the case
that the product of cross section and spectrum behave according to a power-law. The width
of the bins tend to increase in the same way as the strength of the spectrum diminishes. If the
product is roughly constant, however, we could use bins of constant width. Finally, we take bins
that just keep the radiated energy per bin constant, we call this possibility ‘spectrum-weighted’.

Ji = J j ∀ i , j where Ji = 4π
∫ νi+1

νi

Jνdν. (5.36)

We show these five options for bin spacing in Fig. 5.3. The first three panels (from the top)
are the same for hydrogen only (left figure) and hydrogen plus helium (right figure) because
the spacing is independent of the spectrum. The bottom two panels of each figure show the
bin-spacings given by Eq. (5.35) and Eq. (5.34) respectively. Because the extra factor of ν in
the denominator of Eq. (5.35), the ionization-weighted bins are more focussed on the peaks of
the cross sections than the energy-weighted bins.

In Fig. 5.4 the distribution of frequency bins for a power-law ν−1 (typical for quasar spectra
e.g., Elvis et al. 1994) is shown. As mentioned previously, the spectrum-weighted bins are
equivalent to the logarithmic case for a power-law spectrum. The ionization-weighted bins
are even more focussed on low frequencies than in the blackbody case. The energy-weighted
bin distribution is very similar to the blackbody case for pure hydrogen but is more extended
to higher frequencies for simulations including helium as well. Because the maximum of the
spectrum lies at the origin, the first part of the cross section (due to hydrogen) is sampled with
three instead of two bins.

We note that regardless of our choice of bins, we are still at liberty to choose either the
ionization or the energy conserving weighted cross sections. The only difference being that
now, the weighting will be done over the with of one bin instead of the whole frequency interval.
We use ionization-weighted cross sections for the tests described below but the results are not
influenced significantly by this choice.
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Figure 5.3: Spacing of frequency bins for the calculation of effective cross sections using J(ν) =

Bν(T = 50K) for five different bin-size strategies. In contrast to the linear and logarithmic
spacing, the other three strategies use information of the spectrum and the cross-sections to find
an optimal spacing of the bins. In each case we use 10 bins ranging from 1 to 6 ν0,H I for aesthetic
reasons (we use an upper limit of 15 ν0,H I in our runs). The width of the grey-shaded bars
indicate the range of frequency of the corresponding bin. A scaled 105 K blackbody spectrum
and the cross section are plotted for reference. Left: Pure hydrogen. Right: Hydrogen and
helium.

Figure 5.4: Same as in Fig. 5.3 but now for J(ν) = ν−1. Left: Pure hydrogen. Right: Hydrogen
and helium.
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5.4.4 Convergence of temperature and ionization structure

We investigate how the convergence of two important observables, the ionization strucure and
the temperature in a hydrogen (and helium) gas, converge as a function of the number of fre-
quency bins for the following five choices of bin-spacing:

1. Linearly spaced
2. Logarithmically spaced
3. Spectrum-weighted (the radiated energy per unit time is constant along bins)
4. Energy-weighted (the rate of energy transferred to the medium is constant)
5. Ionisation-weighted (the ionization rate is constant along bins)

We use the set-up of ‘test 2’ from the Cosmological Radiative Transfer Comparison Project
published in Iliev et al. (2006a) and described in the previous section. Because the effects of
different prescriptions are more pronounced for an ionized region that has not yet reached its
equilibrium size (also because the box is too small to capture the temperature profile outside of
the ionization front), we perform our tests after 30 Myr when the ionization front lies at roughly
half the Strömgren radius. We perform this test both with the ‘default’ 105 K blackbody curve
used in the original test and a power-law of ν−1.

Figure 5.5 shows the temperature profiles for these two spectra without (left panel) and with
(right panel) inclusion of helium. These show the numerical results with converged number of
frequencies and time step. In the case of a pure hydrogen gas, the power-law spectrum results in

Figure 5.5: Temperature profile at 30 Myr for the two types of spectra used in the convergence
tests in this chapter. Left: Pure hydrogen. Right: Hydrogen and helium.

a more extended temperature profile. This is expected because the spectrum falls off less steeply
than the blackbody spectrum (which has the well-known ν−3-behaviour at larger wavelengths)
and thus carries more energy in harder photons. This hard radiation, in turn, pierces further
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beyond the ionization front and heats the gas further out. In the case helium is also taken into
account, the temperature profile for the power-law spectrum shows an additional bump closer
to the source.

We have performed simulations using a one-dimensional implementation of our chemistry
solver to speed up the testing process and to eliminate possible noise due to radiative transfer
effects. We assume spherical symmetry and use 100 equally spaced cells spanning 6.6 kpc.
Radiation enters the first cell and is traced through the other cells until it is absorbed or leaves
the domain. We do not include recombination radiation explicitly but adopt the on-the-spot
approximation. We have checked convergence of our results for number of cells and time-step.
To check for convergence, we perform a (fully converged) reference simulation (typically with
128 frequency bins) to compare against. To compare two results we can define an error measure
that gives a total relative error

σ ≡

∑
i |xi − xref,i|∑

i 0.5(xi + xref,i)
. (5.37)

We will use Eq. (5.37) to check for convergence, allowing for maximally σ = 0.01 for the ion-
ization structure and σ = 0.05 for the temperature. We allow this larger error in the temperature
because it is more susceptible to numerical noise (especially close to the source) and we are
more interested in the convergence behaviour than the absolute error at this point.

Also, there is freedom in choosing an upper limit for the frequency bins. The spectrum-,
energy- and ionization-weighted results are hardly affected by this choice, as long as the upper
limit is sufficiently high. For linear and logarithmic bins, the choice of maximal frequency is
more critical. Many bins are needed when this upper limit is too high (100 ν0,H I, for instance,
is prohibitively high because if requires over 100 linear bins). In the tests below we have used
an upper limit of 15 ν0,H I. At that frequency, the contribution of the product of the spectra and
the cross section(s) has decreased to less than a millionth of its maximal value.

Temperature Ionisation

blackbody power-law blackbody power-law
Binning H H + He H H + He H H + He H H + He
Linear 16 14 5 4 10 20 17 17
Logarithmic 8 8 2 2 5 6 5 4
Spectrum weighted 4 4 2 2 3 4 5 4
Energy weighted 8 4 14 6 12 6 14 4
Ionisation weighted 44 8 35 14 15 4 35 5

Table 5.1: Number of frequency bins needed for convergence within 1% (for ionization frac-
tion) and 5% (for temperature) depending on choice for bin-spacing (column 1). Results are for
a blackbody spectrum(column 2,3,6 and 7) and a power-law spectrum (column 4,5,8 and 9).

In Tab. 5.1 we summarize our results. We see that in general, the ionization structure requires
about the same number of bins to converge within the given tolerance as the temperature.
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In many cases, more ionization-weighted bins are needed for convergence than logarithmic
and energy-weighted. The number of bins is comparable to linearly spaced bins. For the ion-
ization fractions this is somewhat surprising because they are chosen to keep the ionization-rate
per bin constant. For both the blackbody and the power-law spectrum, ionization-weighting
places (too) much emphasis on the frequencies close to νH I,0 and makes it harder for the tem-
perature structure to converge for pure hydrogen. This problem is alleviated when helium is
added because there are contributions of the cross section at higher energies, which implies a
better frequency resolution there.

Energy weighted bins are more efficient in all cases but do not out-perform logarithmic and
spectrum-weighted bins. They also do not seem to be more efficient than the spectrum-weighted
and logarithmic bins when it comes to temperature convergence, which is, again, surprising
because they are designed to optimally resolve the ionization rate.

From Fig. 5.3 we see that logarithmic bins closely resemble the spectrum-weighted result
in all cases (they are identical for the power-law spectrum of course). Therefore they are almost
as efficient from the point of convergence as can be seen from Tab. 5.1. We caution against the
naive use of logarithmic bins for general (i.e., non-power-law) spectra, however, because they
tend to severely under-sample the low frequency part of the spectrum when the upper bounds
are chosen large. Only linearly spaced bins perform worse in this respect.

Considering these results, we advocate the use of spectrum-weighted binning which respects
the form of the spectrum. This type of binning does not suffer from the limitations of logarithmic
and linear binning and is easily calculated. More involved methods that take the cross section
into account do not increase the convergence of either the ionization state or the temperature
distribution and are as such not recommended.

5.4.5 Testing

We have performed test 2 from the first Cosmological Radiative Transfer Comparison Project
published in Iliev et al. (2006a). This test traces the ionization fraction and temperature for a
single 105 K blackbody source in a homogeneous nH I = 10−3 cm−3 initially neutral hydrogen
gas. The source emits 1048 ionizing photons per second and is located in the centre of a 13.2
kpc box. In Fig. 5.6, we show the difference between the grey (1 frequency, dash-dotted line)
and multiple frequency results obtained with SimpleX and using energy weighted bins (see
Sect. 5.4.3). The results obtained with SimpleX show convergence with 5 frequency bins for
both the 30 and 500 Myr result. All results (even the monochromatic ones) lie within the grey
area that shows the range of results obtained by other radiative transfer codes that participated
in the comparison project. This is due to the fact that some of these codes rely on approximate
methods to treat spectral hardening, some of which deviate significantly from the true multi-
frequency solution. For the temperature-related results, presented in Fig. 5.7, we see that only
the completely monochromatic result lies outside the range of other results. The convergence is
somewhat slower in the 30 Myr case than for the ionization structure. In contrast, the 500 Myr
results seem converged for all but the monochromatic case. This is also a result of the problem
setup, the box is too small to show the temperature structure beyond the ionization front (where
the deviations are most notable) at 500 Myr.
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Figure 5.6: Test 2. The effect of spectral hardening on the position of the ionization-front.
Shown are the ionized and neutral fractions as a function of radial distance from the source.
Results are shown at 30 Myr (Left) and 500 Myr (Right). The results of other radiative transfer
codes that participated in the comparison project published in Iliev et al. (2006a) are shown as
the shaded grey area. This image has been published earlier in Paardekooper (2010).

Figure 5.7: Test 2. The effect of spectral hardening on the temperature of the gas (otherwise
identical to Fig. 5.6). This image has been published earlier in Paardekooper (2010).
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5.5 Implementation

We now describe how the above ideas are put into practice in the chemistry module of the
SimpleX code. As mentioned before, the natural computational unit for the SimpleX code is the
sweep. The sweep represents a physical time-step ∆t in the sense that the number of photons
sent from a source with luminosity L in one sweep is given by L × ∆t. Furthermore, every
sweep, the equations that describe the change of the chemical state of the gas are evolved over
a period ∆t. In one sweep, all nuclei of the grid are visited once in random order and the state
of each nucleus is changed as follows.

First, all radiation that has arrived at the nucleus during the previous sweep is used to change
the chemical state of the gas in the cell. We must be careful to exclude radiation that arrived in
the current sweep because otherwise photons can take more than one step on the grid1.

To find the number of ionisations of species i, we evaluate Eq. (5.8) and multiply Ṅion,i by
∆t. The number of photons for a given frequency bin absorbed for these ionisations can be
found by multiplying Eq. (5.7) with ∆t.

The number of photons that needs to travel onward to neighbouring cells can be found
by taking the original number of photons and subtracting the absorptions. If the number of
photons in frequency-bin j before chemistry is given by Nγ, j, the number of outgoing photons
after chemical interactions is given by

Nout
γ, j = Nγ, j − Ṅion, j∆t. (5.38)

This radiation is sent from each nucleus to its neighbours using diffuse-, ballistic- or direction
conserving transport. We note that the chemical state of the gas in a cell is changed right before
that cell sends its content to its neighbours. This allows us to use the updated optical depth of
the cell for the radiative transport.

Because the time step ∆t is often much larger than the typical chemical timescale (taken as
the minimum of the ionisation-, recombination- and heating/cooling timescale) we apply a sub-
cycling procedure as described in Sect. 5.2.3. The time step used for this sub-cycling is defined
by Eq. (5.16), a harmonic mean of the ionisation- and recombination timescale. As mentioned
in Sect. 5.3, the internal energy of the gas (Eq. (5.19)) is evolved on the sub-cycling timescale
unless the thermal timescale is smaller than ∆tsub (which happens sporadically). In these rare
cases, Eq. (5.19) is evolved on a fraction of the thermal timescale which is the minimum of the
timescales of all heating and cooling processes.

The procedure described above requires several quantities and numbers to be known be-
forehand. For example, we must choose a number of frequency bins to represent the spectrum2

of the sources. Once the source spectrum and bin spacing method have been chosen, the ac-
tual spacing is calculated using linear- or logarithmic spacing or frequency ranges that satisfy
Eq. (5.36), Eq. (5.35) or Eq. (5.34). In the latter cases, we use numerical integration combined
with a minimization routine to find the correct boundaries for the frequency bins.

1This is a consequence of the random treatment of the nuclei. If we were to relax this one-step-per-sweep
requirement, the number of communications between processors in a parallel simulation would have to be increased
from one to ‘every time a photon crosses a boundary between processors’ which can be a large number.

2In the current implementation, this spectrum can be either power-law or a black-body source. It is not difficult
to use more general source-spectra, but in that case, the choice of frequency bin spacing may not be as simple as
described above.
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Once the bins are known, we can also calculate the average excess energy of an ionisation of
an atom of species i from a photon of frequency j by generalizing Eq. (5.24) to more frequencies

〈Ei, j〉 ≡

(∫ ν j+1

ν j

4πJνσi(ν)(hν − hν0,i)
hν

dν
) (∫ ν j+1

ν j

4πJν
hν

σi(ν)dν
)−1

. (5.39)

We note that the spacing of the frequency bins, the excess energy per ionisation and the effective
cross sections need to be computed only once, before the actual simulation. This initialization
of the code takes several seconds in total. We have tested the convergence and stability of the
frequency binning procedure up to 200 frequency bins.

5.6 Summary

• We have presented the chemical module implemented in the SimpleX code including
photo-heating and various cooling mechanisms for hydrogen and helium.

• The results of SimpleX compare well with those obtained by other radiative transfer meth-
ods.

• To account for spectral hardening and spectral evolution of the radiation field we have im-
plemented a flexible multiple frequency binning. We have compared five binning methods
on the subject of convergence to a reference solution. Our tests with two different source
types (blackbody and power-law) lead us to conclude that a spectrum-weighted approach
is favourable in general.

5.A Rates and cross sections

Table. 5.2 summarizes the rates and cross sections used in this work. The various choices are
based on comparison with other work focussing on range of validity and estimated error but
reflect to a certain extent the personal preference of the author. We have found the elaborate
discussion in Pawlik (2009) useful and have adopted their preferred rates in most cases. The
selection of heating and cooling processes is not exhaustive but includes the most important
ones (as first compiled by Black (1981)).
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Photo ionization cross section HI, HeI, HeII Verner et al. (1996)
Dust cross sections Gnedin et al. (2008)
Collisional ionization rate HI, HeI, HeII Theuns et al. (1998)
Spontaneous recombination HII, HeIII Hui & Gnedin (1997)

HeII Hummer & Storey (1998)
Dielectric recombination HeII Aldrovandi & Pequignot (1973)
Recombination cooling HII, HeIII Hui & Gnedin (1997)

HeII Hummer & Storey (1998)
Collisional ionization cooling HI, HeI, HeII Theuns et al. (1998)
Dielectric recombination cooling HeII Black (1981)
Line (collisional excitation) cooling HI, HeII Theuns et al. (1998)
Free-free cooling Theuns et al. (1998)

Table 5.2: Summary of rates and cross sections for various physical effects.

5.A.1 Cross sections

Hydrogen and helium

We use the cross sections for hydrogen and helium from Verner et al. (1996). The photoioniza-
tion cross sections for these species are well approximated by a fitting function

σ = σ0

( E
E0
− y0 − 1

)2

+ y2
w


(√(

E
E0
− y0

)2
+ y2

1

)0.5p−5.5

1 +

√ √(
E

E0
−y0

)2
+y2

1

ya


p cm2, (5.40)

where the coefficients are given by

Species E0 σ0 [10−14] p ya yw y0 y1

H i 0.4298 5.475 2.963 32.88 0 0 0
He i 13.61 0.09492 3.188 1.469 2.039 0.4434 2.136
He ii 1.72 1.369 2.963 32.88 0 0 0

Dust

The optical depth due to dust is given by

τd = nHσdl, (5.41)

where l it the path length, nH is the hydrogen number density and σd is the effective dust cross
section per hydrogen atom. To account for a metallicity different from that in the SMC and LMC
we simply scale the hydrogen number density with the metallicity fraction, Z/Z0. Here Z0 the
reference metallicity of the SMC and LMC relative to solar metallicity. We use Z0,SMC = 0.25
and Z0,LMC = 0.5 (Welty et al. 1997, 1999).
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5.A.2 Recombination rates

We use the recombination rates from Hui & Gnedin (1997) who present fits to data from Fer-
land et al. (1992) (for H i and He iii) and our fit (linear in log-log) to the data of Hummer &
Storey (1998) for He ii. The reason for this is that Hui & Gnedin (1997) have used only three
data-points (at 0, 104 and 2 · 104 K) from Burgess & Seaton (1960) for their fit of the He ii

recombination rate (probably because at the time they where the only data available) whereas
Hummer & Storey (1998) provide values in 10log(T) from 1 to 104.4 K in 0.2 steps. The case A
and case B recombination rates that we use are thus

αA
H II(T ) = 1.269 · 10−13 (λH I)1.503[

1.0 + (λH I/0.522)0.47
]1.923 (5.42)

αA
He II(T ) = 10−9.79782−0.638125 log(T ) (5.43)

αA
He III(T ) = 2.538 · 10−13 (λHe II)1.503[

1.0 + (λHe II/0.522)0.47
]1.923 (5.44)

αB
H II(T ) = 2.753 · 10−14 (λH I)1.5[

1.0 + (λH I/2.74)0.407
]2.242 (5.45)

αB
He II(T ) = 10−9.79239−0.687189 log(T ) (5.46)

αB
He III(T ) = 2.0 · 2.753 · 10−14 (λHe II)1.5[

1.0 + (λHe II/2.74)0.407
]2.242 , (5.47)

where we follow the notation of Hui & Gnedin (1997) in using T5 ≡ T/105, λH I = 2TH I/T ,
λHe I = 2THe I/T , λHe II = 2THe II/T and ionization threshold energies TH I = 157807 K, THe I =

285335 K, THe II = 631515 K.

5.A.3 Dielectric recombination

For the dielectric recombination rate (only for He ii), we use the expression given by Aldrovandi
& Pequignot (1973) who re-express results of Brown (1971).

5.A.4 Collisional ionization rates

Collisional ionizations have been taken into account using the coefficients (in units cm3s−1) by
Theuns et al. (1998) who revisited those published in Cen (1992).

ΓeH I = 1.17 · 10−10
√

T exp(−1.578091 · 105/T )
(
1 +

√
T/105

)−1
(5.48)

ΓeHe I = 4.76 · 10−11
√

T exp(−2.853354 · 105/T )
(
1 +

√
T/105

)−1
(5.49)

ΓeHe II = 1.14 · 10−10
√

T exp(−6.31515 · 105/T )
(
1 +

√
T/105

)−1
(5.50)
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5.A.5 Cooling rates

Table 5.3 summarizes the cooling rates used in this work.

ci Cooling rate [erg cm3 s−1] Multiplication factor Species
Collisional ionization cooling

c1 = 2.54 · 10−21
√

Te−157809.1/T (1 +
√

T5)−1 nenH I H i

c2 = 1.88 · 10−21
√

Te−285335.4/T (1 +
√

T5)−1 nenHe I He i

c3 = 9.90 · 10−22
√

Te−631515/T (1 +
√

T5)−1 nenHe II He ii

Collisional excitation cooling
c4 = 7.5 · 10−19e−118348/T (1 +

√
T5)−1 nenH I H i

c5 = 5.54 · 10−17T−0.397e−473638/T (1 +
√

T5)−1 nenHe II He ii

Free-free cooling
c6 = 1.42 · 10−27

√
T

(
1.1 + 0.34e{(−5.5−log10 T )2/3}

)
ne(nH II + nHe II + 4nHe III) H ii , He ii , He iii

Dielectric recombination cooling
c7 = 1.24 · 10−13T−1.5e(−470000/T )(1 + 0.3e(−94000)) nenHe II He ii

Recombination cooling

c8 = 1.778 · 10−29T
λ1.965

H I(
1.0+(λH I/0.541))0.502

)2.697 nenH II H ii case A

c9 = −25.6822 + 0.347135 log(T ) nenHe II He ii case A

c10 = 8 × 1.778 · 10−29T
λ1.965

He II(
1.0+(λHe II/0.541))0.502

)2.697 nenHe III He iii case A

c8 = 3.435 · 10−30T
λ1.970

H I(
1.0+(λH I/2.250))0.376

)3.720 nenH II H ii case B

c9 = −25.9067 + 0.500511 log(T ) − 0.0414826 log(T )2 nenHe II He ii case B

c10 = 8 × 3.435 · 10−30T
λ1.970

He II(
1.0+(λHe II/2.250))0.376

)3.720 nenHe III He iii case B

Table 5.3: Implemented cooling processes. First column: identifier. Second column: coefficient
as a function of temperature. Third column: multiplication factor that converts to units of [s−1

cm−3] or rate of energy loss per unit volume. Fourth column: species for the coefficient. We
have used the notation from Hui & Gnedin (1997): T5 ≡ T/105, λH I = 2TH I/T , λHe I = 2THe I/T ,
λHe II = 2THe II/T where TH I = 157807 K, TH I = 285335 K and TH I = 631515 K are the
ionization energies of H I, He I and He II respectively.

Recombination cooling

Because the recombination cooling-rates depend on the recombination rates, the discussion
about the He ii recombination rate also applies here. For the reasons discussed earlier for the
He ii recombination rate, we choose to use a fit in log-log to the values of Hummer & Storey
(1998) which is shown in Fig. 5.8. We use the dielectric recombination cooling formula from
Black (1981), who refers back to the work by Gould & Thakur (1970) and Burgess (1964).
Although the extrapolation above 104.4 K is of course a source of uncertainty, this does not
pose a big problem because dielectric recombination cooling becomes dominant at temperatures
T & 5 · 104 K.
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Figure 5.8: Fits to the He ii re-
combination cooling data of Hum-
mer & Storey (1998). We have
used a linear fit in log-log for the
case A and a quadratic fit in log-
log for the case B recombination co-
efficient. Also plotted are the di-
electric cooling terms from Black
(1981) which dominate the cooling
for T & 5 · 104 K.
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CHAPTER 6

A Markov chain description of SimpleX
Radiation Transport

C. J. H. Kruip, R. Vooys & V. Icke

W e formulate the basic transport methods for the SimpleX algorithm
in the context of Markov chains. The Delaunay triangulation is in-

terpreted as a graph from which a transport matrix can be distilled. We
explicitly solve for the equilibrium solution of simple test problems with
two distinct methods. The first method is equivalent to the explicit SimpleX
transport in a static medium, whereas the second is based on the diagonal-
isation of the transport matrix. We argue that for scattering problems with
optically thick regions, the second solution method is (much) more efficient.
The possibility of using the eigenvalue spectrum of the transport matrix as
a proxy for speed of convergence of the explicit solution method is briefly
touched upon.
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6.1 Introduction

In Chapter 3 we already exploited the advantage of mathematical clarity of the SimpleX method
in the context of error analysis. Here we explore a mathematical description of the SimpleX
algorithm in the context of graphs.

In a general sense, a graph is a system of connections between discrete points in space. In the
Voronoi-Delaunay mesh, the set of all Voronoi nuclei are connected uniquely by the Delaunay
edges. Photons travelling along these edges can thus be thought of as transported along the
connecting lines of a graph. It is this duality, the equivalence of SimpleX transport and graph
theory, that we touch upon in this chapter. To give the reader a feeling for the advantages of
studying SimpleX transport in the context of graph theory and Markov processes, we outline
two anticipated results. First, a dual description provides additional mathematical tools to study
the original algorithm. Questions about the uniqueness and existence of stationary solutions to
given transport problems are stated and answered more naturally in the language of graphs for
instance. Second, for some transport problems it may be computationally (much) more efficient
to use the solution methods presented below than to explicitly move the transported quantities to
and fro over the computational mesh as in the SimpleX algorithm. Studying the duality between
SimpleX transport and Markov chains on a graph can thus improve our understanding of the
SimpleX algorithm and may lead to more efficient solution of certain transport problems.

The focus of this chapter is to introduce the concept of Markov chains relevant for the
description of SimpleX transport and to illustrate the possible advantages of such a description
rather than to give a thorough evaluation of the field. We limit our discussion in this text to
equilibrium solutions of radiative transfer problems in static media. That is, the opacity of the
medium does not change as a function of the local radiation field (as in ionisation chemistry).

Regardless of these limitations, the algorithm presented in this chapter can be applied to
realistic problems of astrophysical interest. Possible applications include the determination of
the temperatures in an inhomogeneous distribution of dust particles or the spatial photon density
in a scattering-dominated stellar atmosphere. Because the properties of the mesh (volume,
vertex-positions, connectivity) do not need to be stored in working memory, the requirements
of the method are very modest. This allows for problems with many resolution elements.

In Sect. 6.2, we introduce Markov processes, which are most relevant for our study. We then
take a step to translating the various means of RT within the SimpleX algorithm to a matrix-
based representation in Sect. 6.4 and explicitly construct the matrices in Sect. 6.5. Subsequently
we will demonstrate the equivalence of the Markov-matrix result with the direct RT solution for
several simple toy-problems in Sect. 6.6. In Sect. 6.7 we shortly comment on the convergence
of the RT and the matrix diagonalisation.

6.2 Markov processes

Markov processes (after the Russian mathematician Andrey Markov) are time varying phenom-
ena for which the Markov property holds. Colloquially speaking, a process that satisfies the
Markov property is memoryless, its future state depends only on its present state but never its
past.
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Definition 1. Let X0, X1, X2, . . . be a sequence of random variables and let P denote the proba-
bility. The sequence (X0, X1, . . . ) is called a Markov chain if this random proces possesses the
Markov property:

P (Xn+1 = x|X0 = x0, X1 = x1, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn) (6.1)

Or in words: The conditional distribution of the state Xn+1 given the states (X0, X1, . . . , Xn)
depends only on Xn. Where we call X0 the initial (starting) state, and Xn the state after n steps.

Most games played with dice satisfy the Markov criterion in contrast to most card games
where, for instance, the content of the stack reflects the games past. If a Markov process is
defined on a discrete time basis, it is often referred to as a Markov chain. Note that we will
introduce the concepts of Markov theory exclusively in the context of our transport problem on
a graph. The definitions and theorems are much more general though and apply to any form of
Markov chain imaginable.

6.2.1 The transition matrix

Whether it concerns weather types, outcomes of a dice-roll or positions in space, a Markov
chain always describes a series of states that follow each other. In the context of our radiative
transfer problem, we can imagine following a single photon that travels from one position to
the next, tracing out its particular chain of states. Although this is a useful perspective, we
might also look at the Markov chain from the states point of view, however. There might be
many photons in our volume, each state hosting more than one photon. At each iteration of the
Markov chain, these photons will change states with a given probability that depends on the
process. All the relevant information about how to transition from one state to the next can be
encoded in the transition matrix

M =


M00 M10 . . .
M01 M11 . . .
...

...
. . .

 . (6.2)

Definition 2. Let M be a k× k matrix with elements
{
Mi, j : i, j = 1, 2, . . . , k

}
. A random process

(X0, X1, . . . ) with finite state space S = {s1, s2, . . . , sk} is said to be a homogeneous Markov
chain with transition matrix M, if for all n, for all i, j ∈ {1, . . . , k} and for all i0, . . . , in−1 ∈

{1, . . . , k} we have:

P
(
Xn+1 = s j|X0 = si0 , X1 = si1 , . . . , Xn−1 = sin−1 , Xn = si

)
=

P
(
Xn+1 = s j|Xn = si

)
= Mi, j

The matrix elements Mi, j are transition probabilities that express the probability of tran-
sitioning from state si to state s j. In our context, a photon will have to do a Monte Carlo
experiment and decide which of the available next states it will go into, each transition having
its own probability. Alternatively, we might interpret the transition probabilities as fractions that
decide which part of the light goes into a given state. Of course, this interpretation is equivalent
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to the first if the number of photons is large and we will use it in our practical examples in this
chapter.

Every transition matrix is nonnegative: Mi, j ≥ 0 for all i, j ∈ {1, . . . , k}, and each row of
the matrix sums up to unity:

∑k
j=1 Mi, j = 1 for all i ∈ {1, . . . , k}. Because of this property, the

transition probabilities can also be interpreted as fractions of the content of vertex i to be sent
to vertex j as discussed above. A matrix with these properties is also called a stochastic matrix.

The term homogeneous in the above definition means that the probability from one state to
another does not change over time. An inhomogeneous Markov chain has transition matrices
M(1),M(2), . . . for each time step. We will not be considering inhomogeneous Markov chains in
this text.

The transition matrix M hence reflects the probability of transitioning between the possible
states of the Markov chain. In our case, these states are the nodes of the graph which are in turn
identified with the vertices that constitute the basis of the transport mesh. If we use the Voronoi-
Delaunay triangulation as the connection between the vertices, the non-negative entries of the
transition matrix are completely determined by this triangulation. Note that every edge has in
general two numbers associated with it, one for each direction of the transport. In other words;
Mi j , M ji in general.

As we will see in Sect. 6.4, the probabilities of these connections are still a free parameter
which can be associated with the concept of solid angle.

6.2.2 The initial condition

Now we give a definition of the starting point of the Markov process: the initial condition, and
how we denote the distribution of states after several times.

Definition 3. The start of the Markov chain is called the initial distribution, and is represented
as a row vector given by:

µ(0) =
(
µ(0)

1 , µ(0)
2 , . . . , µ(0)

k

)
(6.3)

= (P (X0 = s1) ,P (X0 = s2) , . . . ,P (X0 = sk)) (6.4)

Similarly, the row vectors µ(1), µ(2), . . . denote the Markov chain at times 1, 2, . . . , so that for
time n we have:

µ(n) =
(
µ(n)

1 , µ(n)
2 , . . . , µ(n)

k

)
(6.5)

= (P (Xn = s1) ,P (Xn = s2) , . . . ,P (Xn = sk)) (6.6)

Depending on the problem, the initial state might have one or all states occupied by photons.
Sometimes, it is possible to guess an initial state that is similar to the final equilibrium state of
the chain. This might improve the convergence of the solution and can save a substantial amount
of time.

The next theorem will tell us how to compute future distributions, given an initial state.

Theorem 1. For a Markov chain (X0, X1, . . . ) with state space {s1, . . . , sk}, initial distribution
µ(0) and transition matrix M, we have for any n that the distribution µ(n) at time n satisfies

µ(n) = µ(0)Mn (6.7)
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Proof. The proof can be found in Häggström (2001). There induction by n is used to show that
µ(n+1) = µ(n)M = µ(0)Mn+1. �

6.2.3 Graphs and reducibility

It is possible to picture a Markov chain by its so-called transition graph. The nodes of the graph
represent the states and arrows between the nodes indicate the connectivity with the transition
probabilities. Of course this also works the other way around, we can start with a graph, with
transition probabilities between nodes, and list these probabilities in a matrix. We distinguish
between two classifications for Markov chains (or their equivalent graphs): irreducible and
reducible Markov chains.

Definition 4. A Markov chain (X0, X1, . . . ) with state space S = {s1, s2, . . . , sk} and transition
matrix M is said to be irreducible if for all si, s j ∈ S , there is a positive probability of ever
reaching state s j when we start from si. Or in other words: The chain is irreducible if for any
si, s j ∈ S we can find an n such that (Mn)i, j > 0. Otherwise, the chain is called reducible.

The graph in Fig. 6.1 is irreducible, every state can be attained from every other state. In
Fig. 6.2 we show the contrasting case of a reducible graph. Here state B cannot be reached from
any other state.

A

B

C

D

2/5

1/2

3/4 1/3

3/5

1/2 1/4
0   1/3   0   1/2

1/4  0   3/5    0

0    2/3   0    1/2

3/4  0   2/5    0
2/3

Figure 6.1: Left panel: Irreducible graph. Right panel: Matrix representation of left panel.

6.2.4 Periodicity

Another important property of a Markov chain is its periodicity. This tells us whether there
are preferential paths involved when we want to travel back to the state that we came from. It
could be that there exist only even or odd paths from a state to itself for example. The formal
definition uses the greatest common divisor of all possible paths as a measure for periodicity.
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A

B

C

D

1

1/3

2/3

1

1/4

3/4

0   1/4   0   2/3

0    0    0    0

0   3/4   0   1/3

1    0    1    0

Figure 6.2: Left panel: Reducible graph. Right panel: Matrix representation of left panel. Note
that the second row of the matrix contains only zeros because state B is cannot be reached from
any other state.

Definition 5. A Markov chain is said to be aperiodic if all its states are aperiodic. A state si is
aperiodic if its period d(si) is 1; where

d(si) = gcd
{
n ≥ 1 : (Mn)i,i > 0

}
. (6.8)

Otherwise, the chain is said to be periodic.

If we use the Voronoi-Delaunay triangulation as a transport graph, it can be shown straight-
forwardly that the resulting Markov chain is aperiodic. The argument goes as follows: the
Delaunay triangulation can be thought of as a space-covering collection of simplices. These
simplices allow for both a path consisting of three edges and a path of four edges linking every
node to itself. Therefore, the greatest common divisor is unity and the graph is aperiodic. When
we use a different prescription for the connectivity of the nodes, this argument no longer holds
and we have to check the periodicity explicitly.

6.2.5 The Perron-Frobenius theorem

Now we state an important theorem on nonnegative, aperiodic, irreducible matrices: the Perron-
Frobenius theorem. We adopt the version given in Meyer (2001) and Seneta (1981). The proofs
can be found in Meyer (2001), and we omit them here.

Theorem 2 (Perron-Frobenius theorem for nonnegative matrices). Let A =
(
ai j

)
be an n × n

nonnegative matrix, let it be irreducible with period 1. Then the following holds:

• There exists a positive real number r such that for all eigenvalues λ : |λ| ≤ r
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• r is a simple root of the characteristic polynomial of A, hence r is an eigenvalue of A,
with algebraic multiplicity one.

• The left and right eigenvectors v and w corresponding to r have strictly positive entries.
• Any nonnegative left eigenvector of A is a scalar multiple of v, and any nonnegative right

eigenvector of A is a scalar multiple of w.
• r satisfies the inequalities min j

∑
i ai j ≤ r ≤ max j

∑
i ai j

This is an important result. It tells us that, if we can formulate our RT problem as a conser-
vative transport problem on a connected graph, there is only one, unique (invariant) solution to
that problem.

6.2.6 Invariant distributions

If a Markov chain is irreducible, then the last assertion of the Perron-Frobenius theorem states
that the maximal eigenvalue of the transition matrix equals 1, since the minimal and maximal
rowsums are both unity. This immediately implies that there exists a (unique) positive eigen-
vector x such that Mx = x, which leads us to the following definition.

Definition 6. Let (X0, X1, . . . ) be a Markov chain with state space S = {s1, s2, . . . , sk} and
transition matrix M. A row vector π = (π1, . . . , πk) is called an invariant (or: stationary,
equilibrium) distribution for the Markov chain, if:

• πi ≥ 0 for i = 1, . . . , k and
∑k

i=1 πi = 1, and

• Mπ = π, meaning that
∑k

j=1 π jMi j = πi for i = 1, . . . , k

Now we state the most important theorem of this section. It tells us how to find the invariant
distribution, if it exists, when the Markov chain is irreducible and aperiodic, independent of the
choice of the initial distribution. Due to the Perron-Frobenius theorem, we already know for our
case, such a stationary distribution indeed exists. The theorem is adapted from (Norris 1999,
Sect 1.8, Theorem 1.8.3) to fit our notation.

Theorem 3 (Convergence to invariant distribution). Let (X0, X1, . . . ) be an irreducible and ape-
riodic Markov chain with state space S = {s1, . . . , sk}, any initial distribution µ(0) and transition
matrix M. Suppose M has an invariant distribution π. Then

P(Xn = j)→ π j (6.9)

as n→ ∞ for all j. In particular,
Mn

i, j → πi (6.10)

as n→ ∞ for all i, j.

Remark: The last assertion can be rephrased as when n → ∞, Mn → Π, where Π is the
limiting matrix whose entries are constant along the rows, i.e. the columns of Π are repetitions
of the same vector π.
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6.3 Two solution methods

In this section we introduce two different methods to obtain the static solution to RT problems
in Markov chain form. The first method makes use of the intuitive concept of repeated iterations
of matrix multiplication. This method is easy to implement but can show slow convergence if
the second eigenvalue lies close to unity. The second solution method is more involved but has
a convergence rate that is independent of the eigenvalue spectrum.

6.3.1 Method 1: explicit iteration

The power iteration method explicitly implements the concepts of Theorem 3. There we com-
puted powers of M and let the result act on the initial distribution vector, but this is equivalent
with iteration. In fact, it is more efficient to form vk by multiplying M with vk−1 rather than
compute the next power of M at every step.

Algorithm 1 (The power iteration method). 1. Choose an initial vector v0

2. For k = 1, 2, 3, . . . compute:

(a) vk = Mvk−1
‖Mvk−1‖

(b) λk =
vT

k Mvk

vT
k vk

3. stop when ‖Mvk − vkλk‖ < τ |λk|

We can proof that whenever there exists a dominant maximal eigenvalue, we can obtain the
equilibrium solution by the power iteration method. The proof holds for the case where the
matrix is diagonalizable which always is the case in our applications.

Theorem 4. Application of the power iteration method will make λk converge to the dominant
eigenvalue λ1 and vk converge to the corresponding eigenvector of matrix M.

Proof. Let v0 be a random vector. Suppose the exact eigenvectors of M are {x1, x2, . . . , xn}, with
corresponding eigenvalues {λ1, λ2, . . . , λn}. Since the eigenvectors of M form a basis for Rn, v0

can be written as a linear combination of these eigenvectors:

v0 =

n∑
k=1

ckxk (6.11)

Multiplication of this vector with M gives:

Mv0 =

n∑
k=1

ckMxk =

n∑
k=1

ckλkxk (6.12)

Repeating this m times yields :

Mmv0 =

n∑
k=1

ckMmxk =

n∑
k=1

ckλ
m
k xk = λm

1

c1x1 +

n∑
k=2

ck

(
λk

λ1

)m

xk

 (6.13)
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Since M has an dominant eigenvalue,
(
λk
λ1

)m
→ 0 for k > 1 as m→ ∞. The rate of convergence

thus depends on the ratio λ2
λ1

. From part 2(a) of the algorithm we then easily see:

vk =
Mvk−1

‖Mvk−1‖
=

Mkv0∥∥∥Mkv0

∥∥∥ → x1 (6.14)

as k → ∞.
The second step, 2(b) follows from the definition of eigenvectors and eigenvalues:

Mvk = λkvk. (6.15)

Multiplying both sides with the transpose of vk and rearranging gives the assertion. And finaly,
since vk → x1 as k → ∞, λk → λ1 as k → ∞. �

We see from the proof that the convergence will depend on the second largest eigenvalue λ2,
for when λ2 is almost as large as λ1, the ratio λ2

λ1
≈ 1 and it’s powers will vanish slowly.

The τ parameter in the algorithm is the tolerance.
The sparsity of the matrix M is exploited in step (a) of the algorithm since the number of
operations for multiplying the matrix with a vector is of the order of the number of nonzero
entries in the sparse matrix.

We note that this iterative solution method is completely equivalent to SimpleX transport
with static media. The stable solution is reached by repeated application of the transport pre-
scription on the discretely changing distribution of photons.

6.3.2 Method 2: diagonalisation

The static solution of Eq. (6.14) corresponds to the unique non-negative eigenvector of eigen-
value 1 and can also be obtained by diagonalisation of the transport matrix. We use a conjugate
gradient method (Press et al. 1992) to solve the eigenvalue problem. Because the system is very
sparse (approximately 15 non-zero entries per row of the matrix), this can be done both fast and
with little memory requirement.

6.4 Correspondence with continuous transfer

The link between continuous transfer and the Markov chains under study is most natural when
we realise that in nature, the seemingly continuous flow of light is actually a discrete process
at hart. The SimpleX method models this discrete process on an interaction-by-interaction
basis, in a sense, imitating nature. What we perceive as a continuous flow of light is in fact
a macroscopic average over a discrete Markov process. In this section we will describe the
correspondence of the discrete steps in the Markov chain and the familiar expressions used in
the macroscopic radiative transfer equation (cf. Eq. (1.3)).

Recall that the specific intensity I = I(r,n,Ω, ν, t) describes the energy emitted through a
surface dA in direction n into a solid angle Ω located at r per unit time t per unit frequency ν.
Hence

dE = In · dAdΩdνdt. (6.16)
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In the Markov description, the quantities featuring in Eq. (6.16) are defined as follows

• dt: the time interval dt is associated with a single step of the Markov chain. This is
equivalent to one matrix-multiplication of the transition matrix M with the state vector x.
This is also equivalent to one sweep in the SimpleX algorithm.

• dν: we will limit ourselves in this chapter to the transport of a single frequency com-
ponent. The generalisation to multiple frequencies is possible but not straightforward
because the SimpleX mesh represents a physical scale associated with the local mean
free path of the photons. The mean free path depends on frequency and the mesh should
reflect this dependency. Strictly speaking, every frequency requires its own triangulation
but we will see in Chapter. 5 that this requirement can be relaxed considerably. Transport
in frequency space is in turn realised by interconnecting the different meshes. Because the
Markov representation of the transport process is completely equivalent to the SimpleX
method, the relaxation of this requirement is also applicable here.

• r: this quantity corresponds to the position of the vertex from which the radiation is
transported away.

• n: the direction of the radiation is given by the unit vector, ei j, pointing from the vertex,
i, from which the radiation is transported away to the receiving vertex, j.

• dA: in continuous radiative transfer theory this quantity describes an infinitesimal sur-
face (area with an orientation). If we increase the surface area, more radiation will pass
through it. If we orient its normal parallel to the direction of the photons, the flow of
photons through the surface is maximised. In the SimpleX algorithm, however, radiation
is discretised over a number of directions (the Delaunay edges). In this context, the sur-
face associated with a connection is the Voronoi wall, Ai j, that separates vertex i from
its neighbour j. The normal of this wall is parallel to the unit vector ei j making the dot
product n · dA = ei j · Ai j equal to Ai j. This is not an infinitesimal but a fixed area with
fixed orientation.

• dΩi j: There is some freedom in the definition of opening angle as we have already dis-
cussed in detail in Sect. 3.3.4. Again, in the context of Voronoi-Delaunay radiative trans-
fer, this quantity is no longer infinitesimal and we adopt the simple notation Ωi j. The
solid angle of a connection is approximately given by

Ωi j '
Ai j

(0.5li j)2 , (6.17)

where li j is the distance between the nuclei i and j (it is also the length of the Delaunay
edge connecting these vertices). The solid angle Ωi j and Ai j are thus not independent in
the SimpleX algorithm.

Because we are dealing with discrete photon numbers rather than energy, we will also ex-
press the fundamental quantities of radiative transfer in terms of photon numbers. This simply
means that we divide Eq. (6.16) by hν where h Planck’s constant and ν the frequency of the
radiation.
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In this formalism, the specific intensity in direction ei j, I is given by

Ii j ≡
hνPiMi j

Ai jΩi jdt
ei j, (6.18)

where Pi is the number of photons residing at vertex i and Mi j is the element of the transition
matrix that holds the fraction of Pi that streams along the Delaunay edge connecting vertex i
with vertex j. The mean intensity at vertex i, Ji is consistently defined as the sum of Ii j over the
complete sky

Ji =
1

4π

∑
j

Ii jΩi j (6.19)

=
hνPi

dt

∑
j

1
Ai j

(6.20)

where the last equality holds because the solid angle of the total sky is 4π and the vector sum
of the unit vectors ei j vanishes. The flux between vertex i and j is also easily obtained by
considering both directions of the transport of the i j edge

Fi j ≡
hν

Ai jΩi jdt
(Mi jPi − M jiP j)ei j. (6.21)

The flux in arbitrary direction n can be found by summing all projected contributions of Fi j in
direction n

F(n) =
∑

j

Fi j · n. (6.22)

Given the above definitions we are equipped to compare Markov chain calculations directly
to results obtained with SimpleX, other RT codes or analytical solutions to known RT problems.

6.5 Matrix construction

In this section we will describe in more detail the construction procedure of the transport ma-
trix M to the end of capturing within the Markov formalism radiation transport as practiced in
SimpleX. Although the formalism is completely general, we will, for reasons of convenience,
assume that photons are the transported quantity and we will use the Voronoi-Delaunay trian-
gulation to connect the nodes of our graph. First we translate the various transport algorithms
introduced in Chapter 2 to the Markov formalism. We then proceed by introducing sources and
sinks to the mesh.

6.5.1 Diffuse transport

Diffuse transport (DT) is described straightforwardly in the Markov representation by assigning
to every (outgoing) edge of a vertex i a fraction Mi j.

This means that the number of photons that is transported along edge i j per iteration (or
multiplication by M) is given by

Pi j = Mi jPi. (6.23)
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6.5.2 Ballistic transport

In ballistic transport (BT), the D outgoing directions of radiation depend on the incoming di-
rection. In this sense, BT does not satisfy the Markov criterion of memorylessness. We can,
however, swich from a vertex-based description to an edge-based one and regain the Markov
criterion. To this end we introduce the notion of an arrow. For every edge, we have two arrows,
one for each direction of transport. So, the edge connecting vertex i to its neighbor j has two
arrows: ai j and a ji.

For a given an arrow, the transport is again independent of history because the arrow is
connected to three other arrows (the most straightforward directions from Sect. 2.1.4) and that
is all we need to know to construct the transition matrix. The constants connecting an arrow
to its unique other three arrows can be chosen to be 1/3 or something more involved as in
Sect. 3.4.3.

Because there are on average 15.54· · · arrows per vertex, the matrix is going to be larger
by the square of that factor, approximately 241. Because the matrix is very sparse and only
non-zero entries have to be stored, the actual increase in memory needed to store M is only nine
times larger than in the case of diffuse transport, however. In the case of diffuse transport, the
number of entries per vertex is 15.54· · · which implies N × 15.54 · · · entries in total. For BT
this number is 3 × N × 15.54 · · · , only three times larger.

Although we limit our explicit examples to diffuse transport in this preliminary text, there
are no conceptual difficulties in application of ballistic transport in the Markov context.

6.5.3 Direction conserving transport

In DCT, the situation is only marginally more complicated than for BT.1 This can be understood
right away when we realise that DCT uses ballistic transport to move photons from vertex to
vertex. The only difference is that the radiation is stored in Nb direction-bins that do not know
of each others existence. A photon which is emitted in the i-th bin will never leave it.

This does not mean that the transport process is identical to ballistic transport. The choice
for transport direction does depend on the direction bin because every direction bin is associated
with a unique arrow at every site of the mesh.

Because the direction bins are independent, the problem can be described by Nb independent
transport matrices. These matrices are even more sparse that the single matrix describing BT
because every direction bin is associated with only one arrow. The matrices for DCT are thus a
factor 15.54 · · · more sparse.

6.5.4 Sources and sinks

Up to this point we have considered transport along the edges of graphs but we have not asked
ourselves about the origin of the transported quantities. When we want to calculate more phys-
ically relevant examples, the graph needs to be extended with sources and sinks of radiation.

1In practice this is not entirely true. The random rotations needed in DCT in order to suppress imprinting of
preferential directions in the mesh would necessitate the construction of many transport matrices rendering DCT
very slow.
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We define a source as a vertex of the graph that does not receive radiation from neighbours
but sends its contents to all neighbours isotropically. A sink in contrast only receives radiation
and sends nothing to its neighbours. In other words, sources have only arrows that are outgoing
and sinks have only arrows that are incoming.

There is one extra requirement, however, the total number of photons must be a conserved
quantity on the graph. To enforce this we connect the sinks directly to the sources with con-
nections that are thus non-Delaunay (in contrast to all others). This is necessary to guarantee
a stationary solution because otherwise all radiation would vanish into the sinks and we would
end up with the trivial stationary solution of no radiation anywhere. These sink-to-source con-
nections are uni-direcional as would be expected for a pure sink.

Sources with different strength are readily implemented by connecting every sink to all
sources with weights that express the relative strengths of the sources. Absorbing boundaries
are hence accomplished by a boundary of sink-particles around the domain.

Absorption

The sinks of radiation described above absorb all radiation. In nature, however, a photon passing
through an optically thin parcel of gas has a probability smaller than unity to be absorbed. To
model this, we can allow vertices in the domain to absorb a fraction of the radiation that has
reached them. Conveniently, the absorption of radiation is proportional to the local intensity. It
is thus trivial to associate the value of Mii with the absorption coefficient of the vertex.

In the transport matrix we can model absorption by connecting the edge to itself by setting
the element Mii to a non-zero value. The vertex thus retains a non-zero fraction of its content. If
we apply this methodology, all the radiation on our mesh will end up in the absorbing vertices
and the stationary state will tell us where in the mesh the radiation has been absorbed.

Physically speaking this solution corresponds to tracing down the fate of a single pulse of
radiation as it spreads through space and finds absorbing material on its path.

If we want to model a continuously emitting source surrounded by an absorbing medium,
however, we must make sure the radiation is conserved on the mesh and we need to connect ab-
sorbing vertices to the source(s) instead in the same fashion as sink vertices. The only difference
being that the absorbing vertices also have outgoing connections to their direct neighbours.

6.6 Demonstration

In this section we explicitly calculate the stationary state for the Markov chain of several simple
test problems. The first test problem (Sect. 6.6.1) serves as a quirky example of how the nature
of the graphs can leave its imprint on the solution. Consequently it stresses the importance of
using a physical weighting scheme for BT as proposed in Sect 3.4.3.

The examples of Sect. 6.6.2 and 6.6.3 serve two purposes, to ascertain that the static solution
for a single source in a non-absorbing medium behaves as expected (the number density of
photons falling off with distance as r−2 and to show that solution method 1 converges less fast
for inhomogeneous density distributions.

Finally, the test in Sect. 6.6.4 serves as an example of the inclusion of absorption.
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6.6.1 Using the valence as weights

Before we turn to more physical examples, we shortly discuss a curious case where the equilib-
rium solution can be found directly and without any effort.

For diffuse transport, we can chose the matrix element Mi j of a vertex i to be equal to 1/Vi

where Vi is the number of edges of the vertex, also called valence in the context of Markov
chains. With this choice, M is properly normalised (all rows sum to unity) and the solution is
rather straightforward. The entries in x f will reflect the valency of the vertices in the sense that
for every entry the following equality holds

x f ,i

x f , j
=

Vi

V j
. (6.24)

Why this must be the case is easily demonstrated by considering a single edge, connecting
vertex i with vertex j. The state is invariant if there is no net transport along the edge. Because
the transported fraction from vertex i to vertex j is given by 1/Vi, and vice versa, we must have

Pi

Vi
=

P j

V j
, (6.25)

which is equivalent to Eq. (6.24).
An example if given in Fig. 6.3 where a Delaunay triangulation of 103 points in the plane is

shown. The shading gives the relative occupation number of the final state where every triangle
is coloured according to the mean of the valence of the (three) vertices at its corners.

Figure 6.3: Left: Delaunay triangulation of 103 points in the plane. Shading is lighter for higher
valence. Right: histogram of the valence for this example. The number of neighbours for the
two-dimensional Delaunay triangulation has expectation value 6 with considerable scatter.

However amusing, this property is not desirable in the context of radiative transport in Sim-
pleX because the number of outgoing edges has no physical meaning. It proves very useful,
however, to check if our methods for inverting the matrix equations to obtain x f work correctly.

From a physical point of view, the mesh is merely the canvas on which the medium is
described. It should not matter for the outcome of a physical experiment what the valence of a
particular vertex so we will use the Icosahedron weights (see Sect. 3.3.4) for the tests below.



A Markov chain description of SimpleX Radiation Transport 121

6.6.2 Single source in a homogeous medium with diffuse transport

In this section we take a modest step towards realistic application by considering the problem of
a single source embedded in a homogeneous medium with absorbing boundary conditions. We
place a single source vertex in the centre of a three dimensional mesh consisting of 104 vertices
in the unit volume. All vertices further than 0.45 away from the centre are turned into sinks.
We thus end up with a source in a spherical volume surrounded by a boundary layer of sinks
(see left panel of Fig. 6.4). Next, the sinks are connected to the source and we do not allow any
other connections towards the source.

Figure 6.4: Left panel: 2D projection of the homogeneous distribution of particles used in
Sect. 6.6.2. The sinks that surround the domain have been omitted from the plot. The source
particle has been plotted as a filled square. Right: the same as the left panel but for the particle
distribution used in Sect. 6.6.3.

A physical scenario that fits this description would be a single source of radiation embedded
in a homogeneous medium of perfectly scattering particles. All radiation arriving at a vertex is
isotropically redistributed to its neighbouring particles without changing its frequency.

The initial state is a vector filled with every entry initialized to unity. The stationary solution
does not depend on the initial state as long as the same amount of radiation is present on the
graph. It will influence the convergence of the solution method, however as we will demonstrate
in Sect. 6.7.

Figure 6.5 shows the flux distribution as a function of distance from the source for a simu-
lation where the outgoing edges get equal weight (1/V; open squares). We have checked that
the result does not change if every edge is weighted with its associated solid angle (Icosahedron
weights).

There are several things to note here. The flux-points show considerable scatter. This is a
direct consequence of the stochastic nature of diffuse transport. Because the photons are contin-
uously redistributed in all directions, local irregularities in the mesh can increase or decrease the
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Figure 6.5: Radial flux as a function of
radial distance from the central source for
104 nuclei in a spherical volume. The
spread is a result of the stochastic nature of
the transport. The flux shows the appropri-
ate radial dependence as can be seen from
the line with slope -2 shown for compari-
son.

local flux somewhat. Nevertheless, the combined effect of the photons is a net radial flux that
shows the correct r−2-dependence.This is direct evidence that our Markov chain formulation
indeed solves the radiative transfer problem as we claimed before.

6.6.3 Single source in a heterogeneous medium with diffuse transport

In this section we repeat the experiment described above but we place a dense knot of vertices
in the domain. We do this by distributing half of the total of 103 vertices randomly over the
computational domain and the other half in a Gaussian distribution of points with a standard
deviation of 0.02 centered on (x, y, z) = (0.75, 0.5, 0.25) (see right panel of Fig. 6.4).

From a physical point of view, this problem is expected to converge slower if we apply
Eq. (6.3.1) because the photons can be trapped in the region of high vertex number density.
This trapping inhibits the communication between all regions of the domain, slowing down the
convergence to a stationary solution.

Thus, by introducing the clump, the average path-length between any two vertices in the
graph (expressed in number of edges to be traversed) has increased dramatically with respect to
the homogeneous case.

The converge of the conjugate gradient method does not depend on the connectivity of the
transport matrix, however. It is certain to converge within N iterations, where N is the number
of vertices in the mesh.

6.6.4 Single source in an absorbing medium with diffuse transport

In this section we add absorption to the medium, otherwise the setup is as in Sect. 6.6.2. We
have assigned an optical depth of unity to every non-sink vertex of the graph. This amounts to
adding a connection with weight 1 − e−1 ' 0.63 from every vertex to the source.

With this setup we expect the radiation-field to fall off with increasing distance from the
source more quickly than expected from geometric dilution alone. Quantitatively speaking, the
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flux must fall of as

F(r) = F0
e−N(r)

r2 (6.26)

where F0 is the flux at the position of the source and N is the mean number of vertices between
the source and position r. We note that N depends on the distance r as N ∝ r2 because the
diffuse transport is equivalent to a random walk along the mesh. Equation (6.26) can thus be
rewritten to

F(r) = F0
e−Nlinr2

r2 (6.27)

where Nlin is the number of vertices passed if the path would not be a random walk. We have
performed a fit to the flux (in logarithmic bins) as a function of log(r) using the fitting function
obtained by expressing Eq. (6.27) as a function of x ≡ log(r),

log(F(r)/F0) = A exp(Bx) + Cx. (6.28)

Here A represents Nlin, B is expected to be equal to 2 and C is the constant that describes the
geometric component of the dilution and is expected to be equal to -2 (as the flux falls off with
r−2). As can be seen from Fig. 6.6, the estimator for Nlin is of order ten, which is expected
(although somewhat high) for 103 vertices. The factor B is indeed very close to 2 as expected
from the random walk nature of this type of transport. For the geometric dilution term C,
the value is surprisingly far from the expected -2. A plausible explanation is that geometrical
dilution is completely dominated by the absorption in this case and C is just not constrained
very well. For sake of comparison we also show the data for the same setup without absorption
(Sect. 6.6.2) which conforms to expectation with a slope of about 2.

Figure 6.6: Flux as a function of distance
with (open squares) and without (filled
sqaures) absorption. A fit to the data is
shown as well as unit standard deviation
error-estimates.
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6.7 Convergence

When we are interested in the stationary state, there is only one eigenvalue of importance,
the one with eigenvalue 1. The rest of the eigenvalue spectrum, however, carries information
on the convergence of the Markov chain. Roughly speaking, if many eigenvalues exist with
values close to one, the solution of the matrix multiplication (e.g. the repeated application of
Eq. (6.3.1)) is expected to converge slowly.

As an example, the eigenvalue spectrum of the simulations described in Sect. 6.6.2 and
Sect. 6.6.3 are shown in the left panel of Fig 6.7. Eigenvalues with rank larger than 700 are
all zero and omitted from the figure. For the homogeneous test, the one-but-highest eigenvalue
(after unity) is 0.805, substantially further from unity than the typical distance between eigen-
values. This means that the stationary state is well defined and well separated from the other
eigenstates. For the inhomogeneous test from Sect. 6.6.3 the second eigenvalue is 0.981, much
closer to unity. For this test, there are many more non-zero eigenvalues (roughly twice as many,
as can be seen from the left panel of Fig 6.7). Although we do not pursue this here, this obser-
vation strongly suggests that we can use the number of non-zero eigenvalues as a proxy for the
speed of convergence of the associated problem.

The right panel of Fig 6.7 shows the (logarithm) of the absolute value of the difference of
the current and the final state of the Markov chain as a function of the iteration of Eq. 6.3.1.
The magnitude of this difference is a direct measure of the speed of convergence which falls
in between quadratic and exponential for the Sect. 6.6.2 test but becomes sub-quadratic for a
number of iterations larger than 11 for the Sect. 6.6.3 test.

Figure 6.7: Left: Norm of the eigenvalues for the ‘homogenous’ problem described in
Sect. 6.6.2 and the ‘clumpy’ problem Sect. 6.6.3. Right: Log of the absolute value of the differ-
ence between the current and final state as a function of matrix multiplication. The convergence
of the multiplications is faster than quadratic but somewhat slower than exponential for the ho-
mogenous simulation. The simulation with a clumpy medium shows exponential behaviour in
the first 11 iterations but much slower decline (as 10−0.01x) convergence at later times.

This behaviour is conform our intuition of the physical difference between the problems
presented in Sect. 6.6.2 and Sect. 6.6.3. As noted at the end of Sect. 6.6.3, the conjugate gradi-
ent method converges within N iterations, where N is the dimension of the matrix. In contrast,
we cannot set a limit for the convergence of the ‘iterative’ problem. The ‘clumpy’ simulation is
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converging very slowly (less than quadratic) rendering brute force radiation transport computa-
tionally costly.

6.8 Discussion

Given the results obtained in this preliminary study, it seems feasible to apply this method to
more realistic RT problems. In its current form, the class of problems is limited to those where
the opacity of the medium does not change due to interaction with the radiation field.

To overcome this limitation, we must allow the entries of the transport matrix to change
during the solution process. Although we do not explicitly prove that this is possible in our
framework, we are optimistic about such an extension because there are many parallels between
our approach and the vast body of work that has been dedicated to the iterative solution of
‘changing matrix problems’ in the context of Λ-iteration (e.g., Mihalas 1978). Here, every
resolution element in a transport problem is linked to every other, resulting in a large, non-
sparse matrix.

It is worthwile to note that it is possible to speed up this procedure considerably by consid-
ering only those ‘connections’ in the matrix that correspond to cells that are close to each other
in terms of optical depth, the so-called Accelerated Λ-Iteration (ALI, Ng 1974) technique. This
effectively makes the matrix significantly more sparse as only a few entries close to the diagonal
remain non-zero. We note that this speedup is inherent to our approach because every cell is
only connected to its Voronoi neighbours.

6.9 Summary

• It is possible to re-formulate the explicit transfer of radiation on a Voronoi-Delaunay mesh
as a Markov chain on a connected graph.

• For such a formulation, a stationary and unique solution is guaranteed by the Frobenius-
Perron theorem.

• We have used two methods for solving simple scattering problems in this framework

– Explicit iteration of the transport matrix (i.e. Eq. (6.3.1)). This is equivalent to Sim-
pleX radiative transfer because the transported quantity is explicitly moved between
connected vertices (with or without weighting factors).

– Implicit solution using a conjugate gradient method. This approach is guaranteed
to converge in a number of iterations that depends only on the size of the matrix.

• The simulations performed in this chapter are of a preliminary nature and at this stage a
quantitative comparison of speed between the two solution methods is not in order. We
can, however, predict that the implicit method will become (much) more efficient than the
explicit method based on the convergence behaviour observed in Sect. 6.7.

• The results presented here suggest that for a scattering problems in (very) inhomoge-
neous media, solving the matrix-diagonalisation problem is computationally much more
efficient than performing direct radiative transfer. The problems for which this is the case
are characterized by one or more regions of the graph which are weakly connected to the
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rest of the domain. For a photon present in such a region it takes many steps along the
edges of the graph to communicate with other regions in the domain. In a physical sit-
uation these problems typically have optically thick clumps that trap radiation for many
scatterings.

• We have also shown that absorption of radiation can be included trivially in this formal-
ism.



CHAPTER 7

Late ionization of filaments or early
ionization of voids?

C. J. H. Kruip1, K. Finlator2, B. D. Oppenheimer1,
J.-P. Paardekooper3 & V. Icke1

W e investigate whether the results obtained by Finlator et al.
(2009) (FODO09) are reproducible with the SimpleX radiative trans-

fer method. We focus on the morphology of the reionization scenario, which
is the main theme of FODO09. These authors have used a ‘moment method’
(described in Finlator et al. (2009)), whereas SimpleX uses Delaunay radia-
tive transfer as described in Chapter 2. We separate the effects due to resolu-
tion from those due to the use of a different radiative transfer method. We are
not able to reproduce the inside-out-middle reionization scenario described
in FODO09 and attribute this to the use of a different method for radiative
transfer.

1Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Leiden, the Netherlands
2University of California, Santa Barbara, Santa Barbara, CA 93106, USA
3Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrae, 85748 Garching, Germany
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7.1 Introduction

In the cosmological Λ-CDM model, the first sources of radiation capable of ionizing hydrogen
are thought to form around z ≈ 20 − 30 (Barkana & Loeb 2001) and thus initiated the epoch
of reionization (EoR). The nature of these first sources is uncertain but likely candidates are
massive population III stars and, subsequently, population II stars and quasars.

According to linear theory, sources are expected to form in over-dense knots, the nodes
of intersection of the cosmic web. It is in these environments that reionization begins. After
the reionization of the densest structures, ionizing radiation streams into the regions of lowest
density, the voids. Owing to their low number density of neutral hydrogen (and helium), voids
ionize quickly and the resulting ionized bubbles overlap until the average neutral fraction is
below 10−4 (as observed in the present day universe, e.g. Fan et al. 2006). This is generally
referred to as ‘inside out’ (IO) reionization (Iliev et al. 2006b; McQuinn et al. 2007; Trac &
Cen 2007; Zahn et al. 2007).

A more complicated picture, however, has arisen from semi-analytical work (Choudhury
et al. 2009) and the numerical study by FODO09. The filaments, structures with intermediate
density, were found to reionize last. This scenario is referred to as ‘inside-out-middle’ (IOM)
reionization and is characterised by a reversal of the ionization front, progressing from voids
into filaments in the later stages. Similar results have been observed in the simulations of Ciardi
et al. (2003); Gnedin (2004) and more recently Petkova & Springel (2011).

The statistical properties of the reionization morphology has important observational conse-
quences. Specifically, the redshift-dependent distribution of neutral hydrogen (observable from
its redshifted 21-centimeter radiation) directly determines the brightness temperature power
spectrum, likely one of the first major observational handles on the properties of reionization
(e.g., McQuinn 2010). It is therefore important to identify which parameters are shaping the
global reionization morphology and their relative importance.

The morphology of the EOR depends both on the type, abundance and distribution of the
ionizing sources (e.g., McQuinn et al. 2007) and sinks of ionizing radiation (e.g., Zaldarriaga
et al. 2004). A widely adopted approach to the problem of identifying sources in cosmologi-
cal n-body simulations is to identify virialised structures (haloes) from the dark matter particle
distribution and assign luminosities to these haloes according to some physically motivated pre-
scription (e.g., McQuinn et al. 2007; Iliev et al. 2006b). FODO09 have taken a self-consistent
approach to simulating reionization where cooling and metallicity-dependent star formation are
treated in considerable detail. In their approach, the sources follow directly from the hydrody-
namical simulation and need not be introduced a-posteriori. These hydrodynamical simulations
have subsequently been post-processed using the RT method described in Finlator et al. (2009).
They find an evolution of EoR morphology that agrees better with the IOM than the IO scenario.

Possible reasons for this result, which contrasts with the bulk of the numerical work so far,
are the different source prescription used, the possibility that their RT grid does not capture
all relevant physical scales (i.e. resolution) and the method for RT employed. As we will
argue below, the source prescription is unlikely to be key factor in the observed difference in
morphology and we, therefore, focus on the other two issues, resolution and RT method.
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7.1.1 Outline

We first introduce the computational method used in Sect. 7.2. Here the emphasis lies on the
construction of radiative transfer grids. In Sect. 7.3, several diagnostics that are used in this
chapter to identify differences between the various simulations. For the sake of clarity, the
resolution study and the method comparison are treated seperately in Sect. 7.4 and Sect. 7.5.

7.2 Method

For the transportation of ionizating radiation we use the SimpleX method as described in
Paardekooper et al. (2010). In this method, photons travel along the edges of an unstructured
Delaunay triangulation. The transport of radiation along the connecting Delaunay edges of an
unstructured Voronoi grid without memory of the original direction of emission (called Ballis-
tic Transport) can lead to diffusion in optically thin regions of space. A direction conserving
transport method (DCT for short) has been introduced (Kruip et al. 2010; Paardekooper et al.
2010) to overcome this problem.

The Delaunay triangulation connects the nuclei of a Voronoi tessellation constructed from a
discrete set of points in three dimensions. These points, in turn, represent the physical medium
through which the radiation is traveling. SimpleX can work on continuous and grid-based
density/opacity fields as well as fields described by discrete points (the SPH particles of the
N-body simulation.) Both possibilities are exploited in this study.

Because this method can use the SPH particles directly as basis for the RT grid, the spatial
resolution can be chosen to be equal to that of the original hydrodynamics. An example of this
adaptive resolution is shown in Fig. 7.1 where we show a slice through the highest resolution
grid used in FODO09 alongside a SimpleX grid using about equally many cells constructed di-
rectly from a subset of the SPH particles. FODO09 have used a RT grid of maximally 963 cells.
Given that the size of the cosmological volume is 16 h−1 Mpc, this results in a RT resolution of
177 h−1 kpc. The dynamic range of the SimpleX grid spans roughly five orders in magnitude,
equivalent to 16 levels of refinement in AMR jargon. The corresponding physical resolution is
about 160 h−1 pc, roughly a factor 103 higher than that of the original simulations. If resolution
effects play a role, they are thus expected to manifest themselves in these simulations. We will
study the effects of resolution on the morphology of reionization in Sect. 7.4. The comparison
of the two RT methods, the moment method of Finlator et al. (2009) and SimpleX at equivalent
resolution is performed in Sect. 7.5.

Several modifications to the method described in Paardekooper et al. (2010) have been made
in this study. The most notable ones are that the evolution of distance and number density with
the expansion of the universe is accounted for and a more precise treatment of the ionization of
highly optically thick computation cells has been implemented.

Correcting for cosmological expansion and optical thick cells

The snapshots describing the density field and the sources are taken at roughly 100 Myr in-
tervals. The resulting discontinuous jumps in density and luminosity result in jumps of the
ionization state as well (also see the inset of Fig. (6) of in FODO09). The differences in the
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Figure 7.1: Comparing the RT grids at z = 6.49 side-by-side. Left: 963 regular grid from
FODO09. Right: SimpleX grid based on a random sampling of the original 5123 SPH particles
with 106 particles. The insets demonstrate the adaptive resolution of the Delaunay grid which
typically captures a dynamic range of five orders of magnitude in length-scale.

density field are due to two mechanisms: dynamical (gravity and hydrodynamics) and cosmo-
logical (the expansion of the universe).

The first effect is non-linear for an increasing part of the simulation volume with decreasing
redshift and can therefore not be corrected for other than taking more snapshots (but this is not
possible as we are working with a given data-set). We do not interpolate density and luminosity
between snapshots to allow for a fair comparison with the results in FODO09.

We can correct for the second effect by appropriate scaling of the relevant quantities: number
density and distance. They depend on the scale factor, a, as a−3 and a, respectively.

Furthermore we have implemented a treatment for the ionization-state of a cell that distin-
guishes between optically thin and optically thick cells. If a cell is optically thin, the width of
the ionization front is larger than the linear size of the cell. In this case it is valid to describe
the ionization fraction as being constant throughout the cell. For cells with high optical depth,
the thickness of the ionization front becomes much smaller than the size of the cell and this
description is no longer valid. In this case, we interpret the ionization fraction as the fraction
of the volume of the cell that is fully ionized. The remainder of the volume is considered to be
neutral.
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7.3 Diagnostics

The simulations, described in Sections 7.4 and 7.5 and summarized in Table 7.1, are compared
on the basis of several diagnostics:

1. Ionization maps, Sect. 7.4.3
2. Bubble size distribution, Sect. 7.4.4
3. Mean mass- and volume-weighted ionization fraction (and their quotient), Sect. 7.4.5
4. Age of ionization, Sect. 7.4.6

We use ionization maps to gain insight in the general morphological properties of the differ-
ent simulations. The resulting conclusions are necessarily of a qualitative nature. Comparing
the size distributions of ionized regions is a much-applied diagnostic for the comparison of
reionization simulations (Zahn et al. 2007; McQuinn et al. 2007; Mesinger & Furlanetto 2007).
We have applied the widely-used bubble size estimator introduced by Zahn et al. (2007) for
ease of comparison with other work (for a the detailed discussion of different method to ob-
tain bubble sizes see Friedrich et al. 2011). The third diagnostic provides a quantitative handle
on the global reionization morphology and is well-suited for the direct comparison of different
simulations (Iliev et al. 2006b). We will use it to check the convergence of simulation results
with resolution in the next section and it serves as our main tool to distinguish between the IO
and IOM reionization scenarios. A useful diagnostic in the context of our study is the ‘age of
ionization’ of different density bins introduced by FODO09. The shape of the resulting ‘age-
curve’ is a very direct probe of reionization morphology and is less susceptible to noise than the
quotient of the mass- and volume-weighted ionization fraction.

7.4 Resolution study

To study the effects of resolution on the morphology of reionization we perform a series of runs
where we use the gas particles of the SPH/dark matter simulations described in Oppenheimer
& Davé (2008) and FODO09 as the generating points of our Voronoi-Delaunay grid.

Number density in Voronoi cells

We assign number densities of hydrogen to the nuclei in our grid by dividing the gas-mass of gas
particles through the volume of their Voronoi cell. Star forming gas has been omitted from this
density field and their effect on the RT has been accounted for by adopting an escape fraction
of 0.13, chosen to reach reionization at z=7. Because we use a subset of the particles, however,
mass is no longer conserved and its is incorrect to assign densities by dividing the particles
masses by their Voronoi volume. We have enforced mass conservation by assigning the mass
of all un-sampled particles to their closest sampled particle. In order to account for the effect of
density variations in the original simulation that are lost in the subset we assign local clumping
factors to every particle in the subset. In Sect. 7.A we describe this procedure in more detail.
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Assigning luminosity to the sources

The simulations include, in addition to gas and dark matter particles, a third type of particle that
represents gas converted into stars. In contrast to SPH particles, these star particles do not have
a neutral hydrogen mass associated with them. In the original simulations of FODO09 they
contributed a certain amount of emissivity to the cells of the regular RT grid. We have added
the luminosity of each star particle to the closest gas particle, a procedure closest to the original
approach of FODO09. This implies, however, that we do not aim at resolving the escaped
fraction of ionizing radiation on ISM scales. The resolution of the simulations do not allow
for a realistic description of the density distribution inside dark matter haloes anyway, so this
approximation is the best we can do given the data. We have checked that explicitly including
the star particles does not affect our results.

Outlook

The main effect of the extra resolution will be to increase the importance of recombinations
on the process of reionization. This might delay reionization and push the size distribution
of ionized bubbles towards more disconnected smaller bubbles(see e.g., McQuinn et al. 2007;
Choudhury et al. 2009; Friedrich et al. 2011).

A possible secondary effect of increased resolution is increased ’porosity’ of the density
field due to tunnels through the high density regions unresolved in the regular grid. This would
result in radiation leaking earlier into the voids leading to a reionization scenario with a short
initial inside-out stage followed by an outside-in scenario.

First we will check for the convergence of the global mass- and volume-ionized fractions
for three simulations with different resolution in Sect. 7.4.1. For this purpose we ionize (parts
of) a single snapshot at z = 6 because at that time density contrasts are more pronounced then at
higher redshift and the effect of recombinations (and thus resolution) is important in the densest
structures.4 Although FODO09 performed simulations with redshifts ranging from 14 to 5.5,
the IOM morphology can easily be reproduced using only a single snapshot so this temporary
simplification does not affect the validity of our result. We have explicitly verified this and
discuss the results in Sect. 7.4.2. Subsequently we will investigate in Sect. 7.B the possible
influence of (limited) resolution on the simulations presented in later sections of this Chapter.

7.4.1 Convergence with resolution

To allow a resolution study to incorporate the highest possible resolution of the data we have
taken an sub-volume of the data which spans 1/4 of the total box-size in every direction (so
1/64 of the total volume). The total number of particles in the volume is 643, easily tractable on
a modest desktop computer. We have taken sub-samples of the particles in this volume to get
effective resolutions of 512 (original data), 256, 128 and 64 cubed. The lowest resolution box
only has 512 vertices in this case.

Figure 7.2 shows the volume averaged ionization fraction and the quotient of mass-and vol-
ume averaged ionization fraction for the described sub-volume. The simulation starts with a

4Recombinations do not become more important overall because the expansion of the universe dilutes the gas
on a global scale.
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completely neutral box and the sources do not evolve. The simulation is run until the complete
box is ionized. As mentioned in Sect. 7.4.5), the quotient of mass- and volume-ionized fraction
describes the mean density of ionized regions. If the quotient is larger than unity, the morphol-
ogy is IO and OI if the reverse is true. The various curves indicate different spatial resolutions
and the labels refer to the equivalent resolution of the simulation if the complete snapshot would
have been used. Except for the 643 result, all curves are consistent with each other within a few

Figure 7.2: Bottom: volume weighted ion-
ized fractions as a function of time for three
runs at z = 6 at different resolution. Top:
quotient of mass- and volume-weighted ion-
ized fractions for the same runs. The differ-
ent lines correspond to the effective resolution
expressed as the cube root of the number of
particles in the total simulation volume. The
simulation converges for a resolution of 128-
cubed particles.

percent. All curves except the 643 show a completely IO morphology. The fact that the 643

result yields an OI morphology after an initial short IO phase is some cause for worry because
the regular grid used in FODO09 has exactly that resolution. This is no conclusive evidence that
the morphology found in their study is due to insufficient resolution, however. We have used
a small sub-volume of their data which can behave quite differently than the complete volume.
We should therefore continue with a similar test using the complete volume at a resolution that
shows convergence with the result including all particles. From Fig. 7.2 we can conclude (with
some reserve because of the limited size of the volume) that a resolution of1283 is sufficient for
this purpose.

7.4.2 Simulations using the total volume

From the previous section we have seen that for a sub-volume of the data, the morphology found
with the SimpleX algorithm is consistently IO, except for the lowest resolution of 643. In this
section we perform simulations to see if this result remains valid if the complete volume is used.
We use a subset of the SPH particles of 1283 effective resolution. We have seen in the previous
section that at this resolution, the global ionization fraction is converged.

To assess whether the discretization procedure used in FODO09 is the origin of the discrep-
ancy between our results and those of the original study, we use the regular grid used for the
fiducial simulation of FODO09 as the basis of our RT grid. Because SimpleX does not operate
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on regular data, we need to employ the grid sampling techniques of Chapter 4 to translate this
regular grid to a SimpleX grid.

We will compare our simulation to the results of FODO09 and to the simulation performed
using the original SPH particles mentioned above.

RT mesh construction from regular gridded data

To construct a RT grid from the regular data used in FODO09, we use the procedure described
in Sect. 4.3.4 without adaptive resolution. The density field is stored on a regular grid with 643

cells (corresponding to 250 comoving h−1 kpc.) This regular grid is constructed by assigning the
SPH particles of the original simulation to the grid cell that encompasses them (nearest grid-cell
interpolation). For SPH particles that lie near cell boundaries the mass is divided between the
neighbouring cells by summing incomplete gamma functions to their equivalent Plummer SPH
smoothing kernels.

The SimpleX grid is constructed by randomly placing 106 points in the cells of the structured
grid used by FODO09. We take more than one sample point per grid-cell of the original grid to
minimize the effects of Poisson noise. We have checked that increasing the number of sample
points does not change the result. The sample points obtain their densities directly from the cells
(nearest grid-point interpolation). In this sense, the resolution of the SimpleX grid is maximally
equal to the original regular grid. The density PDFs of the structured grid and the resulting
SimpleX grid are shown in Fig. 7.12.

One snapshot simulations

Although in the rest of this chapter we will consider simulations that span a range in redshifts
and take account of the evolution of the ionizing sources, we first elaborate on the tests shown
in Sect. 7.4.1. Instead of a resolution study with a sub-volume, we now ionize a single snapshot
at z = 6. One simulation uses the regular grid sampled with 1003 vertices and the other uses a
1283 subset of the SPH particles.

To assess the converge of the morphology with box-size, we show the result for the total
volume (solid black line) and the spread of results when subdividing the volume in 8 (light grey
shaded region) and 64 sub-volumes (dark grey shaded region) in Fig. 7.3. From the light grey
region, we immediately see that the SimpleX method gives consistently IO results on all 8 sub-
volumes of the snapshot for both types of grids. This suggests that for this simulation volume,
the morphology found with our method is converged with respect to the simulation volume.
The dark grey region shows that for some of the 64 sub-volumes, the reionization morphology
is decidedly consistent with the IOM scenario, however. For the regular grid, we also show the
result obtained with the method used in FODO09 (dashed line). This clearly shows reversal to
OI morphology after about 1075 Myr.

Simulation overview

In order to keep track of the various simulations used in the following sections, we give each
one a name where the number corresponds to whether the original data is a regular grid (series
‘1’) or SPH particle based (series ‘2’). Differences in red-shift range or RT method employed
are indicated with letters.
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Figure 7.3: Same as Fig. 7.2 but for the total volume of the simulation box. The box has been
subdivided in 8 and 64 cubic sub-volumes to assess the sensitivity of the morphology to box-
size. Left: simulation based on the regular grid used by FODO09. We have included the result
obtained with the method used in FODO09 as the dashed line. Right: simulation based on a
1283 subset of the SPH particles.

The RT simulations performed on the regular data (1A, 1B and 1C) span a range in redshift
from z = 14 to z = 5.5. For the original (particle based) data all snapshots before z=9 have
become corrupted unfortunately, so these range from z = 9 to z = 4. To assess the impact of
omitting the influence of sources before z = 9, we perform an additional simulation based on
the regular gridded data but starting at z = 9 instead of z = 14. This simulation, 1C, is in effect a
consistency check between the two methods for grid construction. If 1C and 2A give consistent
results, the difference in morphology cannot be attributed to the grid.

To test wether the diffusivity inherent to moment methods (see Sect. 7.5.1) is an important
factor in the rate with which filaments re-ionize as observed in FODO09, we include run 1B.
This simulation applies the more diffuse ballistic transport (BT) method throughout the simu-
lation adding numerical diffusivity to the radiation field. This being inspired by the notion that
moment method are intrinsically more diffusive than ray-tracing methods. We note, however,
that the kind of diffusivity introduced in BT may not be equal to the kind inherent to moment
methods.

The corresponding SimpleX grid consists of 106 particles, randomly placed on the simula-
tion domain. So there are on average 3.8 particles per regular cell. Using more particles does
not change our results significantly because the resolution of the SimpleX grid is already higher
than that of the underlying grid. Reducing the number of points below 643 would, however,
necessitate interpolation from un-sampled grid-cells to the (now coarser) Voronoi grid resulting
in loss of detail.

In order to study the effects of the absence of SPH snapshots prior to z = 9 for the series
‘2’ runs, we have also performed run 1C which starts at this later time. Table 7.1 shows an
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overview of the performed simulations and their parameters.

Identifier Grid/SPH res [#3] z-range method
1A grid 100 14-5.5 DCT
1B grid 100 14-5.5 BT
1C grid 100 9-5.5 DCT
2A SPH 128 9-4 DCT

Table 7.1: Overview of simulation parameters. The second column indicates whether the Sim-
pleX grid was constructed from a regular mesh or the SPH particles. The approximate number
of nodes (nuclei of the Voronoi cells) in the grid is given in the third column. Column four indi-
cates the range in redshift that the simulations span and the fifth column shows the RT method
used where DCT and BT stand for direction consering- and ballistic transport respectively.

7.4.3 Ionization maps

We present ionization maps of the simulation volumes at xV = 0.1, 0.3, 0.5, 0.7 for simulations
2A and 1C in Fig. 7.4. This allows for a clean comparison of the morphology based on the
distribution of matter and sources as described by the two types of grid.

The first observation is that, for the leftmost column (xV = 0.1), the large ionized regions are
in the same positions although this is not true for the smaller bubbles. This discrepancy cannot
be attributed to differences in the position of sources because they, by construction, cannot be
displaced more than half a cell of the 643 regular grid of FODO09. We must therefore conclude
that is is the small-scale distribution of matter resolved in run 2A that suppresses weak sources
that are capable of forming ionization regions in run 1C where density is smoothed over the
relatively course grid. It is expected that the high resolution run therefore will show more small
ionization regions around single sources that have not yet merged.

The shape of the larger ionized regions in the xV = 0.3 snapshots are quite different as well,
largely due to difference in the density field. Run 1C shows larger, more spherical regions owing
to clustering of sources (again at the resolution of the grid) and a smoother density distribution.
The bubbles in the 2A run contain more holes and tunnels and are, in general, more irregularly
shaped.

As the ionized regions grow, the differences between the two runs decrease and the mor-
phology becomes more similar. One of the major differences, hardly visible in the figure, is the
presence of self-shielded clumps of high-density material in the 2A simulation that are absent
in the 1C run. Again, this is a typical result of the difference in resolving power between the
two grids.

Despite these differences, the overall IO progress of the ionization fronts is very similar
between the runs. We do not see evidence for radiation avoiding filaments or ionization fronts
reversing from voids toward regions of high-density (OI). A more quantitative description of
these statements will be given in the following sections and in particular Sect. 7.4.5.
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Figure 7.4: Contours of ionization fronts (xv = 0.5) of simulations 2A (turqoise line) and 1C
(violet line) at volume-weighted ionization fractions xv = 0.1, 0.3, 0.5, 0.7. The number density
is plotted as background in logarithic units.

7.4.4 Bubble size distributions

We follow Zahn et al. (2007) in obtaining bubble size distributions using the method that was
called the spherical average method by Friedrich et al. (2011). This procedure assigns a bubble-
size to every cell of the grid by computing the largest sphere around that cell that is more than
90% ionized. The distribution of bubble-sizes for runs 1C and 2A are plotted in Fig. 7.5 for
xHII,V = 0.1, 0.3, 0.5, 0.7. Although this measure is highly correlated (every ionized cell can
contribute to many bubbles) it gives us a feel for the size of a typical HII-region. As expected,
the high resolution 2A run shows smaller bubble-sizes at low global ionization fractions than the
1C run. When the bubbles become larger, this difference disappears completely. This confirms
the qualitative observations drawn from inspection of the ionization maps in Sect. 7.4.3.

Given the relative modest size of our box, we cannot extend our analysis of bubble sizes
beyond roughly 10 Mpc h−1 corresponding to xHII,V ∼ 0.6 (see also Fig. 7.4). The reader must
therefore exercise some caution with the interpretation of the xHII,V = 0.7 panel of Fig. 7.5. The
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Figure 7.5: Bubble size distribution (PDF)
for run 1C (solid lines) and 2A (dotted lines)
at xHII,V = 0.1, 0.3, 0.5, 0.7. The distribution
of bubble sizes is very similar for higher ion-
ization fraction but the 2A run shows more
small bubbles at xHII,V = 0.1, 0.3 as a result
of the more granular small scale structure of
the grid.

characteristic peak of the PDF at high global ionization fractions has also been observed in other
studies (e.g., McQuinn et al. 2007)) and points to the dominance of one single ionized region
dominating the simulation domain. Clearly, our simulations reach this point around xHII,V ∼ 0.7
and we cannot identify sizes beyond this global ionization fraction.

7.4.5 Global ionized fractions

As shown by Iliev et al. (2006b), the quotient of the mass- and volume-weighted ionized frac-
tion xM/xV is equal to the mean density of ionized regions in units of the mean density of the
universe. This quantity is a measure for the character of the reionization process. In the first
stages, ionization progresses predominantly from inside high density regions outwards. The
corresponding value of xM/xV is larger than unity because the dense clumps, where the sources
reside, contribute more mass than volume when ionized. In several studies (Gnedin 2000; Ciardi
et al. 2003; Choudhury et al. 2009; Finlator et al. 2009; Petkova & Springel 2011) , this initial
IO phase is followed by an inversion where the ionization proceeds inwards from the voids into
the densest clumps that were not ionized in the initial IO part of the reionization process. This
inversion results in values for xM/xV smaller than unity.

In Fig. 7.6 we show the evolution of xM/xV (top panel) and xV (bottom panel) as a function
of cosmic time and redshift for a selection of the runs in Table 7.1. Also included is the cor-
responding fiducial result from FODO09 also shown in their Fig. (6). Firstly, as noted in the
beginning of this section, the series ‘1’ runs start at earlier times than the series ‘2’ runs. This
results in the somewhat earlier (∆t ≈ 100Myr ) onset of reionization as can be seen from the
bottom panel of Fig. 7.6. When the series ‘1’ runs would have started at the same (later) time
as the series ‘2’ runs, the evolution of xV at later times is hardly affected (run 1C). This sug-
gest that the main effect that postpones reionization in the series ‘2’ runs is the higher (globally
averaged) recombination rate of the adaptive simulations.
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The initial values of xM/xV are much higher for the series ‘2’ runs. This seems logical as the
higher (adaptive) resolution of the density field resolves high density gas around the sources that
is smoothed in the structured grid used by FODO09. This is not the reason for the discrepancy,
however, because in that case the value of xM/xV in the 1C run should not behave similarly to
the series ‘2’ runs, as it does now. So, we conclude that the sudden onset of reionization at
z = 9 (because it is the first snapshot) is responsible for the observed effect. At this redshift,
density peaks around sources are higher in both the series ‘1’ and ‘2’ grids and the difference in
resolution apparently does not play a big role in this initial stage.

In FODO09, reionization is complete around z = 6 whereas, we find that reionization ex-
tends to z ≈ 5.5 for the series ‘2’ runs.

Finally, we fail to see the significant dip below unity of xM/xV observed in Fig.. (6) of
FODO09 in any of our simulations. In other words, we only see evidence for IO reionization is
all our runs.

Figure 7.6: Mass- and volume-weighted ion-
ization fractions as indication of reionization
morphology. Bottom: volume weighted ion-
ized fractions as a function of time for sev-
eral of our runs. Top: quotient of mass- and
volume-weighted ionized fractions. The re-
sults from FODO09 are included as the dot-
dashed lines.

7.4.6 Age of reionization

Similar to Fig. (4) in FODO09 we have plotted in Fig. 7.7 the redshift of reionization as a func-
tion of over-density for a selection of the simulations as well as the fiducial run from FODO09.
This provides us with a clear diagnostic for the IOM reionization scenario.

The IOM behaviour is clearly demonstrated by the result of Finlator et al. (2009, plotted as
the dashed line in Fig. 7.7) . Our runs 1A and 1B show a similar behaviour in the over-dense
regions but under-dense regions tend to reionize much (∆z ' 2) later. This would suggest that
in the study by FODO09 is characterized by early ionization of voids rather than late ionization
of filaments.

For run 1A and 1B, the curve describing the reionization red-shift as a function of over-
density has positive second derivative everywhere (except for regions where noise dominates),
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Figure 7.7: Redshift of reionization simulations. Left: simulations 1A, 1B and FODO09. Right:
simulations 2A and 1C. Note that, due to the low number of high density cells, the scatter in the
high density region of the plot is due to noise rather than physical effects.

whereas the 2A and 1C runs show negative second derivatives over al large range of the plot.
This is due to the fast reionization of moderately over-dense regions after the start of the sim-
ulation. Switching on the sources at a later time thus hardly changes the age of reionization
of structures with overdensities lower than roughly 10. The instantanious radiation-field hence
dominates the historical evolution of the ionization field. Note that this might be different if
realistic feedback is included for a coupled radiation-hydro simulation. Again, our results indi-
cate a purely inside out evolution where the high density regions ionize first, at the onset of the
simulation, and the voids last.

7.5 Code comparison

Now that we have established that SimpleX does not find an IOM reionization morphology for
either the high-resolution SPH data as the gridded data used in FODO09 we are led to extend
our investigation beyond the scope of a resolution study. In other words, we should check
if the code presented in Finlator et al. (2009) and SimpleX give the same answers for simple
test-problems that have, preferably, been solved with other methods as well.

A good starting point for the comparison of our code with that presented in FODO09 is
the first RT comparison project (Iliev et al. 2006a) where initially 11 codes participated with
several others following. We pick out the tests that are most relevant for our current goal: to
get a handle on why the codes give different morphology in the EoR. The self-shielding clump
test (Test 3) and the cosmological density field test (Test 4) are most likely to uncover relevant
differences between the codes and we refer the reader to that paper for details.
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7.5.1 Diffusivity and moment methods

But what should we look for in these tests? What are the characteristics of moment methods
that could possibly be responsible for the observed discrepancies?

Moment methods store information of the local radiation field in 10 variables: the number
density, three components of the flux and the three-by-three Eddington tensor (with only six
independent entries out of nine). All directional information of the radiation field beyond the
(local) flux-vector, is thus encoded in this tensor. Because of this limited capacity to store infor-
mation, a radiation field dominated by high multipoles will not be captured precisely. Such a ra-
diation field might arise from a medium with small-scale variations in opacity related to clumps
and tunnels in the density field. Because high frequency components of the radiation field are
not accounted for, the method is effectively blind for the small-scale structures responsible for
it. These small-scale structures in turn reside predominantly around the highly clustered sources
that form in regions of high density. The radiation field may thus break out of the over-dense
regions more easily and stream into the voids, effectively bypassing the filaments.

7.5.2 Test 3

Test 3 is a cosmological shadowing test consisting of an incoming (planar) radiation field and
a spherical clump of high density material. The test is constructed in such a way that the
ionization front is trapped inside the clump and a neutral shadow behind the clump is formed.
The test can be used as a diagnostic for both the correct ionization chemistry which traps the
ionization front in the prescribed position and the ability of a RT method to produce a sharp
shadow behind a self-shielding object. For a more detailed description of the test we refer the
reader to (Iliev et al. 2006a).

Because both the moment method used in FODO09 and SimpleX do not naturally incor-
porate planar waves, we have altered the setup slightly by using a single point-source to emit
the ionizing photons. We have chosen the strength of the source such that the flux at the dense
obstacle equals that of the planar wave of the original setup.

Figure 7.8 shows a cut through the box at (from left to right) 1,3 and 15 myr. The ionization
front is trapped halfway in the clump as required by the test (see Iliev et al. 2006a) although,
due to the irregular nature of the SimpleX grid, the result is not completely symmetrical. The
shadow cast behind the dense clump is stable after about 7 myr and is of the size expected from
the angular resolution used for this test (solid angles of 4π/84, or equivalently, a linear angle of
about 23 as indicated by the angle shown in the upper left corner of the leftmost panel). The
method used in FODO09 shows a different behaviour in this test. The result of the shadowing
test (which is the same as described in this section) which appeared in the method paper Fin-
lator et al. (2009) (their Fig. 14) is reproduced in Fig. 7.9. We have performed the shadowing
test again with the more diffusive ballistic transport method throughout the simulation volume
(whereas it actually should be used exclusively in optically thick regions where radiation is ab-
sorbed in a few steps). As can be seen from Fig. 7.10, a more diffusive mode of transport results
in total absence of a shadow behind the obstacle. Moreover, the obstacle is completely ionized
long before the end of the simulation time of 15 Myr. Such diffusivity is not likely to produce
a reversal to OI reionization, however, because it tends to ionize dense structures more easily
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Figure 7.8: Neutral fraction of hydrogen for the shadowing test described in the text at (from
left to right) 1, 3 and 15 myr. In the left panel, the theoretical limit for the shadow and the source
are indicated with white lines and a white dot respectively. The white disk with the black lines
shows the angular resolution of the method for this test (opening angles of 4π/84).

Figure 7.9: Result for the shadowing test taken from Finlator et al. (2009). The initial shadow
disappears almost completely to the end of the simulation time due to diffusion. Interestingly,
the ionization-front hardly penetrates the dense obstacle in conflict with the results of (Iliev
et al. 2006a) and those presented in this section.

and much sooner. Moreover, we have also used the diffuse BT mode of transport throughout
the simulation volume for simulation run 1B which shows a purely IO morphology. We have
checked that application of diffuse transport (which is maximally diffusive, see Sect. 2.1.4)
instead of BT does not change this result.

There is a interesting difference between the results shown in Fig. 7.9 and those in Fig. 7.10.
In the first, the ionization front hardly penetrates the dense obstacle whereas in the second, the
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Figure 7.10: As in Fig. 7.8 but for a simulation with the more diffuse ballistic transport method
applied throughout the grid.

obstacle is completely ionized. This behaviour may be the first hint to a solution of the issue of
this chapter. If the moment method applied in FODO09 leaves over-dense obstacles intact while
ionizing the under-dense regions around them, late ionization of filaments is easily explained.

7.5.3 Test 4

The second test that we subject both methods to is that of multiple sources in a cosmological
density field, or Test 4 from (Iliev et al. 2006a). This test is closest to the cosmological reion-
ization simulations presented in FODO09. The simulation volume is much smaller, however,
0.5h−1 versus 16h−1 comoving Mpc and contains only 16 sources (whereas the data used in this
section contains of tens of thousands of sources for the later snapshots. The simulation time is
0.4 Myr, which is enough to ionize the box for 80% to 90% in volume.

In Fig. 7.11 we show the quotient of mass- and volume weighted ionized fraction, xm/xv,
as a function of time. Again, if this quotient is smaller than unity, the mean over-density of
ionized regions is smaller than unity and the reionization morphology is OI. As a reference, we
also show curves for two well-established codes that participated in the comparison project of
(Iliev et al. 2006a), C2-Ray (Mellema et al. 2006) and FTTE (Razoumov & Cardall 2005).

Clearly, the SimpleX result shows a significant dip below unity for the quotient xm/xv, in ac-
cordance with results from the other two codes albeit at a slightly later time. We thus conclude
that SimpleX agrees excellently with the other codes shown here when it comes to discrimina-
tion between IO and OI morphology as diagnosed by xm/xv.

The method used in FODO09, indicated with the label ‘Finlator’, shows the same general
behaviour but completely ionizes the box within the simulation time. The dip below unity of
xm/xv happens at a slightly earlier time than for the other codes. There is no clear tendency for
the method towards a reversal to OI at an earlier point than the other codes nor is the dip more
pronounced. If anything, the opposite is true; the other codes show values of xm/xv as low as
0.96, whereas the ‘Finlator’ result stays always above 0.98. The method used in FODO09 does
not show a more pronounced OI morphology than the other codes in this test. Test 4 therefore
does not further our understanding of the observed discrepancy other than to show that the
reversal to OI morphology is not a consistent property of the moment method.
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Figure 7.11: Bottom: volume weighted ion-
ized fractions as a function of time for three
codes (C2-Ray, FTTE and SimpleX) from
(Iliev et al. 2006a). Top: quotient of mass-
and volume-weighted ionized fractions for the
same runs.

7.5.4 Influence of box-size and source-prescription

On scales smaller than approximately 30 comoving Mpc/h, the effect of cosmic variance on the
morphology can no longer be neglected. If box-sizes are smaller than this value, the simulation
can become biased towards an OI morphology because high-mass sources are under-represented
in small volumes allowing dense structures to to become self-shielding. Also, if the volume is
dominated by a single dense cluster, the reionization morphology will be biased towards OI after
an short initial IO period. The reason for this is the high recombination rate of the over-dense
gas in the cluster which allows it to absorb many more photons per baryon before reionizing
compared to non-cluster gas (see e.g., Ciardi et al. 2003, who use a 10/h comoving Mpc box).
Similar behaviour is seen in Gnedin (2004) where a simulation volume spanning 4/h comoving
Mpc is used.

Although our simulation volume is significantly larger than used in these early studies, it
is still a factor of two smaller than the 30/h comoving Mpc required to exclude all effects of
cosmic variance (except for the influence of quasars which needs volumes larger than at least
100/h comoving Mpc). We can rule out that the IOM scenario seen by FODO09 is a result of
cosmic variance, however, because we are not able to reproduce the OI part of the reionization
epoch observed in FODO09, even when using boxes of 1/8 the total volume.

Another important variable in the characteristics of reionization morphology is the distribu-
tion and mass-luminosity dependence of sources (e.g., McQuinn et al. 2007). It is therefore not
far-fetched to ascribe the differences in reionization scenario to the source prescription adopted
by FODO09 which deviates from that practiced by the bulk of reionization studies. However
interesting this subject is, we feel that it is irrelevant for this work because we fail to recover the
IOM scenario adopting the same sources as in FODO09.

Based on the above discussion, we argue that both box-size and source prescription are not
important for the results presented here. The underlying reason is that we have performed a
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relative study where only differences with the results of FODO09 are important. With respect
to the box-size, we argue that the IO result obtained with SimpleX is robust.

7.6 Summary

• We have performed two types of RT simulations based on SPH simulations described in
FODO09. The first type uses the regular grid as the basis for the unstructured Voronoi-
Delaunay grid, the second uses the underlying SPH particles directly. These two types of
simulations allow us to disentangle the effects of RT method and resolution.

• We have not observed the IOM morphology described in FODO09 and observed in
Petkova & Springel (2011) and Choudhury et al. (2009). Contrarily, we have observed a
purely inside-out evolution of reionization.

• The extra resolution in the density field of the series ‘2’ runs, leads to smaller ionized
bubble sizes at low (0.1-0.3) global ionization fractions and a delayed time of reionization.

• Our results are robust to resolution and type of grid construction (grid or SPH based)
pointing to the difference in RT methods as the source of the different morphology.

• We have compared the method used in FODO09 with SimpleX using several standard
test-problems. This lead us to conclude that the diffusivity often attributed to moment
methods is not likely to be the source of the observed discrepancy in morphology of
reionization.

• The most plausible reason for the ‘late ionization of filaments’ observed in FODO09 is
the behaviour seen in Sect. 7.5.2. For the results obtained with the moment method, the
shadow behind the dense obstacle is eaten away but the obstacle itself remains almost
neutral.

• Because we do not retrieve the IOM morphology, we argue that a comprehensive study
of the effect of source type and distribution is beyond the scope of this work.

7.A Effects of taking a subset of SPH particles

Due to the large intrinsic computational cost of radiative transfer, it is seldom feasible to include
all particles from an SPH/DM simulation in the RT simulation. Therefore, it is necessary to
choose a subset of the particles as the basis for the RT grid. As discussed in Chapter 4 care
must be taken of proper representation of the original density field and conservation of mass.
Sect. 4.3.4 and Sect. 4.4.2 of that chapter discuss some of these issues applied to the data of this
chapter. Here we present a small extension of these sections by showing the volume-weighted
Probaility Density Functions (PDFs) for the number density in the various grids used in this
study in Fig. 7.12. The Voronoi grids constructed from a subset of the SPH particles are seen
to under-represent the highest density regions because of the lower resolution. The mass that is
not represented at the highest densities is shifted to intermediate densities shifting the peak of
the function rightwards. This effect is obviously more pronounced for the 643 simulation than
for the 1283 simulation. In the latter, there exists some volume at densities lower than present
in the original data. This is due to the fact that the volumes of Voronoi cells can be larger than
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the corresponding SPH volume. This is even true if all SPH particles would be included in the
triangulation.

The Voronoi grid consisting of 106 particles (indicated as Vor 1e6) can be seen to represent
the structured density field almost perfectly. This is due to the modest dynamic range of the
original grid and the fact that the resolution of the SimpleX grid is higher than that of the grid
everywhere.

Figure 7.12: Probabilty density functions of
the raw SPH data (All) and the Voronoi grid
resulting from taking a random subset of 643

SPH particles from the raw data (Vor 64).
Also shown are the PDFs for the 643 grid used
in FODO09 (Fin 64) and the resulting Voronoi
grid (Vor 1e6), both shifted down for clarity.

7.A.1 Including clumping

As far as ionizing radiation is concerned, (local) mass conservation alone suffices to guarantee
the correct number of ionizations on the resolution of the subset. The recombination rate,
however, depends on the square of the density and will be systematically under-estimated due
to the ’lumping together’ of gas particles into a cell with their mean density.

To correct for this lack of sub-cel variations in the density, we assign to every cell a clumping
factor based on the distribution of un-sampled particles in that cell. Clumping factors have been
widely adopted in recent simulations of cosmological reionization. Sometimes to add structure
that was not present in the original simulation (e.g., McQuinn et al. 2007), or to compensate for
the de-refinement of the original simulation to allow for radiative transfer calculations (Kohler
et al. 2007, e.g., and references therein). Most studies adopt a global clumping factor based on
the neutral gas in the total simulation volume, but this generally yields over-estimates of the
clumping for two main reasons: heating (Pawlik et al. 2009) and the non-locality of clumping
(Raičević & Theuns 2011).

In this work, we compute local clumping factors based on the sets of un-sampled particles
assigned to the subset particles implemented as a combination of masses and densities given by
the last step in the following equation

fC =
< ρ2 >

< ρ >2 =

∑
ρ2V∑
V(∑
ρV∑
V

)2 =

∑
ρm∑
m/ρ( ∑
m∑

m/ρ

)2 =

∑
ρm

∑
m/ρ

M2 . (7.1)

Here we have used that the volume, mass and density of a particle are related by m = ρV and we
have defined M ≡

∑
m. For notational clarity the indices are omitted from the above equation.
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7.B Possible effects due to lack of resolution

As shown in Chapter 3 and Chapter 4, gradients in the number density of Voronoi nuclei can
give rise to undesirable systematic effects in the transport of ionizing radiation in SimpleX. The
four systematic effects induced by gradients in the point distribution as identified in Chapter 3
are drift and clustering of diffuse radiation, ballistic deflection and ballistic de-collimation. The
first two effects have relevance for diffuse radiation only. In this work we do not include diffuse
recombination radiation although the SimpleX method can do this without added computational
effort. The effect coined ballistic deflection leads to radiation (on average) deflecting away
from the original direction into regions of lower number density (of particles). The second
effect, ballistic de-collimation, describes the general loss of direction of radiation. This leads to
stalling of the ionization-front position and loss of shadows behind dense irradiated structures.

In this section we assess to what extent the simulation in this chapter are affected by either
ballistic decollimation or deflection. To this end we study in detail a region where possible
effects of point density gradients would be most prominent.

A region with possible issues

From the upper right in-set of Fig. 7.1 it is clear that the approach of random selecting a subset
of SPH particles results in a point-distribution with considerable gradients. We select a region
of 2.4 h−1 co-moving Mpc around the dense knot shown in the upper right inset of Fig. 7.1 and
re-simulate the RT on this small sub-volume in two different ways. Once including all particles
of the original simulation and once with the same subset as used in the 2A run. The point
distribution based on all SPH particles is not expected to give rise to strong gradients because
of the regularizing nature of the SPH method.

In Fig. 7.13 the density field is plotted logarithmically for the low- and high-resolution
simulation. Although the low-res subset contains a factor 512 less particles than the original
data, the most priminent structures are reproduced. If we were to see effects of either ballistic
deflection or de-collimation, they would show up in this sub-volume of the grid.

Results

It has been demonstrated that the introduction of direction conserving transport (DTC) cures
both ballistic de-collimation and deflection in the idealized situations where the effects are well
observable (Kruip et al. 2010; Paardekooper et al. 2010). In a more complex example as pre-
sented here, the effects are harder to analyse. But we can look for three distinct features when
comparing positions of the ionization front of the two simulations (see Fig. 7.14). The lower
resolution simulation may suffer from

• Stalling of the ionization front due to de-collimation
• Loss of shadowing due to de-collimation
• Bypassing of filaments due to deflection

When we inspect the ionization front positions in Fig. 7.14 we see that, apart from the
difference in resolution, the results are surprisingly similar. The ionization front in the low
resolution simulation may be somewhat advanced with respect to the high resolution result
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Figure 7.13: Logarithmic plot of the density structure of the sub-volume described in the text.
Left: low resolution subset. Right: field including all particles.

(never more than 20%) but there is no evidence of stalling. We have checked that the box is
fully ionized after 45(50) Myr for the low(high) resolution simulation.

This cumulative retardation of reionization for the higher resolution is most certainly due to
the fact that it resolves all density fluctuations and therefore has a global recombination factor
which is higher than that of the low resolution simulation. Note that we incorporated a local
clumping factor in the low-res simulation to compensate for this effect but our results suggest
that a clumping factor is not a replacement for resolution in this case.

We see no evidence for the bypassing of filaments at any time but the ionization front has
fewer features for the low resolution case. This is expected because the densest structures are
largely unresolved here. If the observed loss of shadowing must be (partially) attributed to de-
collimation is not clear, however. We argue that the effect is rather moderate considering the
enormous difference in resolution and that it will not likely influence our global results signifi-
cantly. To check this statement, we have used the more diffusive ballistic transport throughout
the whole simulation (run 1B, see Tab. 7.1) where we normally employ DCT when the cells
become optically thin to prevent any spurious diffusion of the radiation field. Ballistic transport
is susceptible to both decollimation and deflection and, if present, these effects should be visible
in the aforementioned runs.
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5 Myr 10 Myr

20 Myr15 Myr

Figure 7.14: Ionization-front of hydrogen in a sub-volume of the simulation domain containing
a dense clump that might give rise to artifacts in the RT. Cuts are made halfway the 2.4h−1 Mpc
box in the z-direction. From top to bottom, time runs from 5 to 20 Myr in 5 Myr intervals. Thick
solid contours are for the subset of particles and the thin dashed contours are for the simulations
including all particles.
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T he Luminous Blue Variable star ηCarinae experienced an outburst in
the 19th century creating the Homunculus nebula seen today. We aim

to derive the chemical composition and mass of the dust in the Homunculus
nebula, and to constrain the kinetic energy liberated in the Great Eruption.
We have fitted a model describing optically thin dust at three temperatures
to the infrared spectrum from 2 to 170 µm. Our fits describe several compo-
sitional scenarios, each with its own dust composition and mass. The total
mass of the Homunculus corresponding to these scenarios ranges from 45
and 75 M�.
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8.1 Introduction

The enigmatic object ηCarinae is one of the most luminous sources in the sky in infrared (IR)
(Westphal & Neugebauer 1969; Aitken et al. 1995). Almost all of the 5.0 × 106 L� is emitted
at IR wavelengths, indicating that the light we observe is reprocessed by dust that is irradiated
by the central source (Cox et al. 1995). The bulk of this dust is contained in the bipolar ‘Ho-
munculus’ nebula which resulted from a 20-year period of mass loss and extreme brightening
that occurred in the 19th century and is known as the ‘Great Eruption’.

The mechanism underlying the Great Eruption is under debate for many decades (e.g.
Davidson & Humphreys 1997; Owocki et al. 2004). An important quantity that would help
identify the mechanism is the total kinetic energy of the Homunculus. In order to derive this
quantity one has to know the mass of the ejected material as a function of velocity. Whereas
the kinematics are well known (see e.g. Currie et al. 1996; Morse et al. 2001; Smith 2006), the
absolute value for the total mass in gas and dust is uncertain. The amount of gas is difficult
to measure directly because the Homunculus is mainly a reflection nebula at UV and optical
wavelengths (see e.g. Meaburn et al. 1993).

At mid- and far-infrared wavelengths, the Homunculus is approximately optically thin (David-
son & Humphreys 1997) with the exception of the power law component between 2 and 8 µm
which is characteristic of optically thick material concentrated around the unresolved source.
This property of the nebula makes it possible to assess the amount of dust in the whole nebula
from the observed IR luminosity. The total mass can subsequently be derived from the measured
dust mass using an appropriate value for the gas-to-dust ratio.

The total dust mass of the ejected material has been determined from ground-based near-
and mid-infrared observations (e.g. Smith et al. 1998, 2003b); the spectral energy distribution
(SED) obtained with Infrared Space Observatory (ISO) (Morris et al. 1999) and flux points
at far-infrared up to centimeter wavelengths (e.g. Mitchell & Robinson 1978; Hackwell et al.
1986; Cox et al. 1995; Gomez (Née Morgan) et al. 2006). These attempts have yielded values
for the dust mass ranging from 0.02 M� up to 0.7 M�, i.e. they show a range of a factor 35.

All dust studies listed above make simplifying assumptions on the chemical composition of
the dust. This is immediately clear when the fits to the SED are scrutinized: they do not repro-
duce the spectral signatures. In this study we aim, for the first time, to constrain the composition
of the Homunculus by fitting the detailed individual features of the spatially unresolved spec-
trum over a large range of infrared wavelengths (from 2 to 170 µm). We present solutions that
reproduce the SED in great detail and analyze these solutions in terms of quality of fit and dust
formation considerations. We discuss the gas-to-dust ratio and the total kinetic energy given to
the Homunculus material during the Great Eruption.

In Sect. 8.2 the observations are discussed. Section 8.3 outlines the model and general
strategy. Results are presented in Sect. 8.4 and discussed in Sect. 8.5.
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8.2 The infrared spectrum of ηCarinae

8.2.1 Observational details

The infrared SED as observed with the short wavelength spectrometer (SWS) and the long
wavelength spectrometer (LWS) on board ISO (Kessler et al. 1996) was published by Morris
et al. (1999).

SWS covers the wavelength range 2.38-45.2 µm at spectral resolution R ≡ λ/∆λ ≈ 1000-
2000; LWS covers wavelenghts from 43.0 up to 197.5 µm with R ≈ 150-200. The aperture used
for the SWS instrument consists of several windows which are shown in Fig. 8.1. In contrast to
what one could assume from the image (which simply shows aperture overlays), the instrument
response at each wavelength range is not spatially flat in the rectangular apertures. In fact in the
cross-dispersed dimension, which is along each apertures semi-axis and coincidentally parallel
to the η Carinaes bipolar axis, the spatial response is decidedly non-uniform, variously peaked,
and asymmetric (non-Gaussian). This holds to a lesser degree for the dispersion direction (slit
major axis) as well but at least peak responses are better centered there.

The strange response curves are due to an optical design flaw in the instrument (Beintema
et al. 2003). The aperture for the LWS is broader than that of the SWS, (20′′ instead of 14′′) and
consequently, contains more of the cool lobes. This still holds if this simple geometric statement
is combined with orientation and shapes of each of the response functions in both directions.
If these portions would contribute significantly to the total flux, one would see a sharp jump in
the SED. Such jumps were commonly observed in SWS spectra of extended sources such as
PNe like NGC 7027, galactic center sight-lines, etc., but not the case for η Car. ηCarinae on
the other hand calibrates like a point source after removal of hysteresis and saturation effects,
and matches surprisingly well with the LWS spectrum (to within each instruments photometric
uncertainties of 25% for SWS and 30% for LWS at the 45-50 µm frontier).

This does not mean, however, that there is not some contribution from the lobes. At the point
where the SWS beam response functions are falling off, the mid-IR imaging clearly reveals
the lobes so there is thermal and line emission through each passband. The SWS and LWS
spectrographs are divided in a number of sub-bands (Clegg & The LWS Consortium. 1999). At
the boundaries of these sub-bands the shape of the spectrum may be affected due to calibration
issues. Flux jumps at sub-band edges are typically of the order of a few percent. Instrumental
artifacts may also play a role, notably at the edges of band 3E (from 27.5 to 29 µm) in the LW
section.

8.2.2 Features in the spectrum

The continuum subtracted spectrum shown in Fig. 8.2 shows several striking features. The
near-IR part of the spectrum (from about 2.3 to 7 µm) contains spectral lines originating in
the present-day stellar wind of ηCarinae in addition to some line emission from the nebula, in
particular Fe lines. For a discussion of the central source and its wind the reader is referred to
Hillier et al. (2001); Smith et al. (2003a); van Boekel et al. (2003); Weigelt et al. (2007).

The 10 µm feature is shown in the top panel of Fig. 8.2. The feature is peculiar in the
sense that it shows a ‘shoulder’ at long wavelengths extending to ∼15.5 µm. Several studies
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Figure 8.1: The position of the aperture for the SWS and LWS parts of the ISO data obtained
and reduced by Morris et al. (1999) and used in this chapter. The dimensions (in arcseconds
projected on the sky) of the sub-apertures and the wavelength intervals for which they are used
are indicated. The figure is simplified in the sense that the response of the instrument is not
spatially flat in the depicted rectangular apertures (see text for details). Note that beyond 27 µm
a larger part of the Homunculus is included in the aperture (see text for discussion). The arrows
in the image indicate the supposed massive torus as described in Morris et al. (1999).

Figure 8.2: Continuum subtracted
ISO SED of Eta Car. The subtracted
continuum is a combination of four
blackbodies at 110, 190, 300 and
610 K which are multiplied with a
power-law of the form ν1.22. The top
panel shows the region with clear
contributions from the star and its
wind and the 10 µm feature. The
bottom panel shows the wavelength-
range containing the 20.23-µm fea-
ture and 24-35µm complex. The
stellar part of the spectrum shows
strong blanketing because of the
strong continuum due to hot dust.

report that the feature broadens with distance to the central star, which is a direct indication
of varying dust properties throughout the Homunculus. This has been modelled by variations
in dust compositions with location (Mitchell & Robinson 1978) and by increasing the grain
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size with distance from the star (Mitchell & Robinson 1978; Robinson et al. 1987). The model
used by these authors comprises two components, silicates and a featureless component such as
metallic iron. More recently, Chesneau et al. (2005) (see also de Koter et al. 2005) fitted the
feature convincingly with amorphous corundum (Al2O3) and silicates. Assuming a continuous
distribution of ellipsoidal (CDE) particles, a mixture of amorphous corundum and olivine was
superimposed on a smooth continuum. This yielded excellent fits. The use of CDE particles
removes the need for very large grains (& 2µm) required by e.g. Robinson et al. to match the
observed slope of the red side of the feature.

At 20.23 µm (see bottom panel Fig. 8.2), the SED shows a strong and very sharp symmetrical
peak. A sharp feature peaking at 20.1± 0.1 µm – dubbed the ‘21 µm feature’ – is also found
to arise from the ejecta around a small number of carbon-rich evolved stars (Kwok et al. 1989).
A comparison of the feature found in ηCarinae and in the C-rich ejecta of the post Asymptotic
Giant Branch (AGB) object HD 56126 attributed to TiC reveal significant differences. It is much
narrower (we measure a full width at half maximum of somewhat less than 1.0 µm vs 3.0 µm
in the C-rich source) and symmetric in ηCarinae while the 21 µm feature in HD 56126 (Hony
et al. 2003) is distinctly asymmetric with a prominent red wing. Hony et al. (2003) argue that
most likely TiC is not responsible for the feature seen in HD 56126. Likely the carrier of the
feature in ηCarinae is not the same as the carrier of the 21 µm feature in C-rich evolved stars,
although we can of course not rule out that the carriers may be chemically related.

The spectrum shows a broad feature starting with a steep rise at about 24 µm, followed by
a ’plateau’ from ∼25 to 31 µm. A rich spectrum of substructure is seen on top of this plateau.
The feature ends with a more or less linear decline from roughly 31 to 35 µm. A feature with a
similar profile and width at roughly the same position is observed in carbon-rich AGB sources
and has been accounted for with MgS by Hony et al. (2002).

8.3 Method

The spatial distribution of the dust in the homunculus of ηCarinae is complicated and dynamic,
possibly involving a (disrupted) torus (Morris et al. 1999; Smith et al. 2002). This complex
geometry will present a challenge to any chemical analysis of the dust that includes a realistic
treatment of dust optical depth at different wavelengths in a single integrated spectrum. As a
first approach, however, it is natural to start with a model that assumes the dust to be optically
thin.

Limb brightening effects, clearly present in images at λ = 4.8, 8.8, 10.3, 12.5, 18.0 and
24.5 µm (see Smith et al. 2002, 2003b), suggest that at mid- and far-infrared wavelengths, this
approximation is valid. The spatial distribution and solid state properties of the dust are then
the prime constituents of the model. In this section we discuss our optically thin dust model.

8.3.1 A three temperature model

In an optically thin medium the temperature of a given dust species is determined by its dis-
tance from the central source. If the dust material is about equally distributed over distance, one
would find a continuum of temperatures. However, in the case of ηCarinae , we find that the
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thermal infrared spectrum is well represented by only three characteristic temperatures, sug-
gesting in turn (three) main locations of the dust. That this is indeed the case appears to be
confirmed by imaging observations (e.g. Smith et al. 2003b). We have taken the three dimen-
sional Homunculus model proposed by Smith (2006) and the temperature law given in Eq. 3
of Smith et al. (2003b) to find such a description. Inspection of the global morphology of the
Homunculus as given in e.g. Smith (2006), suggests that it consists of a ‘hot’ inner core, a
‘cool’ region comprising the Homunculus ‘exterior’ and polar caps, and a ‘warm’ interior of
the lobes.

We note that this subdivision in geometrically separated regions is in conflict with the find-
ings of Morris et al. (1999) who conclude that most of the (dust) mass is located in a torus close
to the central source. If much of the contribution to the IR flux would be due to the lobes, a jump
in the SED should occur when switching between the SWS and LWS apertures (see Fig. 8.1).
The absence of such a jump suggests thus that the lobes do not have a significant contribution
to the total IR flux.

This puzzling contradiction between the findings of Morris et al. (1999) and, for instance,
those of Smith (2006) remains unresolved. This is the main motivation to make our model inde-
pendent of geometrical effects. It is unclear how to account for the extra geometrical constraints
on the SED fitting in a way that does not jeopardize the objectivity of our results and we choose
to leave this to future work.

We find that adding a continuum of temperatures does not improve the fit significantly. Two-
component models, however, fail to account for the short wavelength part (2-7µm) of the SED.
Moreover, models based on more than three temperature components increase the degeneracy
of the fitting problem (allowing for several solutions with different parameters but very similar
chi-squared values). These findings is consistent with the empirical approach taken by Morris
et al. (1999), who use a three component fit based on an optically thin treatment of the dust.

8.3.2 The size and shape of the dust grains

To describe the shape of the dust grains, we use a Continuous Distribution of Ellipsoids (see
e.g. Min et al. 2003). The actual shape distribution will not affect our findings much – as long as
it breaks the perfect symmetry of homogeneous spheres (Min et al. 2005) – because it has little
influence on the emission efficiency of silicates and carbonaceous particles (and therefore the
derived mass). Furthermore, we assume the Rayleigh limit to be valid, i.e. the grain sizes are
much smaller than the wavelength of the incident photons. To test this last assumption we have
performed fits with grains of 2 micron in size that are represented by hollow spheres (see Min
et al. 2005). Such large grains have been proposed to be present in the Homunculus in order
to account for the observed grey extinction towards the central source (Davidson & Humphreys
1997). The derived dust mass is found to increase some tens of percents when such grains are
used. We conclude that the assumptions on particle size and shape have only a modest influence
on the derived mass.
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8.3.3 Fitting procedure

The flux, Fν, due to an optically thin cloud of dust at temperatures Ti (i = 1, 2, 3) is given by

Fν =

3∑
i=1

N∑
j=1

κ′ν, jBν(Ti)Mi, j

D2 . (8.1)

where κ′ν, j [cm2g−1] is the mass absorption coefficient of the jth material and Bν(Ti) is the Planck
function at the ith temperature. D is the distance to the source and Mi, j is the mass of the jth

material at the ith temperature. The set of equations (one for every flux point) of this form is
solved with the dlsei routine from the slatec library (Vandevender & Haskell 1982) to obtain
the weights Mi, j. Note that this approach leaves room for inhomogeneity of the medium, i.e.
the temperature components can have different composition. The three temperatures are also
treated as free parameters and are solved for with an independent minimisation routine.

In order to find the dust species for our fits we take a comprehensive approach. We apply
a library of optical constants of about 100 individual measurements of solid state materials. It
comprises the common species of both carbon and oxygen dominated mineralogy. The most im-
portant oxides, silicates and sulfides are included along with carbonaceous species and metallic
iron. A table including all dust types together with references to the original laboratory mea-
surements is provided in the on-line material.

These species are fitted one-by-one to the SED and those that yield the best fit are selected.
To assure an equal weighing we resampled the observed ISO spectrum using ∆ log λ [nm] =

0.23. As a measure for the quality of fit we use q ≡
√
χ2. This quantity is not normalized; the

error in each wavelength bin is assumed to follow a Poisson distribution. A species that results
in a quality of fit q is selected if the following criterion is satisfied:

q − qmin

q
< 0.05 (8.2)

where qmin is the smallest q that occurs and q is the mean over the whole library. The adopted
relative difference of 5 percent is chosen empirically. It is taken sufficiently large to avoid a
plethora of selected species, but small enough to assure a detailed fit to the spectrum. The
materials selected form the basis for a new fit. Every material in the library is added one-by-
one to this basis and selected if Eq. (8.2) holds. For several dust species the library includes
measurements at different conditions (e.g. density and temperature) yielding a ‘family’ with
very similar optical properties. If such a species satisfies Eq. (8.2) the whole family in general
does. We only include the best candidate in this case.

From all fits computed we also identify the one with the lowest total dust mass. We discuss
this fit in Sect. 8.4.3.

Degeneracy of the fitting procedure

The relatively smooth nature of the SED increases the chance of ‘over-fitting’ resulting in a
set of solutions that are statistically indistinguishable and thus lack any discriminative power.
We check for degeneracy of our fits by applying a ‘bootstrapping procedure’ (Efron & Tibshiani
1986). Every fit is repeated a hundred times with a different random selection of the data-points.
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From the resulting distribution of χ2 results we can, under the assumption of independence of
the individual data-points, infer the statistical significance of each fit. We discuss the degeneracy
of our fit results in Sect. 8.4.1.

8.3.4 The stellar spectrum

In the near-IR, the ISO spectrum shows spectral lines originating in the present day stellar wind
of ηCarinae itself (e.g. Hillier et al. 2001). Also, in the sub-millimeter to centimeter regime
the thermal free-free emission of this wind is observed. We therefore include the SED of the
stellar component of ηCarinae , as computed by Hillier et al. (2001), in our model. They
account for non-LTE line blanketing which is especially important given the dense forest of Fe
lines in ηCarinae ’s wind. The Hillier et al. (2001) model therefore provides a more accurate
description of the stellar source than, for instance, an LTE Kurucz model at corresponding Teff

and gravity.7 Apart from these advantages, these authors explain that the near-IR flux of their
model (having a luminosity equal to the IR luminosity of the Homunculus) is too large compared
to observations. In order to match the near-IR flux they adopt a fictitious distance of ∼6 kpc.
We adopt the canonical distance to ηCarinae of 2.3 kpc, implying that we need to resolve the
discrepancy in an alternative way. We do so by introducing - in addition to the reddening by
the dust in our model with a Cardelli et al. (1989) reddening law - a grey extinction component.
The nature of this component remains unknown but may point, as mentioned before, to very
large (several µm) grain sizes in the Homunculus.

8.3.5 The unidentified sharp feature at 20.23 µm

In the ISO spectrum a strong and sharp feature occurs at approximately 20.23 µm. This feature
is too sharp and symmetrical to be attributed to any amorphous or crystalline solid state material
that is observed in astronomical environments. We therefore model it with an array of identical,
damped, harmonic oscillators, i.e. a Lorentz model for a crystalline material (see e.g. Bohren &
Huffman 1984). We do not assign a continuum to this component which contributes less than a
percent to the total mass in all our fits.

8.3.6 A measure for elemental abundance

We calculate the elemental abundance of the solid state material relative to solar abundances
(adopting Allen 1973), by dividing the total mass of element i in a fit, mi, by the sum of the
masses of all the elements in that fit. This procedure is also applied to the same element in the
sun and the fractions are divided to give the relative number. The relative mass abundance for
the ith element, Φi, is thus given by

Φi ≡
mi/

∑
i mi

m�,i/
∑

i m�,i
. (8.3)

7The latter would better match the near-IR continuum in an overall fit of the SED, but would over-predict the
ionizing UV field.
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Figure 8.3: Best fit composition to the dust in the Homunculus of ηCarinae presented in a ‘tree
diagram’. The ‘a’ and ‘c’ indicate amorphous and crystalline material respectively. a-ISM-
silicate ≡a-Mg1.447Fe0.02Na0.036Al0.036SiO3.538.

Expressing the abundances in this way ‘weighs’ the mass of a specific element relative to the
total mass. Note that Φi uses the mass of an element as it is found in the solid state material,
which might be very different from the mass of that element in the gas phase. Deviations from
solar abundance are therefore expected in this formulation.

8.4 Results

The procedure described above leads to a ‘composition tree’ of best fitting dust compositions,
shown in Fig. 8.3, in which every branch corresponds to a fit. Fits I and II have at the top of
the branch a featureless component of metallic iron which is replaced by amorphous carbon for
fits III and IV. All fits include amorphous olivine (MgFeSiO4) and have pyroxenes at the end of
their branch. As there are several pyroxenes that satisfy the criterion of Eq. (8.2), we only show
the ones that improve the fit the most. We note that in branch II also crystalline magnesium
sulfide (c-MgS) is found to satisfy the criterion of Eq. (8.2) (though only just) and that the same
is true for crystalline carbon in branch III. We note that branch III is in closest agreement with
the three-component fit of (Morris et al. 1999).

Crystalline corundum (c-Al2O3; featuring in branch I and IV) and silicon carbide (SiC; in
branch II and III) play an important role in the fitting of the red shoulder of the 10 µm feature
which extends up to ∼ 15 µm. If we were to continue adding branches to the tree, adding a fifth
species, fit I would be supplemented with c-MgSiO3, the crystalline equivalent of the amorphous
pyroxene already present. This crystalline material mainly improves fitting of the blue side of
the 10 µm feature. Branch II and III however would both include crystalline corundum which
suggests that although very similar to SiC, corundum is better suited to account for the red
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Figure 8.4: Fit with the composition of branch I (our best fit). Both axes are logarithmic.
Species that are listed in the legend but do not appear in the figure have a peak contribution less
than 300 Jy.The bottom panel shows the relative deviations plotted on a linear scale.

shoulder of the 10 µm feature. Finally, branch IV would include amorphous corundum (in
addition to the crystalline equivalent). These additions seem to represent mere refinements of
the composition and are hence not included in Fig. 8.3.

Except for the featureless components the composition of the four fits is very similar. All
four fits share olivine and pyroxenes and either SiC or corundum which, although important for
compositional considerations, contribute negligibly to the mass. Basic parameters of the fits in
the four branches of the composition tree of Fig. 8.3 are given in Tab. 8.1, a fifth fit (denoted by
‘min.’ and discussed below) is also included.

In Fig. 8.4, the components that make up the fit of branch I are shown together with the
SED of ηCarinae . The coding is as follows: materials are grouped by line type (and color)
and temperature is indicated by line width where thinner is hotter (and shade where lighter is
hotter). The first part of the SED (from say 2 to 5 µm) is due to light from the star imposed
on a continuum of hot (502 K) and warm (254 K) metallic iron. The cool (90 K) component
which completely dominates the dust mass (> 99%) contains predominantly pyroxene, olivine
and iron and has a mass of 0.22± 0.07 M�. The error-estimate is the combined effect of a small
measurement error (estimated to be < 3% by bootstrapping) and an error due to the uncertainty
of the absolute flux calibration that can reach 30%. The 10 µm feature is due to olivine and
corundum added to a smooth continuum of iron, in agreement with the results of Chesneau



Mass and chemical composition of the Homunculus 161

et al. (2005). In the bottom panel, the relative difference between the fit and the data (residuals)
are plotted in linear scale. Deviations are typically only a few percent, with peaks reaching ten
percent. These deviations may signal two types of flaws in the fit. First, one or several specific
materials are left out that ought to be included to account for (part of) these particular spectral
signatures. Second, the optical properties of the dust can sensitively depend on the conditions
of the laboratory measurements and the details of the chemical composition (i.e. purity issues)
and shape distribution of the grains (for a discussion see e.g. Kimura et al. 2005).

8.4.1 Statistical significance of the fit results

As mentioned in Sect.8.3.3, we have performed a bootstrapping procedure to evaluate the sta-
tistical significance of the our fit results. The resulting distributions of the quality of fit (QOF)
are shown in Fig. 8.7. The initial assumption of uncorrelated data points (and thus a Poisson
distribution) seems validated by the shape of the distributions. From the figure we can immedi-
ately see that the fit with lowest QOF (Branch I) is significantly better (more than 6 σ) than the
runner up (Branch II). Branch IV is not significantly different from either Branch II or Branch
III. These results indicated that it would not increase our knowledge of the problem if we were
to augment our models with more variables because this would bring the various results closer
together in QOF space, making them statistically indistinguishable.

Figure 8.5: Close-up view of the fit
(red dotted line) of branch I. Both
the near-IR part (top panel) and the
10 µm feature (middle panel) are fit-
ted convincingly. The region from
22 to 35µm (bottom panel) has some
apparent shortcomings. In the green
dashed line Mg0.9Fe0.1S is added to
the dust composition. This improves
the fit only slightly in the region
from ∼ 22 to ∼ 35 µm.
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Figure 8.6: Fit with a cool component that is dominated by metallic iron. As metallic iron is
a very efficient emitter, the total mass associated with this fit is about 7 times lower than that
of our branch I. The abundance pattern implied by this fit is representative for non-equilibrium
chemistry predictions by Gail et al. (1999). Species that are listed in the legend but do appear
in the figure have a peak contribution less than 300 Jy. The bottom panel shows the relative
deviations plotted on a linear scale.

8.4.2 The potential presence of MgS

In Fig. 8.5, a detailed view of the SED fit of Fig. 8.4 (representing branch I) is shown. In the
near-IR (top panel) the fit (red dotted line) including the stellar model agrees well with the ob-
servations. The 10 µm feature (middle panel) is also fitted convincingly but the region between
approximately 22 to 35 µm shows some obvious deviations. As discussed in Sect. 8.2, the broad
feature from ∼24 to about 30 µm is similar to that seen in carbon-rich AGB stars and has been
ascribed to MgS. To investigate the possibility of MgS as the carrier for the feature observed in
ηCarinae , we fitted the SED between 16 and 40 µm using a continuum of metallic iron (and
the Lorentz model) and adding every material of the library seperately to this continuum. We
found that Mg0.9Fe0.1S best reproduces the general form of the flat topped feature (see Fig. 8.8).
If we extend the fitting range to shorter and longer wavelengths, silicates tend to supersede the
magnesium silicate because they perform better at shorter wavelengths (though, as mentioned,
in branch II MgS also fulfills the criterion of Eq. (8.2) for the fourth species). In fits in which
silicates are not a major component (such as the minimum dust mass model, see below) MgS
appears naturally. Adding MgS does not alter the total dust mass significantly.
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Figure 8.7: Distributions of quality-of-fit (QOF) for our four fit results obtained with bootstrap-
ping of the original data. Differences are expressed in standard deviations σ as obtained from
the distribution of Branch I.

Figure 8.8: Fit of the region be-
tween 16 to 40 µm with metallic iron
and Mg0.9Fe0.1S and a Lorentzian.
Mg0.9Fe0.1S seems to do justice to
the steep rise at ∼ 26 µm and the
overall flatness of the feature. The
sharp signatures of the feature are
not accounted for by the relatively
smooth fit.

8.4.3 Minimum dust mass model

Of the four branches in Fig. 8.3, branch I provides a lower limit to the total dust mass. It is,
however, possible to make a fit with much less mass than 0.22 M� (see Fig. 8.6). The freedom
to do this exists because any material that is featureless at long wavelengths – and most are –
can be used to represent the cool component, i.e. the component that is dominating the dust
mass. Because metallic iron is a very efficient emitter, the total dust mass taking this species
to represent the cold dust is merely ∼0.03± 0.01 M�, roughly a factor 7 lower than the mass of
fit I. More than 95% of the mass is due to iron while silicates contribute less than 1% to the
mass (see Tab. 8.2). Interestingly, such a peculiar dust pattern in the Homunculus of ηCarinae
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Fit Parameters: Temperature and Mass

Fit Quality TC TW TH Mtot σ MC MW MH

I 328.5 89.8 253.6 501.7 0.22 0.07 0.219 0.00154 0.000224
II 358.7 81.3 205.1 468.3 0.3 0.1 0.298 0.00143 0.000210
III 386.3 82.7 173.9 373.1 0.5 0.2 0.483 0.0336 0.000576
IV 369.4 90.9 295.4 590.8 0.7 0.2 0.652 0.00105 0.000175
min. 417.7 122.2 345.0 729.5 0.03 0.01 0.0337 0.000580 0.0000666

Table 8.1: Summary of properties of the fits presented in Sect. 8.4. Values in the first column
refer to the compositional branch in Fig. 8.3 except for the last line where ‘min.’ indicates the
fit with predominantly iron in its cool component. The second column gives the quality of the
fit as the square root of χ2 where lower is better. TC, TW and TH are the temperature of the cool,
warm and hot component respectively in Kelvin. MX refers to the dust mass in the X component
where X can be C (cool), W (warm), H (hot) and tot (total) in solar masses. The error on the
derived dust mass (column 7) is estimated to be 30 percent and is dominated by flux calibration
uncertainties.

is predicted by Gail et al. (2005, see Sect. 8.5.1 for a discussion). These authors predict, in
conjunction with a large quantity of metallic iron, FeSi to condense out in the ejecta of the Great
Eruption. Although it does not occur ‘naturally’ in our fitting procedure the long wavelength
behaviour of (cold) FeSi is very similar to that of metallic iron. Cold FeSi can therefore not be
distinguished from iron spectrally and could very well be present. As the emission efficiency is
also similar to iron, the mass of the fit would not be altered significantly if FeSi were to replace
iron.

8.4.4 Very cold dust beyond the ISO range?

We have looked for contributions from very cold dust at wavelengths beyond 170 µm that are
not probed by the ISO data by extending our observations up to 3.3 cm. Figure 8.9 shows the
ISO SED supplemented by sub-millimeter points from Gomez (Née Morgan) et al. (2006) at
450 and 850 µm, millimeter observations at 1.3 and 2.9 mm from Cox et al. (1995) and a 3.3 cm
measurement by White et al. (1994). Overplotted is our fit I which does not use the stellar
spectrum as a constraint. The sub-millimeter points nicely match the Rayleigh-Jeans tail of the
dust emission. At wavelengths beyond about a millimeter the free-free emission of the present-
day stellar wind dominates the emission. We find that in this regime the intrinsic stellar wind
model from (Hillier et al. 2001) – so without applying a grey extinction – adequately accounts
for the observed flux.

This match of data and model is consistent with the ISO spectrum being exclusively due to
dust emission from the Homunculus.
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Chemical Composition and Elemental Abundance of the Dust

Fit ΦO ΦC ΦFe ΦMg ΦAl ΦSi Material and mass (percentage)
I 0.7 0.0 1.7 5.9 5.7 4.0 c-Fe (10), a-MgFeSiO4 (32)

a-MgSiO3 (58), a-Al2O3 (< 1)
II 0.6 0.005 3.0 4.0 0.004 3.2 c-Fe (4), a-MgFeSiO4 (94), a-SiC (< 1)

c-Mg0.5Fe0.43Ca0.03Al0.04SiO3 (< 1)
III 0.5 2.4 0.0 2.8 0.0 2.3 a-C (42), a-MgFeSiO4 (44), a-SiC (< 1)

a-Mg0.5Fe0.43Ca0.03Al0.04SiO3 (13)
IV 0.2 3.8 0.4 0.9 5.7 0.6 a-C (79), a-Al2O3 (4),

a-MgFeSiO4 (13), a-ISM silicate (4)
min 0.01 0.0 8.3 0.2 0.8 0.03 c-Fe (97), a-ISM silicate (< 1),

a-Al2O3 (< 1), c-Fe0.1Mg0.9S (1)

Table 8.2: Summary of properties of the fits presented in Sect. 8.4. Φe is the abundance
relative to solar of element e according to Eq. (8.3). As an example, consider the contribution
from iron to the minimum dust model (bottom row, fourth column). The value of 8.3 means
that in the solid state material of the Homunculus, iron is 8.3 times more abundant than in the
solar gas. This implies that, because the abundances are calculated relative to the total mass,
the other materials have been suppressed relative to Fe. This is reflected in the fractions of the
other species in the fit which are all smaller than one. This overabundance of a species can
signal enhanced efficiency of its condensation or suppressed condensation of the other species,
or both. As C and O are depleted in CNO-processed material, the relative overabundance of
Fe is not surprising. Note that, although Si is found to be relatively underabundant in our fit
its value is uncertain as FeSi can replace Fe as the dominant species in the cool component.
The materials in the fit and their (approximate) contribution to the dust mass (in percentage)
are listed in the last column. The Lorentzian component which was added to all models is not
mentioned explicitly since its carrier is unidentified. Its contribution to the total dustmass never
exceeds a percent.

8.5 Discussion and conclusions

So, what is the dust composition in the Homunculus of ηCarinae , what is the dust mass, and
what is the total mass in gas and dust that can be associated with the Great Eruption? Even
though the different branches differ substantially in dust composition, the resulting models per-
form virtually equally well in reproducing the observed SED (See Table 8.1, column 2). If we
add to this the significant uncertainty on the flux calibration and the dependence of the dust op-
tical properties on the laboratory conditions and purity of the samples, it appears presumptuous
to rely only on the quality of fit to deduce which branch best represents the dust in the nebula
of ηCarinae . In this section we discuss the plausibility of the four branches (I through IV) and
the minimum dust mass model in terms of dust formation in a CNO processed environment.
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8.5.1 Composition in the context of dust formation

The central source in ηCarinae shows CNO-processed material at its surface (Hillier et al. 2001)
and several ejecta associated with the system and probably ejected prior to the Great Eruption
(Walborn et al. 1978; Walborn & Alvarez 1988) also show severe depletion in carbon and oxy-
gen in favour of nitrogen (see e.g. Davidson et al. 1982; Smith & Morse 2004). This suggests
that a mineralogy with significant contributions from amorphous carbon (as in branches III and
IV) is unlikely. In this respect it is also important that no emission from polycyclic aromatic
hydrocarbons is detected in spite of the presence of a strong UV radiation field, in stark contrast
with carbon-rich planetary nebulae, i.e. amorphous carbon based ejecta that are illuminated by
a nearby UV source.

Corundum (branch I) or silicon carbide (branch II) are primarily required to fit the extended
red wing of the 10 µm feature, with silicates producing the remainder of the profile. Dust emit-

Figure 8.9: ISO SED and several data points beyond the ISO range. The flux points from
Gomez (Née Morgan) et al. (2006) are well matched by a fit without stellar model (thick dot-
ted line) and the flux points from Cox et al. (1995) and White et al. (1994) are convincingly
accounted for by the stellar model.
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ting at such short wavelengths is part of the hot component, accounting for only a minor fraction
(less than one percent) of the total dust mass. Dust in the hot component – seen relatively close
to the central star – may not represent dust that is formed in the Great Eruption. Though SiC
is predicted to form in Giant Eruption like conditions (see below), it appears plausible that in a
relatively quiescent situation dust formation might proceed more like that seen in outflows from
cool stars, where corundum is formed at the start of the condensation sequence (and SiC only
in reducing conditions, i.e. C/O>1; e.g. Lodders & Fegley 1999). Because ηCarinae is thought
to be a high-eccentricity binary (Damineli 1996) a situation could occur where the present-day
winds of the central source and its putative companion collide at peri-astron passage. The short
duration of these passages may prohibit the condensation sequence to progress beyond the for-
mation of a-Al2O3 leaving it as an important species close to the star. Chesneau et al. (2005),
for instance, use corundum to fit the red wing of the 10 µm feature in the central 3′′. On these
grounds, dust formation in the present-day (colliding) outflow favors branch I.

In Sect. 8.4.2 we discuss the potential presence of MgS. This species is observed in the
outflows of normal carbon stars on the AGB (Hony et al. 2002) and recently in S-type stars
(Smolders et al., in preparation). S-type stars are transitional objects between oxygen dominated
and carbon dominated stars. They have C/O∼1 and are known to produce silicates and oxides.

Perhaps MgS may also form in the oxygen depleted but still oxidizing (C/O<1) ηCarinae
environment, where the small surplus of oxygen is bound in mostly simple oxides (such as
corundum) and remaining metals drive a chemistry forming MgS.

Gail et al. (2005) present predictions of dust formation in an ηCarinae like outburst. They
point out that due to the lack of sufficient quantities of oxygen Mg-Fe-silicates form only in
very modest quantities. No soot is formed. Abundant dust species are found to be FeSi and
metallic Fe – consistent with our minimum dust mass model – with a small amount of forsterite
(c-Mg2SiO4). These authors predict that SiC will be the first abundant condensate, but that,
in chemical equilibrium, it rapidly disappears again in favor of FeSi. Under non-equilibrium
conditions, that may occur in a rapidly expanding and cooling gas, it may nonetheless survive
because SiC and FeSi start to form at similar temperatures and dust chemistry may freeze-in
before equilibrium is reached.

We conclude that the CNO processed envelope and environs of ηCarinae likely favor a
carbon-less dust formation. The hot dust contains amorphous silicates, small amounts of pyrox-
ines and corundum and/or silicon carbide. A distinct ’flat topped’ feature at 24-30 µm is best
explained by warm MgS dust. The compositon of cold dust can not be constrained spectroscop-
ically because the spectrum at long wavelengths is featureless. Silicates may be responsible.
Calculations of dust condensation in the ηCarinae outburst, however, predict dust that is dom-
inated by Fe and FeSi. We can also achieve a good fit using such a composition for the cold
component, requiring relatively limited amounts of dust (0.03 M�), i.e. the minimum model in
Table 8.1.

8.5.2 The total mass in the Homunculus

Knowledge of the gas-to-dust ratio fgd is required in order to convert the total dust mass of the
Homunculus to a total mass. It is however not possible to empirically determine the value of
fgd as the nebula is mainly a reflection nebula at ultraviolet and optical wavelengths making it
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difficult to measure the gas content (see e.g. Meaburn et al. 1993). Sensitive as this quantity is
to the abundance pattern and local dust forming conditions, the gas-to-dust ratio in the nebula
of an evolved star such as ηCarinae is likely to deviate appreciatively from the canonical value
of 100. The material in the Homunculus is known to be CNO-processed and therefore depleted
in carbon and oxygen in favour of nitrogen. As O (and C in the case of carbon rich chemistry)
is important in dust formation while N is essentially inert, fgd is likely to be larger than 100.
Evolutionary tracks of an initially 120 M� star (Schaller et al. 1992) show a carbon and oxygen
depletion of about a factor 20 and 10 respectively at the time the mass fractions of hydrogen and
helium are about equal. The latter is typical for the Luminous Blue Variable phase ηCarinae is
thought to be in. In normal conditions oxygen accounts for about half the mass in dust forming
elements (O, C, Mg, Si, Fe, S, Al, Ca and Ti). These depletions thus suggest fgd∼ 200.

If indeed large amounts of metallic Fe and FeSi are produced in the Giant Eruption (see
above), the minimum dust mass model shows that the total dust mass may be an order of mag-
nitude less compared to a situation in which the dust is dominated by silicates. In case the dust
is dominated by Fe and Si, the gas to dust ratio fgd by complete condensation of these two el-
ements is ∼350. This would correspond to a total mass of 10 M�. However, Gail et al. (2005)
report degrees of condensation of only 10 to 15 percent, implying an fgd of at least ∼2500. Such
a gas-to-dust ratio corresponds to a total mass of ∼75 M�.

Due to the approximate black-body behaviour of the overall SED (Smith et al. 2003b; Hillier
et al. 2006; Smith & Ferland 2007; Smith 2010), the total mass of our model fits with mainly
contribution from silicates (Fit I and II) is in good agreement with earlier results obtained by
less rigorous methods than employed here (e.g, Morris et al. 1999; Smith et al. 2003b).

We conclude that the likely total mass is at least some ∼ 45 M� if the grains are dominated
by silicates (branch I). This assumes fgd∼ 200. If Fe and FeSi dominate the grain content the
dust mass is as low as 0.03 M�. Assuming full condensation of Fe and FeSi results in a total
mass of the Homunculus of 10 M�, that can be identified as the minimum mass of the nebula.
Predictions of Fe and FeSi condensation show that only part of the nebular gas is converted into
dust, and imply a total mass that may even be larger than 45 M�.

8.5.3 Energetics of the Great Eruption

Smith (2006) proposes a model to account for the spatial distribution of velocity and mass in
the Homunculus. In this model, most mass is situated at angles . 45◦ from the bipolar axis and
the velocity follows an approximate Hubble law (i.e. the velocity is proportional to distance
from the star), reaching ∼650 km sec−1 in the polar caps. We derive for the kinetic energy of the
ejecta

Ekin ' 5.8 × 1049
(

fgd

100

) (
Md

0.1 M�

)
ergs (8.4)

where Md is the total dust mass in solar masses. For Md = 0.22 M� and fgd= 200 this yields
Ekin ' 1050.4 ergs. Such an energy almost rivals that of the radiative output of typical type-II
supernovae (∼1051 ergs) and exceeds the luminous energy presumed to be radiated by ηCarinae
during the 20 yr duration of the Great Eruption, which was Erad ' 1049.5 ergs (Davidson &
Humphreys 1997). Equating Ekin to Erad would yield a Homunculus mass of 5.5 M�, assuming
fgd= 200. It has been proposed by Owocki et al. (2004) that a power-law porosity-moderated
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continuum driven wind may lead to the very large mass-loss rate implied in the Great Eruption.
Such models lead to mass-loss rates that approach the photon-tiring limit. A by-product of such
models is that there is little remaining radiative energy to be observed as emergent luminosity,
explaining why the dust masses found here imply Ekin > Erad.
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CHAPTER 9

Radiative transfer in the η Carinae system

C. J. H. Kruip1, T. I. Madura2, J. H. Groh2, N. Clementel1,
S. Verdolini1,T. R. Gull3 & V. Icke1

W e perform radiative transfer post-processing of three-dimensional hy-
drodynamical simulations of the interacting winds in the η Car system.

This results in ionization-maps of hydrogen and helium that constrain the
regions where forbidden lines can form. We explore the difficulties that arise
when paving the way for the next generation of synthetic observations of
these forbidden lines.
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9.1 Introduction
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Figure 9.1: Left image: Eta Carinae as seen in visible light with the Hubble Space Telescope
(Morse et al. 1998). Right inset: Cut through SPH simulation of the interacting wind region
in the plane of the orbit (Madura 2010) at apastron. The brightness indicates the gas density
in logarithmic scale where light indicates high and dark indicates low density. As a result of
the violent gravito-hydrodynamical interaction at periastron, large under-dense regions open up
toward the observer.

As argued in Chapter 8, the enigmatic object η Carinae is one of the most extreme stars in
the nearby universe. Despite a huge amount of research, many fundamental questions about the
system remain unanswered. From a dynamical point of view, perhaps the most fundamental
parameters are the orientation, eccentricity and period of the binary orbit.

The binary period has been determined by observations of the recurring spectroscopic events
to be 5.52 years (Damineli 1996). From timing of the spectroscopic event, the eccentricity of
the orbit has been constrained to be higher than 0.8 (Corcoran et al. 2001). It is unclear if the
orbits’ extreme eccentricity is a result of the Great Eruption or if it has another origin such as a
gravitational interaction with a third object.

Several authors have modeled the X-ray light-curve assuming the radiation emanates from
the shocked wind-wind collision interface (Pittard & Corcoran 2002; Okazaki et al. 2008; Parkin
et al. 2011, and references therein). Since X-rays are spatially unresolved, they cannot be used
to constrain the absolute orientation of the orbital axis (the axis perpendicular to the orbital
plane). Most studies assume that the orbital axis is aligned with the symmetry axis of the
Homunculus (Gull et al. 2009).

Recently, high-resolution HST spectroscopy of [FeIII] has been used to constrain the ori-
entation of the binary orbit in three dimensions (Madura et al. 2010; Madura et al. 2011). A
combination of SPH simulations (see right panel of Fig. 9.1) with optically thin radiative trans-
fer has been deployed to generate synthetic-observations which were, in turn, confronted with
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the data. This approach breaks the degeneracy and for the first time successfully constrained
the orientation of the orbit in three dimensional space. One important result is the alignment
of the orbital direction with the bipolar Homunculus nebula, in strengthening the predicted link
between the binary orbit and the Great Eruption.

Although very successful, the approach of Madura et al. (2010); Madura et al. (2011) can
be improved upon considerably. Particularly, the origin of the forbidden line emission has been
based on simple geometrical criteria combined with a density threshold although, in reality, the
population of forbidden states depends on the local ionization state of the medium. No radiative
transfer of ionising radiation has been included in these simulations.

In this chapter we strive to improve on this simplified approach by post-processing the SPH
simulations of (Madura et al. 2010; Madura et al. 2011) with full three-dimensional radiative
transfer of radiation capable of ionising hydrogen and helium. We use SimpleX to obtain de-
tailed ionization fractions of both species at the resolution of the original SPH simulations. This
allows us to predict much more precisely where, and to what extent forbidden iron and nitrogen
lines are formed. This will ultimately lead to improved synthetic observations that yield more
accurate measurements of the orbital parameters and perhaps even unconstrained parameters
like the mass fraction of the binary stars.4

9.2 Hydrodynamic simulations

There are two main approaches to the hydrodynamics of WWIRs that can be used complemen-
tary to eachother: SPH and AMR based methods. The major advantage of SPH is its ability
to naturally cover orders of magnitude in resolution within the same simulation which makes it
possible to study the WWIR at distances far removed from the binary system itself. This is very
useful, because observationally, this region is far simpler to handle and understand than the core
region. Moreover, the spatial scale of the available HST data requires a large region around the
stars to be simulated.

The inevitable drawback of large simulation volumes is the relatively poor representation of
shocks and contact-discontinuities in the inner part of the simulation. Grid based hydrodynam-
ics, on the other hand, is ideally suited to study these inner parts where accurate shock capturing
is important.

In this chapter we use both approaches for the reasons discussed above. We have to note,
however, that the AMR hydrodynamics is of a very preliminary nature and will play a much
more significant role in future work on this topic.

9.2.1 SPH

We use the SPH simulations from Madura et al. (2010); Madura et al. (2011) as the basis for
our radiative transfer calculations. The code is a modified version of the one used in Okazaki
et al. (2008). We use simulations with two different box-sizes, 210 and 21 semi major axes.

4From the total light, a combined mass of the binary of at least 100 M� can been derived but it is unclear how
this mass is divided between the two stellar components.
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With a semi major axis of about 15.4 AU, this results in simulation domains of 3234 and 323.4
AU respectively.

Snapshots of the large-box simulation are available at intervals of roughly one week or,
equivalently, 0.00318 in phase. Every snapshot contains approximately 5 × 105 particles. This
number is not fixed as the particles are allowed to stream out of the simulation domain, and the
stars emit new particles as they orbit each other. The stars themselves are modeled by single
SPH particles with the (approximate) mass of the stellar sources.

9.2.2 Parameters

The major hydrodynamical parameters are the wind outflow speed and mass-loss rate of the
two stars. For the radiative transfer, an ionising luminosity must be assigned to both stars. The
parameters used in our simulations are summarized in Tab. 9.1.

Parameter Value reference
Primary Ṁ 1×10−3 M�/yr (Hillier et al. 2001, 2006)
Secondary Ṁ 10−5 M�/yr (Pittard & Corcoran 2002)
Primary ionising flux 1×1051/s
Secondary ionising flux 3.02×1049/s (Martins et al. 2002)

Table 9.1: Overview of simulation parameters.

Grid construction

To convert the SPH simulations to a SimpleX mesh, we use every SPH particle as the nucleus
of a Voronoi cell whose density is defined as the mass of the particle divided by the volume of
the cell. This procedure yields density estimates that are less smooth than those obtained with
typical kernel functions of the type of Eq. (4.8) but guarantee mass conservation and represent
small scale structures in the density field more accurately. The various issues related to density
estimates and mesh construction for the data used in this chapter are discussed in Chapter 4 and
specifically Sect. 4.4.1.

In Fig 9.2, two cuts through the density fields of the large box simulation are shown, one
at apastron (left panel) and one at periastron (right panel). The density fields clearly show the
spherical shells that are deposited during every orbit and slowly coast outwards until they leave
the computational domain. The shells are disrupted towards the right due to the secondary wind
which blows the shell apart in that direction. The momentum of the secondary wind to the left
is balanced by that of the primary wind which is much denser and slower. A close up view of
the inner tenth of the large computation volume is shown in Fig. 9.3. It is now possible to see
that the momentum balance between the wind of the primary star (in the left panel at apastron,
the primary is the larger star that sits almost in the centre) and that of the secondary star is such
that the WWIR lies closer to the secondary star (at about 75% if the separation distance). The
periastron image (right panel) shows the characteristic conical shape of the WWIR, with its tip
bent around the primary star.
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Figure 9.2: Density in logarithmic scale for different phases: apastron (left) and periastron
(right) for the large simulation volume. The box spans about 3234 AU (or 210 semi-major axis
of the binary). The cut is made through the orbital plane.

Figure 9.3: Same as Fig. 9.2 but for the small size box. The box spans approximately 304.5
AU (or 21 semi-major axis of the binary).

As described in Chapter 4, all the SPH particles (approximately 5 × 105) are converted to
vertices of the RT mesh. Due to the modest number of particles in these simulations it is not
necessary to take subsamples of the data. An example of the resulting SimpleX mesh (using the
large box simulation at apastron) is shown in Fig. 9.4. The sharp variations in number density
of SPH particles (and thus vertices) that occur as we pass from a dense shell into the rarified
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region between shells can be problematic considering the analysis presented in Chapter 3. In
Sect. 4.4.1 we have assessed to what extent these sharp gradients influence the outcome of our
RT simulations. Because it turned out that their effect is negligible, we will proceed to use the
SPH directly as the generating vertices of our mesh throughout this chapter.

Figure 9.4: Slice through the RT mesh for
the same data as shown in the left panel
of Fig. 9.2. The resolution of the SimpleX
mesh follows the resolution of the original
data everywhere.

9.2.3 AMR hydrodynamics

We have performed preliminary AMR hydro simulations of the ηCarinae system using the Flash
code (Fryxell et al. 2000). For these tests, a small computation volume has been used with a
maximum of 5 levels of refinement. The computational domain spans approximately 36 AU in
every direction and contains a total of roughly 8× 106 cells depending on the phase of the orbit.

The driving mechanism for the stellar winds is different from that employed in the SPH
(where the particles are ejected from the stellar surface with the terminal velocity) by that is
pressure driven. In practice this means that the winds pick up speed over a non-zero distance
set by the hydrodynamical conditions within and around the star. In these simulations, the stars
are represented by a stencil that has an approximately spherical shape. At every hydro-step this
stencil is used to initialize the cells within the stellar radius to their (constant) values.

Also, the mass-loss-rate of the primary star is different from that used in the SPH data,
namely 2.5 × 10−4 M�/yr instead of 1 × 10−3 M�/yr. This is expected to make the WWIR less
dense and thus easier to ionise.

In Sect. 4.3.3 we have compared various methods to include the mass of un-sampled AMR
cells. In Fig. 9.5 one of the resulting SimpleX meshes is shown alongside the original AMR data
and the resulting Delaunay triangulation (which is the geometrical basis for the RT mesh). We
have used a sampling function of the form Eq. (4.2) with α = 0.5 and n0 = 106 cm−3 and 2×105

vertices. To prevent the majority of vertices being placed very close to the density peak around
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the central star, we have implemented a density cut-off at 5 × 1010. These choices result in a
moderate increase of resolution with density, accurately resolving the contact discontinuity and
features therein without depriving the less dense regions of their resolution. In Sect. 9.4.4 we
use this snapshot to gain initial insight into the differences between RT applied on (relatively)
high resolution AMR data and the SPH data used in the rest of this chapter. To give an idea

Figure 9.5: Grid construction from AMR data. Left: Density field of the original data. Centre:
SimpleX mesh using the Delaunay mass inclusion method (see Sect. 4.3.3 for details) Right:
Delaunay triangulation of the SimpleX mesh where the resolution is increased in the WWIR in
order to capture the relevant details.

of the resolution of this simulation, we compare it side-by-side to the small (high resolution)
SPH simulation box in Fig. 9.6. Although the orientation and mass-loss-rate are different (espe-
cially the mass-loss-rate), this gives a good indication of the difference in detail in the WWIR
and the relative smoothness of the mesh-based hydro at this scale. The graininess of the SPH
representation of the primary wind is particularly conspicuous. This is a direct consequence
of the particle based nature of the method. The contact discontinuity, although not nearly as
detailed as in the mesh-based hydro still shows the basic characteristics of a density jump.
Given the significant differences in size of the simulation volume (the smaller SPH simulation
is a factor 323.4/36 ' 9 larger in diameter) and resolution (the same simulation uses a factor
5 × 105/8 × 106 = 1/16 fewer resolution elements), the SPH simulation captures the essence of
the system remarkably well.

9.3 RT simulations

We have performed the radiative transfer calculations in post-processing using the SimpleX
code as described in Chapter 2 with one important alteration. For a fraction of cells close to
the primary source, the ionization- and/or recombination time-scale are exceedingly short (in
the order of seconds). Because the non-equilibrium chemistry module described in Chapter 5
essentially integrates the chemical network on the shortest chemical timescale, these cells need
an unfeasibly large number of sub-cycle steps to ensure a correct solution. To overcome this
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Figure 9.6: Comparing the SPH to the AMR data. Left: Density field of the AMR hydro
simulation. ) Right: Delaunay triangulation of the SPH data of the small box simulation.

problem, we have implemented a equilibrium chemistry solver that deals with those cells which
cannot be treated with the non-equilibrium module.

9.3.1 Equilibrium chemistry

The equilibrium solution effectively puts the ionization fractions of hydrogen and helium to
their equilibrium values under the assumption that the incoming flux of ionising photons is
constant.

As already mentioned in Chapter 5, the ionization-state of the gas is described by the fol-
lowing three coupled differential equations and three closure relations

ṅH I = nH IIRHI − nH IΓHI (9.1)
ṅHe I = nHe IIRHeI − nHe IΓHe I (9.2)

ṅHe III = −nHe IIIRHeII + nHe IIΓHe II (9.3)
nH = nH I + nH II (9.4)

nHe = nHe I + nHe II + nHe III (9.5)
ne = nH II + nHe II + 2nHe III. (9.6)

As before, the ionization rates are the sum of both photo- and collisional ionization rates. We
can derive the equilibrium equations by putting ṅH I = ṅHe I = ṅHe II = 0. After some algebra this
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yields

xH I = (1 + ΓH I/RH I)−1 (9.7)
xH II = 1 − xH I (9.8)
xHe I = [1 + ΓHe I/RHe I × (1 + ΓHe II/RHe II)]−1 (9.9)
xHe II = xHe IΓHe I/RHe I (9.10)
xHe III = xHe IIΓHe II/RHe II, (9.11)

where xi is the fraction of species i and we have used ni = xinj where j ∈ (H,He). These
equations are coupled by the free electron density (given by the last equation in Eqs. (9.6)).

Unfortunately, the set of equations presented in Eqs. (9.11) cannot be solved analytically.
This is due to the non-linear dependence on ionization fractions of the photo-ionization rate
through the optical depth. More specifically, the photo-ionization rate in a cell is given by
Eq. (5.6), where the monochromatic analog of Eq. (5.4) is given by

Ṅion = Ṅγ(1 − exp(−τ)), (9.12)

with τ = (xH InHσH I + xHe InHeσHe I + xHe IInHeσHe II)l.
Because of this non-linear dependence, the equilibrium fractions must be iteratively solved

for. If the iterative procedure converges (the neutral fractions of the different species differ less
than a given tolerance between iterations), the neutral fractions are assigned to the cell under
treatment and the flux is diminished by the number of absorptions during that time-step ∆t
(nH IΓH I∆t).

We apply the equilibrium chemistry to cells for which the non-equilibrium chemistry solver
would take more than 105 sub-cycling steps. In a sense, this number is arbitrary and simply
reflects how much time the user is willing to spend on finding the non-equilibrium solution. In
our application, the cells for which the equilibrium solution is employed are primarily confined
to a small region around the primary star. This region is expected to be highly ionised regardless
and application of the equilibrium chemistry will therefore likely be a decent approximation.

9.3.2 Collisional ionizations

We incorporate collisional ionizations in addition to photo-ionizations to achieve a more com-
plete census of the ionizations in the system. The collisional ionization fraction depends only on
the temperature of the medium, which is in principle a function of the hydrodynamical motion
of the gas (i.e., adiabatic terms), photo-heating and multiple cooling terms.

In this preliminary study, we do not use a coupled radiation-hydrodynamics code and are
therefore unable to treat heating and cooling in a self-consistent fashion. As a first approxi-
mation, however, we can use the temperature calculated by the SPH code based on adiabatic
expansion and compression only to estimate the importance of collisional ionizations. In future
study, we will treat the temperature evolution of the system self-consistently and refine this ef-
fort. To assess which of the two is the dominant effect we perform both simulations with and
without collisional-/photo-ionizations.
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9.4 Results

We investigate the influence of the primary and secondary sources on the ionization-structure of
the wind-wind-interaction region (WWIR). Although extremely luminous, the primary source
has a spectrum representative of a much cooler star than the secondary source (35000-40000
K). The effective temperature of the primary is lower but uncertain. This is mainly because
measurements of the effective temperature for LBV stars strongly depend on the depth of the
measured region (Hillier et al. 2001). Because the primary star is enshrouded in a dense wind,
its ionising flux is diminished substantially before reaching the WWIR.

The secondary star on the other hand has a much harder spectrum which is hardly attenuated
by its relatively tenuous wind. We therefore expect the secondary star to primarily shape the
ionization structure of the WWIR which is the region of interest when predicting the forbidden
line emission from the system.

We start with an exploration of the possibility to include ionising flux of the primary star
in our simulations in Sect. 9.4.1 using one-dimensional RT simulations with hydrogen only. In
Sect. 9.4.2, we investigate the influence of resolution, collisional ionizations and the inclusion
of helium on the 3D data. In Sect. 9.4.3, we look at the differences in morphology at both
apastron and periastron for the small and large SPH volumes CHECK. Finally, in Sect. 9.4.4 we
present preliminary results of RT on the AMR mesh data and discuss several differences with
the SPH data.

9.4.1 One-dimensional explorations of the ionised region around the pri-
mary star

From the detailed fitting of the visual and UV spectrum by Hillier et al. (2001, 2006), the region
of ionised hydrogen around the primary star has been found to extend radially about 120 AU
from the stellar source. The density of hydrogen is expected to fall off approximately as r−2 due
to the conservation of mass and because the primary wind is more or less constant.

To explore the dependence of the position of the ionization front on the ionising luminosity
of the primary star, we have performed one-dimensional experiments using the equilibrium
chemistry described above. The density profile is an analytical fit (see Fig. 9.7) to the spherically
averaged density profile of the WIND900 SPH simulation box at apastron. To deal with the pole
at the origin, a central core of constant density and a radius of 0.1 AU is used. This does not
affect our findings, however, as the core is negligibly small compared to the total size of the
box. The analytic density profile is thus characterized by

10 log n(r) =

{
13 cm−3 if r < 0.1 AU
13 − 2(10log r + 4) cm−3 otherwise (9.13)

The 1D code simulates radiation traveling through spherically symmetric shells with a maxi-
mal radius of half the box-size of the WIND900 simulation ≈ 1522 AU. The radiation is injected
in the first shell and then travels outward until it is either absorbed or exits the last shell. For the
results shown below we have used 3 ·104 shells. We note that time-stepping is arbitrary because
of the equilibrium chemistry. The only variable is therefore the luminosity of the source.
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Figure 9.7: Fit to the WIND900 radial den-
sity profile in log-log scale as described by
Eq. 9.13. The fit is used in the 1D tests de-
scribed in the text.

The neutral (solid line) and ionised (dashed line) fraction as a function of the radius are
plotted for several qualitatively different configurations in Fig. 9.8. The density profile is plotted
with a dotted line and quantified by the right axis. For luminosities below ≈ 4.8 · 1051 s−1, the
box is neutral and the Strömgren radius is confined to the central core. With this setup, the
ionization front is located somewhere between the centre and the outside of the box for a very
small range in values centred around 4.7636 · 1051. The centre panel gives an example of this
configuration. The slightest increase in the luminosity results in a completely ionised box (right
panel) while further increase results only in a lower neutral fraction throughout the simulation
volume. This behaviour is completely expected, however, for ionization fronts in power-law

Figure 9.8: Neutral and ionised fractions for the 1D RT simulations described in the text.
Left: Luminosity = 1051 s−1. Centre: Luminosity = 4.7635 · 1051 s−1. Right: Luminosity =

4.7636 · 1051 s−1. This behaviour signifies that the ionization front is highly unstable and thus
changes qualitatively with small perturbations in either the density or the luminosity.

density profiles with powers smaller than −2/3 (Franco et al. 1990; Shapiro et al. 2006). For
such profiles, the circumstellar medium simply cannot support stable ionization fronts.

However simplified, we can still derive several useful conclusions from this 1D approach.
We know for instance that, because ionised hydrogen shows up in UV spectra, the ionising flux
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of ηCarinae A in our models should be above the magical value of ≈ 4.8 ·1051 s−1. Furthermore,
we should abandon hope of constraining the ionization front for hydrogen to the value derived
by Hillier et al. (2001), as it is made practically impossible by its intrinsically unstable nature.

So, what could be the origin of the paradox posed by the stable front at roughly 120 AU
derived by Hillier et al. (2001) and the unstable front predicted theoretically and obtained using
a 1D numerical study? We must realize that our result is over-simplified; the instability is real
in a pure hydrogen gas, but will disappear with the introduction of the myriad spectral lines
(mostly by Fe) that have a so-called line blanketing effect on stellar spectra.

Given these difficulties, perhaps the most sensible choice for a initial effort to model the
ionised WWIR is to omit the primary star altogether. This may seem an oversimplification at
first glance, but there are several arguments for this approximation. First, the primary source
will sustain an ionised region (in hydrogen) that spans roughly 250 AU in diameter and less
than 0.05% of the volume of the large box (see Fig. 9.9). This volume is too close to the central
source to directly affect the ionization fraction at the regions where the forbidden line emission
is to be studied. It may, however, influence the ionization structure further away indirectly by
reducing the opacity for photons from the secondary source. We expect that this would primarily
result in UV flux from the primary penetrating the WWIR more easily, effectively enlarging the
the ionised fraction on the far side of the primary source (to the left). For an observer on earth,
this region is, at apastron, located behind the two sources and therefore obscured by the dense
primary wind anyway. Second, one may argue that it is likely that, because the ionised regions
encompasses both stars and the densest part of the WWIR, photons from the primary also reach
the right part of the simulation volume. This argument relies, however, on the assumption that
the ionised region is indeed spherical and therefore penetrates the WWIR toward the secondary
star. This assumption is likely incorrect given the high optical depth of the WWIR. In other
words, we would be applying a model based on spherical symmetry to a region that clearly has
a very asymmetrical geometry.

9.4.2 Three-dimensional RT of the secondary star

In this section we explore the ionization structure resulting from the secondary star’s UV flux.
Motivated by the difficulties discussed in the previous section, we neglect the influence of the
primary star for the moment, a simplification the validity of which will be further assessed in
future work.

Convergence with resolution

We apply RT on both the large and the small simulation volume at apastron to verify if the
large volume has sufficient resolution in the central region to describe the RT accurately around
the ionising source. These simulations are performed with photo-ionization and hydrogen only.
These simplifications are not likely to influence the results of this section, however.

Figure 9.10 shows the small box and the corresponding part of the large box side-by side.
The size of Delaunay simplices gives a good idea of the resolution difference between the two
meshes. One possible effect of insufficient resolution in the WWIR is that features which may be
critical to the RT are smoothed away. The WWIR will therefore be less compressed with a less
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Figure 9.9: Position of the ionization front of hydrogen from the 1D model of Hillier et al.
(2001). Left: Large box. Right: Small box.

Figure 9.10: Comparison of the resolution of the large and the small box (inset). In the small
box, the secondary star is easily visible whereas in the large box simulation it is almost lost in
the WWIR.
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resolved contact discontinuity. For the optical depth through the WWIR this is not likely to be
very important as it essentially reflects the amount of matter present along a line of sight and is
therefore not sensitive to small scale features. For the recombinations, which play an important
role in this system, the precise density distribution is important, because the recombination rate
scales with the square of the density. If the difference in resolution is important we expect flux
from the secondary source to penetrate the WWIR to a lesser degree in the small box.

Figure 9.11 shows the same region for the two simulation boxes after the ionization region
of hydrogen has stabilized. Apart from the obvious differences in resolution, the shape and size
of the ionised regions are remarkably similar. We therefore conclude that, at least at apastron,
the large simulation box captures all relevant detail of the inner region to guarantee plausible
results at larger distances from the sources. Now that we have established this important fact,

Figure 9.11: Comparison of the RT solution for the central region of the large box (left) and
the complete small box (right).

we turn to the physical interpretation of the ionization region. The first interesting observation
is that the ionization front is not trapped within the WWIR but rather extends into the primary
wind. This results in an approximate hour-glass configuration of moderately ionized (neutral
fractions larger than 10−3) hydrogen.

The influence of collisional ionizations

The shocks induced by the violent wind-wind interaction are able to heat the gas to temperatures
well above those where collisional ionizations become important. Although the SPH simula-
tions do not include anything beyond adiabatic cooling, they give a fair idea of the location
and temperatures of the shock-heated gas. In Fig. 9.12 we show a slice through the box with
density and temperature in logarithmic scale. There is a strong anti-correlation between density
and temperature. The low density regions that are heated by shocks appear dark in density and
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bright in temperature. The highest temperatures are seen in the region close to the stars where
the gas has not had time to cool by adiabatic expansion.

Figure 9.12: Left: Number density of hydrogen for the WIND900 box. Right: Temperature of
the same cut.

As a first approach, we apply collisional ionization equilibrium as an initial condition to the
RT and investigate its influence on the final result. In Fig. 9.13 we show three cuts through
the WIND900 box: the first with only collisional ionizations, the second with only photo-
ionizations and the third a combination of both. All three simulations are hydrogen only.

Figure 9.13: Neutral fractions of hydrogen for the WIND900 box. Left: Collisional ionizations
only. Centre: Photo-ionizations only. Right: Collisional- and photo-ionizations combined.

Adding photo-ionizations results in a higher ionization fraction in the region right of the
stars where the conical WWIR opens up towards the observer. The contribution from the colli-
sional ionizations is primarily in the shocked but tenuous ‘fingers’ that extend into the left part
of the simulation volume.



186 Connecting the dots

The influence of helium

Until now, we have treated the gas as if it consisted of pure hydrogen. In reality the helium
abundance (in number) is 0.2 relative to hydrogen (Hillier et al. 2001). In this section we
include helium and study its influence on the shape and size of the ionization region. One
expected result is that, because the recombination rate for doubly ionized helium is roughly an
order of magnitude larger than that of hydrogen, the ionized volume will be smaller and dense
regions will be able to sustain a higher neutral fraction.

First we will look at the result of photo-ionization only. Figure 9.14 shows the hydrogen
ionization fronts superimposed on a cut through the simulation box at apastron, including hy-
drogen only (black contours) and both hydrogen and helium (white contours). The differences

Figure 9.14: Ionisation front position for simulations including hydrogen (black contours) and
both hydrogen and helium (white contours) Left: Large box. Right: Small box.

between the results with and without the addition of helium are dramatic. Including helium
reduces the ionised region considerably. Moreover, the ionised region is now confined to the
low density secondary wind, implying that the WWIR is capable of shielding the ionising flux
from the secondary star.

In Fig. 9.15 we show the fractions of (from left to right) HI, HII, HeI, HeII and HeIII for
the large box simulation at apastron (top row) and the small box at apastron (bottom row). The
regions of doubly ionised helium overlap almost completely with those of ionised hydrogen.
In other words, HII and HeIII are strongly correlated. As expected, HI and HeI share a similar
dependence. The structure of HeII is more involved. It is seen in the WWIR as a barrier between
neutral and doubly ionised helium.
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Figure 9.15: Fractions of (from top to bottom) HI, HeI, HeII and HeIII for the large box simu-
lation at apastron (left) and the small box at apastron (right).
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9.4.3 Evolution of the ionization structure with phase

In this section we study the shape and size of the ionised regions at two distinctly different
parts of the orbit, apastron and periastron. In Fig. 9.2 we can already see that at periastron, the
secondary star is embedded inside a cocoon of dense material as it ‘plunges’ through the wind of
the primary. At apastron the situation is very different in that the line of sight from an observer
on earth towards the secondary star passes through the tenuous cone filled with the un-shocked
secondary wind. From these observations, one would expect the ionization structure to be more
confined during the periastron passage, and more extended around apastron.

In Figure 9.16 we show the ionized regions used in Madura et al. (2010) and Madura et al.
(2011) at apastron (left) and periastron (right) for the large box simulation. These regions have
been based on simple geometrical criteria combined with a density threshold. In Figure 9.17

Figure 9.16: Ionisation regions at apastron (left) and periastron (right) as used in Madura et al.
(2010) and Madura et al. (2011). Spatial dimensions are indicated in semi-major axes (horizon-
tal scale) and degrees on the sky (vertical scale). Although simplified, this approach conforms
to our basic intuition that the ionized regions are small at periastron, large at apastron and are
confined to the right side of the domain due to shielding of the WWIR.

we show the hydrogen-only ionization-front of our simulations at the same phase as Fig. 9.16.
The ionized region at periastron is significantly smaller than at apastron. This is expected as
the secondary star is now embedded in the primary wind at a distance less than 2 AU from the
primary star. At this location, the wind is much denser (about a factor of 200) than at apastron.
However, it is significantly larger than the virtually non-existent ionization region at periastron
shown in Fig. 9.16 .
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Figure 9.17: Ionisation front position for simulations including hydrogen only at apastron (left)
and periastron (right).

9.4.4 Preliminary study of RT on AMR data

We have performed a hydrogen-only RT run on the FLASH snapshot shown in Fig. 9.5. This
snapshot is located somewhere between apastron and periastron, which is expected to give a
result that lies between these two extremes. In Fig. 9.18 we show the stable ionization structure
of hydrogen for this snapshot next to the density cut from Fig. 9.5. We can directly see that the
only completely neutral part of the simulation is the region of high density around the primary
source and a sharp shadow behind that structure. The rest of the volume is ionised to a high
degree (with neutral fractions lower than 10−5 everywhere except in the completely neutral
zone).

This ionization structure is in stark contrast to that obtained with the SPH-based simulations
shown above. There the ionization front was effectively halted by the dense WWIR in the
apastron snapshots. There are two reasons that could account for this inconsistency. First, the
mass loss rate for this density field is a factor of four smaller than the one used in the SPH
simulations. Second, the stars are not at their maximum separation and therefore the incident
flux on the WWIR is somewhat higher. To see if these two effects are the reason behind the
observed behaviour, we performed a simulation with the same mass-loss-rate as used in the
SPH simulations, and post-processed a snapshot (almost) at apastron. The resulting ionization
structure is shown in Fig. 9.19. The region to the left of the WWIR is now much less ionized
than in Fig. 9.5. Nevertheless, ionizing radiation from the secondary star still penetrates the
WWIR, which is in accordance with the results of Sect. 9.4.2. A next step will be to incorporate
helium in these results as well and see if the ionization front is trapped in the WWIR as observed
for the SPH simulations.
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Figure 9.18: Neutral fractions of hydrogen for the AMR FLASH simulation of Fig 9.5. Left:
Total hydrogen number density. Right: Neutral fraction of hydrogen.

Figure 9.19: Same as Fig 9.18, but at apastron and with a mass-loss-rate of 1 × 103 M�/yr for
the primary wind.

9.5 Summary

• We have performed RT post-processing of both SPH and AMR data, although the latter
is very preliminary.

• The SPH results converge between simulations with different scales and we are, therefore,
confident that the large box simulations capture the necessary detail close to the sources
in order to correctly predict the ionization structure further away from the centre.

• The explorations of Sect. 9.4.2 suggest that the inclusion of collisional ionizations changes
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the ionization structure of hydrogen most notably in the under-dense ‘fingers’ that form
between the dense shells around the binary system. These regions are effectively shielded
from the ionising flux of the secondary star and therefore do not appear if only photo-
ionizations are used.

• The influence of the primary star on the overall ionization structure is not expected to be
large but this has not been investigated extensively. The results of Sect. 9.4.1 suggest,
however, that inclusion of the primary source is a non-trivial endeavor which id beyond
the scope of this explorative study. We plan to come back to this issue in future work.

• The inclusion of helium has a profound impact on the size and shape of the ionised region.
If the gas is treated to consist only of hydrogen, the WWIR is completely ionised, whereas
it is able to trap the ionization front of both hydrogen and helium if the latter element is
added in the abundance nHe/nH=0.2.

• In Section 9.4.3, we compare the simplified approach used in Madura et al. (2010) and
Madura et al. (2011) to full radiative transfer simulations. Although the general trends
are similar and conform to expectation, the differences are substantial. The extent of the
ionization region at apastron is more confined in the result based on RT. Also, the ionised
region obtained with the SimpleX method does not disappear at periastron in contrast to
the simpler model.

• The preliminary results of Sect. 9.4.4 suggest that the (hydrogen only) ionization front
has the tendency to penetrate significantly deeper into the primary wind for the AMR
hydro. We have explicitly verified that this is not due to a more tenuous wind.

Given the results presented in this chapter we are confident that the hydrodynamical data
available is suitable for post-processing with the SimpleX method and that a further study is
feasible. From the ionization structures presented here, improved models for the formation of
forbidden line emission can be constructed with little effort. The resulting synthetic observa-
tions will refine those presented in Madura et al. (2010); Madura et al. (2011) in two important
ways. First, they will provide a more detailed and self-consistent spatial constraint for the
forbidden line emission. Second, the addition of helium will immediately provide an extra
observable in the form of blue-shifted line emission from helium.
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Het eerste licht

H et ontstaan van het heelal heeft de mensheid al sinds de vroegste beschavingen bezig ge-
houden. Toch heeft het tot de vorige eeuw geduurd voor een coherent model ontwikkeld

was voor het ontstaan en de evolutie van het heelal, de zogenaamde oerknaltheorie. Deze the-
orie staat aan de basis van het model dat de vorming van de structuren in het heelal, zoals
planeten, sterren en melkwegstelsels beschrijft. Een belangrijk ingrediënt dat nog onbreekt in
de theorie van de vorming van sterrenstelsels is de invloed van de straling van de eerstgevormde
sterrenstelsels op het gas in het heelal en hoe dat de vorming van latere sterrenstelsels beı̈nvloed
heeft.

De vorming van structuur in het heelal

De oerknaltheorie beschrijft het ontstaan van het heelal vanuit een beginpunt, ongeveer 13,7
miljard jaar geleden, waarin tijd, ruimte, materie en energie hun oorsprong vonden. Tijdens de
hierop volgende uitdijing van het heelal ontstonden in de loop van miljarden jaren sterrenstel-
sels, sterren en planeten, waar de aarde er één van is. De oerknaltheorie ontleent haar fundament
aan de algemene relativiteitstheorie die Albert Einstein heeft ontwikkeld aan het begin van de
vorige eeuw. Uit deze theorie volgt dat het heelal niet noodzakelijkerwijs statisch is, maar kan
uitdijen of inkrimpen. Het heeft lang geduurd voordat een uitdijend heelal een brede weten-
schappelijk steun kreeg, maar door de vele waarnemingen die de theorie ondersteunen vormt de
oerknaltheorie nu het kader waarbinnen sterrenkundigen werken.

Het eerste observationele bewijs voor de oerknaltheorie werd geleverd door Edwin Hubble
in 1929. Hij zag dat sterrenstelsels van ons af bewegen met een snelheid die groter wordt naar-
mate ze verder van ons af staan. Hieruit volgt dat het heelal niet statisch is maar uitdijt. Recente
waarnemingen hebben de uitdijingssnelheid van het heelal met toenemende nauwkeurigheid
bepaald. Een ander belangrijk bewijsstuk van de oerknaltheorie wordt gevormd door de kos-
mische achtergrondstraling. Deze werd voor het eerst waargenomen in 1965 door Penzias en
Wilson, die voor deze ontdekking de Nobelprijs ontvingen. De achtergrondstraling is ontstaan
toen het heelal ongeveer 380 000 jaar oud was. Het extreem hete plasma van vrije protonen en
elektronen waaruit het heelal tot dan toe had bestaan was op dat moment ver genoeg afgekoeld
om hen te laten recombineren tot waterstofatomen. Dit resulteerde erin dat de hoeveelheid vrije
elektronen, dus elektronen die niet in een atoom zitten, drastisch afnam. Vrije elektronen heb-
ben een veel grotere kans dan atomen om een interactie met straling aan te gaan en het daarmee
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Figuur 1: De vorming van het kosmische web sinds de oerknal, ongeveer 13,7 miljard jaar
geleden. Met dank aan Ben Oppenheimer.

van richting te veranderen. Voordat de waterstofatomen zich konden vormen was het dus onmo-
gelijk voor straling om vrij door het heelal te reizen. Omdat de meeste vrije elektronen gebruikt
werden voor de vorming van atomen, kon straling uit dit tijdperk ontsnappen in een plotseling
doorzichtig geworden heelal. Het licht uit dit markante moment in de geschiedenis van ons
heelal nemen we vandaag de dag waar als de kosmische achtergrondstraling.

Een uitdijend heelal zorgt ervoor dat de totale dichtheid van de materie in het heelal steeds
kleiner wordt. Immers, de hoeveelheid materie in het heelal blijft dezelfde, maar het heelal zelf
wordt groter. Het gas in het heelal zal op deze manier steeds ijler worden en daardoor afkoelen,
zonder dat sterren gevormd worden. Hoe kan het dan dat er toch sterrenstelsels en planeten
als de aarde zijn? Om die vraag te beantwoorden moeten we eerst bekijken uit welke materie
het heelal precies bestaat. Het grootste gedeelte van alle materie in het heelal, ongeveer 83 %,
bestaat uit materie waarvan we de aard niet kennen. In tegenstelling tot de ‘gewone’ materie, die
we kunnen waarnemen doordat het licht uitstraalt, kunnen we deze materie niet zien. Het wordt
daarom ook wel donkere materie genoemd. De enige manier waarop het bestaan van donkere
materie afgeleid kan worden is door de werking van de zwaartekracht. De precieze aard van
donkere materie is voorlopig nog een raadsel. Het vormt echter een belangrijk onderdeel van
de gravitationele instabiliteitstheorie, welke het ontstaan van sterrenstelsels beschrijft.

De gravitationele instabiliteitstheorie is gebaseerd op uiterst precieze waarnemingen van
de kosmische achtergrondstraling. Deze laten zien dat er in het heel vroege heelal minieme
dichtheidsfluctuaties in de materie waren. Omdat de zwaartekrachtswerking van gebieden met
hogere dichtheid groter is, wordt materie uit minder dichte gebieden hiernaartoe getrokken.
Door dit zichzelf versterkende proces ontstaat er langzaam een spinnenweb-achtige structuur
van materie in het heelal, die het kosmische web genoemd wordt. Figuur 1 toont hier een
voorbeeld van.

In tegenstelling tot ‘gewone’ materie zoals gas, heeft donkere materie alleen maar interactie
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door middel van zwaartekracht. Hierdoor zal het proces van gravitationele samentrekking door-
gaan tot een gravitationeel gebonden object gevormd is. Deze objecten worden halo’s genoemd.
De halo’s vormen de plek waar sterren en sterrenstelsels ontstaan. Omdat de dichtheidsfluctu-
aties waaruit het kosmische web ontstaat op kleine schaal een grotere zwaartekrachtswerking
hebben dan op grote schaal, zullen de eerste gravitationeel gebonden objecten klein zijn. Dit
proces wordt ook wel hiërarchische structuurvorming genoemd. Omdat eerst kleine en daarna
grote structuren ontstaan, zijn de grote structuren in het heelal opgebouwd uit kleinere structu-
ren. Zo zijn sterren de eerste objecten die in het heelal gevormd zijn. Later zijn grotere objecten
als sterrenstelsels ontstaan, die uit individuele sterren bestaan.

Voor de vorming van objecten van ‘gewone’ materie zijn naast de zwaartekracht ook andere
processen belangrijk, zoals de temperatuur en druk van het gas. Dit maakt het veel moeilijker
te beschrijven dan donkere materie. Uiteindelijk zal het gas in de halo’s van donkere materie
onder invloed van de zwaartekracht steeds verder samentrekken tot uiteindelijk de ineenstorting
leidt tot de vorming van sterren en daarmee de geboorte van de eerste lichtbronnen in het heelal.

Het tijdperk van reı̈onisatie

De eerste lichtbronnen hebben een grote invloed gehad op de vorming van latere structuren,
zoals sterren en sterrenstelsels. De details van dit proces zijn nog grotendeels onbekend. De
straling van de eerste bronnen zorgde voor verhitting en ı̈onisatie van het inmiddels afgekoelde,
neutrale gas. Dat betekent dat de elektronen en protonen, die tijdens het tijdperk van recombina-
tie atomen hadden gevormd, opnieuw gescheiden werden, een proces dat reı̈onisatie genoemd
wordt. Deze fase in de leeftijd van het heelal wordt daarom het tijdperk van reı̈onisatie ge-
noemd. Gedurende dit tijdperk kreeg het heelal zijn huidige aanblik van hooggeı̈oniseerd gas
met hier en daar dichte wolken neutraal gas waarin sterren gevormd worden.

Het tijdperk van reı̈onisatie is met veel vragen omgeven. Het is bijvoorbeeld onbekend
welke lichtbronnen verantwoordelijk waren voor dit proces of wanneer het allemaal precies
plaatsvond. Het enige wat we echt zeker weten is dát reı̈onisatie heeft plaatsgevonden, en dat
het ongeveer 12,8 miljard jaar geleden geëindigd is. Omdat reı̈onisatie zo lang geleden plaats-
gevonden heeft, zijn directe waarnemingen met telescopen op zijn zachtst gezegd uitdagend.
Er zijn echter wel indirecte observaties die ons begrip van reı̈onisatie hebben vergroot. Waar-
nemingen van heldere kernen van sterrenstelsels (zogenaamde quasars) die zeer ver weg staan
laten zien dat er rond 12,8 miljard jaar geleden een overgang van neutraal naar geı̈oniseerd gas
plaatsvond. Dit wijst erop dat reı̈onisatie rond die tijd geëindigd is. Daarnaast zijn er sporen
van reı̈onisatie te zien in waarnemingen van de kosmische achtergrondstraling. Hieruit volgt
dat reı̈onisatie ongeveer 13,3 miljard jaar geleden gebeurde. Waarschijnlijk is reı̈onisatie dus
niet plotseling gebeurd maar verspreid over langere tijd, waarbij eerst het gas rond lichtbronnen
geı̈oniseerd werd. Wellicht zijn we in de nabije toekomst in staat hiervan de eerste waarne-
mingen te doen. Een voorbeeld van een veelbelovende bron van observationele kennis over
reı̈onisatie is Low Frequency Array (LOFAR), een radiotelescoop die grotendeels in Nederland
staat. Er worden momenteel pogingen gedaan om met dergelijke radiotelescopen de verdeling
van neutraal en geı̈oniseerd gas tijdens reı̈onisatie waar te nemen.

Omdat het zo moeilijk is het tijdperk van reı̈onisatie direct waar te nemen met telescopen,
komt de meeste van onze kennis hierover van computersimulaties. Het simuleren van reı̈onisatie
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is echter een grote uitdaging, zelfs met de snelste supercomputers. De reden hiervoor is niet al-
leen dat er veel ingewikkelde fysische processen gesimuleerd moeten worden, maar ook de
enorme schaal waarop het plaatsvindt. Het is noodzakelijk om voor de simulaties een volume
te gebruiken dat groot genoeg is om representatief te zijn voor het hele heelal. Alleen op deze
manier kun je garanderen dat de melkwegstelsels in de simulatie de diversiteit aan stelsels in het
echte heelal benaderen. Dit is noodzakelijk omdat alle soorten en maten sterrenstelsels bijdra-
gen aan het reı̈onisatieproces. Het is dus ook zaak om sterrenstelsels met een lage massa in de
simulatie op te nemen. Door hun grote aantal zijn deze verantwoordelijke voor een behoorlijke
bijdrage, al is hun lichtkracht per stuk niet groot. Dat betekent dat in de simulatie naast hele
grote ook relatief kleine structuren moeten voorkomen. Hierdoor wordt er met deze simulaties
hoge eisen gesteld aan zowel de supercomputer waarop de simulaties uitgevoerd worden als de
computercode die alle fysische processen beschrijft. Pas de laatste jaren zijn simulaties in de
buurt gekomen van deze eisen.

Er zijn drie belangrijke ingrediënten voor een succesvolle reı̈onisatiesimulatie. De eerste is
donkere materie, die ongeveer 83% van alle aanwezige materie vormt. Omdat donkere materie
alleen maar interactie heeft door middel van zwaartekracht is dit relatief eenvoudig te simule-
ren. Desondanks is het pas recentelijk gelukt om in een groot genoeg volume de vorming van
kleine halo’s correct te representeren. Het tweede ingrediënt is gas. Zonder gas vormen zich
geen sterren en zal er dus ook geen straling zijn om reı̈onisatie te doen plaatsvinden. Gas is
echter een stuk moeilijker te simuleren dan donkere materie omdat er meer fysische processen
een rol spelen dan bij donkere materie. Het is bijvoorbeeld belangrijk de invloed van druk en
temperatuur van het gas te berekenen. Hierdoor is het tot nu toe onmogelijk geweest de evolutie
van gas mee te nemen in reı̈onisatiesimulaties op grote schaal. In plaats daarvan wordt vaak
aangenomen dat het gas de evolutie van de donkere materie volgt. Op grote schaal is dit waar-
schijnlijk een goede aanname, omdat van alle krachten die werken op het gas, de zwaartekracht
domineert. Op kleinere schaal gaat deze aanname echter niet op, met name in de gebieden
waar sterren en sterrenstelsels gevormd worden. In plaats van de evolutie van het gas exact te
berekenen gebruikt men hier de kennis over de vorming van sterrenstelsels om een uitspraak
te kunnen doen over de stelsels die ontstaan in de gravitationeel gebonden halo’s van donkere
materie. Deze sterrenstelsels vormen de bronnen die het heelal geı̈oniseerd hebben.

Het derde belangrijke ingrediënt van reı̈onisatiesimulaties is stralingstransport. Stralingstrans-
port beschrijft hoe licht door het gas reist en wat voor invloed het daarbij uitoefent op het gas.
Straling zorgt er niet alleen voor ı̈onisatie maar ook voor verhitting van het gas. Van al deze
ingrediënten is stralingstransport het lastigste om te simuleren. Straling reist namelijk met de
lichtsnelheid en kan dus heel makkelijk het totale simulatievolume doorkruisen. Dat betekent
dat op elk punt in het gesimuleerde heelal de invloed van straling van elk sterrenstelsel meege-
nomen moet worden. Gezien de grote hoeveelheid sterrenstelsels is dit een moeilijk probleem
voor simulatiecodes. Tot nog toe heeft de complexiteit van stralingstransport ervoor gezorgd
dat er maar weinig simulaties gedaan zijn van reı̈onisatie in een volume dat representatief is
voor het heelal. Dit zal waarschijnlijk in de nabije toekomst veranderen.



Het raadselachtige object ηCarinae

Ook op de schaal van sterren zijn er veel fenomenen waarin stralingstransport een belangrijke
rol speelt. In dit proefschrift bekijken we een uitzonderlijke dubbelster ηCarinae waarvan nog
belangrijke vragen onbeantwoord zijn.

ηCarinae bevindt zich ongeveer 2.3 kpc van ons vandaan in de Carinae nevel en is een van
de helderste bronnen van infrarode straling aan de hemel. Dit duidt erop dat bijna de totale
lichtkracht van (equivalent aan grofweg 5.0 × 106 zonnen) eerst geabsorbeerd en vervolgens
weer uitgestraald is door stofdeeltjes. Het overgrote deel van dit stof bevindt zich in de bipolaire
Homunculus nevel (zie Figuur 2), het resultaat van een 20-jarige periode van zwaar massaverlies
en toename van lichtkracht in de 19e eeuw, de Great Eruption (grote uitbarsting).

De ‘Great Eruption’ en de Homunculus nevel

In 1837 werd ηCarinae plotsklaps een van de helderste sterren aan de hemel. Tegelijkertijd werd
er een grote hoeveelheid gas uitgestoten door de dubbelster. De resulterende Homunculus (wat
zich laat vertalen als ’mannetje’, geı̈nspireerd op lage resolutie waarnemingen) nevel bestaat uit
twee lobben die vrijwel sferisch lijken en in 1950 elk een diameter hadden van ongeveer 0.1
parsec (ofwel 3× 1012 km, grofweg 400 keer groter dan ons zonnestelsel). Door zijn uitdijı̈ngs-
snelheid van ongeveer 550 km/s wordt de nevel elk jaar 0.66% groter. De ‘Great Eruption’
is omgeven door raadselen. Het is onduidelijk welk mechanisme verantwoordelijk is voor de
waargenomen verschijnselen en dit blijft tot op de dag vandaag een actief onderzoeksgebied.

Massa-schattingen van de Homunculus nevel

De totale, als licht uitgestraalde energie tijdens de ‘Great Eruption’ bedraagt zo’n 1049.5 ergs
(3.2 × 1042 Joules). Schattingen van de kinetische energie gebaseerd op de expansie-snelheid
en massa-schattingen zijn van de orde van 1049 ergs, slechts twee ordegrootte kleiner dan een
supernova explosie! Zulke extreme hoeveelheden energie zijn niet te verklaren binnen het kader
van bekende mechanismen voor straling-gedreven massaverlies. Dit suggereert dat de ’Great
Eruption’ het resultaat is van een nog onbekend sterrenkundig fenomeen.

Omdat het gas in de Homunculus voor het overgrote deel verscholen ligt achter een laag stof,
is het zeer lastig om de aard en massa ervan direct te bepalen. Schattingen van de totale massa
zijn daarom bijna uitsluitend gebaseerd op waarnemingen van het infrarode licht dat uitgestraald
wordt door de stofdeeltjes. Om de waargenomen infrarode straling te vertalen naar een massa
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Figuur 2: Links: Hubble Space Telescope waarneming van ηCarinae (Morse et al. 1998).
Rechts: ηCarinae in het IR (op 24.5 µm; Smith et al. 2002).

van het gas moeten er aannames worden gedaan met betrekking tot de chemische samenstelling
van de stof-deeltjes, hun maat en vorm en, uiterst belangrijk, een realistische verhouding van
stof en gas. Elk van deze aannames is tot op heden niet uitputtend onderzocht resulterend in
een grote spreiding van massa-schattingen in de literatuur van 1 tot 70 zonsmassa’s.

Baanparameters

Een observationeel resultaat dat inmiddels wijde acceptatie geniet is de periode van de dub-
belster van 5.538 jaar. Ook lijkt het er inmiddels sterk op dat de baan sterk eccentrisch is; de
sterren volgen een baan om hun gemeenschappelijke zwaartepunt met de vorm van een sterk
afgeplatte ellips.

Er is recentelijk substantı̈ele vooruitgang geboekt in de bepaling van de baanparameters (die
de vorm, duur en oriëntatie van de baan beschrijven) door het combineren van Hubble Space
Telescope waarnemingen met gas-dynamische simulaties. Deze techniek maakte het mogelijk
om de draai-as van de dubbelster in drie-dimensies vast te leggen. Uit deze studie blijkt de
draai-as (binnen de onnauwkeurigheid van de methode) samen te vallen met de symmetrie-as
van de Homunculus nevel, een resultaat dat een sterk verband suggereert tussen de baan van
de dubbelster en de nevel. Om deze methode te verfijnen zal stralingstransport moeten worden
toegepast op de gas-dynamische simulaties. We komen hier in Hoofdstuk 9 op terug.
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Dit Proefschrift

In dit proefschrift behandelen we verschillende aspecten van de stralingstransportcode SimpleX.
In het eerste deel analyseren we de werking van de methode en beschrijven recente uitbreidin-
gen. In het tweede deel passen we SimpleX toe op verschillende astrofysische problemen.

Inleiding

We beginnen in het inleidende hoofdstuk met een algemene introductie, waarbij we wat dieper
op de stof ingaan dan in deze Nederlandse samenvatting.

Hoofdstuk 1

In dit hoofdstuk beschrijven we de SimpleX simulatiecode voor stralingstransport welke de rode
draad door dit proefschrift vormt. Om de reis van lichtdeeltjes oftewel fotonen door gas te be-
schrijven gebruikt SimpleX een speciaal rekenrooster zonder vaste structuur. SimpleX gebruikt,
in plaats van de rechthoekige roosters die in veel traditionele stralingstransportmethodes toege-
past worden, een rooster dat gebaseerd is op een verdeling van discrete punten. Deze punten
representeren het fysische medium (bestaande uit gas en eventueel stofdeeltjes) en de concen-
tratie van punten is gerelateerd aan de dichtheid van dat medium. Dit betekent dat meer punten
komen te staan op plekken waar de gasdichtheid hoger is, wat ervoor zorgt dat de relevante
fysische processen beter opgelost kunnen worden. De punten worden verbonden door middel
van een triangulatieprocedure, de zogenaamde Delaunay triangulatie. Dit houdt in dat in een
3-dimensionale simulatie elk punt verbonden wordt met zijn (ongeveer) 16 dichtsbijzijnde pun-
ten. Straling reist over deze triangulatie van roosterpunt naar roosterpunt, waarbij op elk punt
de invloed van de straling op het gas berekend wordt. Het heeft verschillende voordelen om
straling over de triangulatie te laten reizen. Het eerste voordeel hebben we zojuist besproken:
door de dichtheid van punten afhankelijk te maken van de dichtheid wordt de resolutie van de
simulatie vergroot in gebieden waar een hogere nauwkeurigheid wenselijk is. Een ander be-
langrijk voordeel is dat, doordat straling van buur tot buur reist, de rekentijd niet afhankelijk
is van het totale aantal lichtbronnen dat aanwezig is in de simulatie, een complicatie waar vrij-
wel alle traditionele methodes last van hebben. Omdat er in reı̈onisatiesimulaties enorm veel
bronnen aanwezig zijn, zal dit aspect kritiek zijn in de uitvoerbaarheid van de nieuwe generatie
simulaties.

De nadruk van dit hoofdstuk ligt op de recente aanpassingen aan de code. Het is nu bijvoor-
beeld mogelijk om SimpleX op meerdere computers tegelijk te laten rekenen. Dit is essentieel
om simulaties te kunnen doen op supercomputers. Deze aanpak verkort de totale rekentijd en
zorgt ervoor dat de grootte van simulaties niet langer beperkt wordt door het geheugen van
een enkele computer. Ook beschrijven we een nieuwe manier om fotonen over het rooster te
transporteren in gebieden waar er weinig interactie is tussen de straling en het gas, bijvoorbeeld
als het gas hooggeı̈oniseerd is. Deze nieuwe transportmodus zorgt ervoor dat de straling in de
correcte richting blijft reizen.
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Hoofdstuk 2

De SimpleX methode is een relatief nieuwe simulatie-code die op sommige vlakken sterk ver-
schilt van meer traditionele methodes. Het is daarom nodig dat we vertrouwen hebben in de
uitkomsten van SimpleX en uitspraken kunnen doen over de mogelijke onnauwkeurigheden van
de code. In dit hoofdstuk doen we een uitgebreide analyse van de ongewenste effecten die
kunnen optreden als gevolg van de eigenschappen van het rekenrooster dat SimpleX gebruikt.
Hoewel dat rekenrooster vele voordelen kent, zijn er ook nadelen te noemen. Zo blijkt het
dat straling voorkeursrichtingen kan krijgen omdat er variaties optreden in de resolutie van het
rekenrooster. Verder blijkt het dat straling zijn originele richting kan vergeten als het te veel
stappen over het rooster moet zetten. We introduceren oplossingen voor deze problemen en
laten zien hoe ze te voorkomen zijn.

Hoofdstuk 3

Een zeer belangrijk onderdeel van een SimpleX simulatie is het genereren van de roosterpunten
waartussen de straling reist. De plaatsing van de punten is afhankelijk van de locale eigen-
schappen van het gas. Deze eigenschappen worden meestal geëxtraheerd uit een gasdynamica-
simulatie. Er zijn verschillende methoden die de evolutie van gas beschrijven en elk een ander
rekenrooster gebruiken. Het is dus belangrijk dat de roosterpunten voor SimpleX gemaakt kun-
nen worden uit allerlei gasdynamicasimulaties. Dit hoofdstuk beschrijft hoe op een efficiënte
wijze een rekenrooster gemaakt kan worden waarop stralingstransport met SimpleX gedaan kan
worden.

Hoofdstuk 4

De invloed van straling op het gas is tweeledig: niet alleen wordt het gas geı̈oniseerd, ook de
temperatuur verandert onder invloed van licht. In dit hoofdstuk beschrijven we fysische proces-
sen die aan de SimpleX code zijn toegevoegd. De belangrijkste zijn verhittings- en afkoelings-
processen waarbij we zowel waterstof als helium gas in acht nemen. Om de verhitting van het
gas doormiddel van bestraling met licht correct te beschrijven moeten we meerdere frequenties
(de algemenere term voor ‘kleuren’ die ook toepasbaar is op licht buiten het visuele spectrum)
straling meenemen. We beschrijven in detail hoe we dat doen.

Hoofdstuk 5

In dit hoofdstuk verkennen we een alternatieve formulering van stralingstransport over een Del-
aunay triangulatie. Het is mogelijk om de reis van fotonen (of andere deeltjes) te beschrijven
als een reis over een zogenaamde graaf. Een graaf is een verzameling punten met verbindingen
ertussen. De Delaunay triangulatie voldoet aan deze beschrijving en dus kan stralingstransport
op deze triangulatie worden behandeld met de wiskundige gereedschappen van grafentheorie.
We laten zien dat deze formulering voor bepaalde soorten simulaties zeer veel efficı̈enter is dan
het ‘gewone’ stralingstransport dat we in rest van dit proefschrift gebruiken.
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Hoofdstuk 6

Zoals eerder in de samenvatting aan bod kwam, zijn computersimulaties tot op heden de grootste
bron van kennis over het tijperk van reı̈onisatie. Het is daarom van vitaal belang dat verschil-
lende studies, met verschillende methodes dezelfde resultaten produceren. Alleen dan kunnen
we vertrouwen hebben dat deze resultaten iets met de werkelijkheid te maken hebben. Een
van de onderwerpen waarover momenteel nog geen overeenstemming is bereikt heeft te ma-
ken met de volgorde waarop de verschillende componenten van het kosmische web werden
geı̈oniseerd. De meeste studies beschrijven een situatie waarin straling eerst de dichte gebieden
waar de bronnen huizen ı̈oniseert, en vervolgens gebieden van steeds minder hoge dichtheid.
Er zijn echter ook auteurs die een ommekeer waarnemen waarbij filamenten, structuren van
middelmatige dichtheid, het allerlaatst geı̈oniseerd worden.

In dit hoofdstuk verifı̈eren we deze afwijkende resultaten door SimpleX toe te passen op de
gas/donkere materie simulaties van de belangrijkste ‘afwijkende’ studie. Het blijkt dat we de
resultaten van de originele studie niet kunnen reproduceren met SimpleX en gaan vervolgens
dieper in op de mogelijke oorzaak van de waargenomen discrepantie.

Hoofdstuk 7

De dramatische Homunculus nevel rond de dubbelster ηCarinae is in een periode van minder
dan 20 jaar tot stand gekomen in een zeer explosieve episode van massaverlies. Om dit fe-
nomeen beter te begrijpen moeten we eerst weten hoeveel energie er voor nodig was om de
Homunculus nevel te maken. We doen dit door te kijken naar de kinetische energie van de nevel
te bepalen. Daarvoor moeten we twee dingen te weten zien te komen, de expansiesnelheid en de
totale massa van de Homunculus. De snelheid is vrij nauwkeurig bekend maar de totale massa
is nog onzeker. De massa van het gas is heel lastig direct te bepalen omdat het voor een groot
deel afgeschermd wordt door een laag stof. De meest veelbelovende methode om er toch achter
te komen hoeveel gas er in de Homunculus zit, is door de totale stof-massa te bepalen en daaruit
de massa van het gas af te leiden. Het stof is namelijk veel makkelijker waar te nemen.

In dit hoofdstuk passen we de voorgestelde techniek toe op een manier die uitgebreider en
preciezer is dan die van andere studies tot op heden. We laten de computer een grote hoe-
veelheid stofmodellen produceren en kijken systematisch welke het beste de waarnemingen
beschrijven. Hieruit leiden we een ondergrens voor de totale massa in de Homunculus af te-
zamen met voorspellingen voor de chemische samenstelling van het stof. Onze bevindingen
dat de Homunculus zwaarder is dan 20 zonsmassa’s bevestigen het vermoeden dat de vorming
van de nevel een onbegrepen fenomeen is. De energie die opgeslagen ligt in de Homunculus
is namelijk vergelijkbaar met die van een supernova-explosie. In tegenstelling tot het lot van
sterren die een supernova-explosie ondergaan, hebben de sterren in ηCarinae de vorming van
de Homunculus nevel overleefd. Er is vooralsnog geen mechanisme bekend dat zoveel energie
kan vrijmaken in zo’n korte tijd en de ster laat voortbestaan.

Hoofdstuk 8

Recentelijk zijn er gedetailleerde waarnemingen gedaan met de Hubble Space Telescope aan
het binnengebied van ηCarinae en met name de bewegingen van het gas aldaar. Door gas-
dynamische simulaties van de interactie van de sterrenwinden van de dubbelster te vergelijken
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met deze waarnemingen zijn er belangrijke aspecten van ηCarinae aan het licht gekomen. De
gedane analyse zou echter verder verfijnd moeten worden om meer informatie uit de waarne-
mingen te kunnen halen. De belangrijkste tekortkoming van de huidige analyse is dat er geen
straling meegenomen wordt. In dit hoofdstuk onderzoeken we of het mogelijk is om de gas-
dynamische simulaties te bewerken met SimpleX teneinde deze tekortkoming teniet te doen.
We laten zien dat toepassing van SimpleX op de simulaties mogelijk is en bediscussı̈eren ver-
dere verfijningen. De belangrijkste is het toevoegen van helium en in achtname van botsings-
ionisaties (behalve foto-ionisaties). Vooral de toevoeging van helium heeft een grote invloed op
de resultaten.
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