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1
Introduction

We live in an exciting time. The discovery of an enormous number of exoplanets (planets
that revolve around stars other than the Sun) marks one of the most important scientific
findings of this age. Since the detection of the first exoplanet around a main-sequence star
approximately 20 years ago (Mayor & Queloz 1995), over 1800 have now been detected,
and it is becoming clear that the universe is teeming with planets. On average, every star
has a planetary system, and every 5th Sun-like star is orbited by an Earth-like planet.

Already in 1695, Dutch astronomer Christiaan Huygens reached a similar conclusion,
though not supported by observations. In his Cosmotheoros, he wrote:

“What a wonderful and amazing Scheme have we here of the magnificent
Vastness of the Universe! So many Suns, so many Earths, and every one
of them stock’d with so many Herbs, Trees and Animals, and adorn’d with
so many Seas and Mountains! And how must our wonder and admiration
be encreased when we consider the prodigious distance and multitude of the
Stars?”

Huygens’ vision was spot on. Little over three centuries later, we have indeed discovered
many Suns and many Earths. On planets we could study up close, we have discovered
Seas (though none of them made of liquid water) and Mountains.

But we have discovered more than just Earths; we have discovered a very diverse
population of exoplanets. Fig. 1.1 shows the masses and semi-major axes of all known
exoplanets as of January 13, 2015. The Earth (⊕) and the Jovian planets (Jupiter, Saturn,
Uranus, and Neptune) are shown for comparison. Planets appear to come in a lot of
varieties; some very massive and on very wide orbits, others much smaller and on orbits
with periods of only several days. Of particular interest are planets that are located in
the habitable zone, i.e., at a distance from their star where the temperature is such that
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Figure 1.1: Mass and separation of all 1876 exoplanets known as of January 13, 2015. Color-coding
indicates detection method: transit (•); radial velocity (•); direct imaging (•); and other methods
(•). The Earth and Jovian planets are indicated as well. Data from http://exoplanet.eu/.

it allows the presence of liquid water. As of January 2015, 8 small rocky exoplanets
have been discovered that lie in the habitable zone of their parent star, and it is estimated
that 22% of Sun-like stars have a Earth-sized planet orbiting within their habitable zone
(Petigura et al. 2013). If life elsewhere resembles life as we know it, these worlds should
be good places to look for Huygens’ Herbs, Trees, and Animals.

With the realization that planetary systems are common and planets in the habitable
zone are widespread, come questions about their formation. How are planets made? What
determines their characteristics? Today, astronomers have a coarse picture of how planets
are created, though many details prove elusive. The general paradigm dictates that planet
formation takes place inside protoplanetary disks, the left-overs of the star formation pro-
cess. These disks, with sizes up to several 100 AU, consist of mostly hydrogen gas, and
live for several million years. In the disk, the wide variety of gas densities, temperatures,
and intensities of stellar radiation, give rise to complex chemistry, and the presence of
many different molecules, including water, has been confirmed observationally in disks
around young stars. A small fraction of the disk’s mass (∼1%) is accounted for by micro-
scopic dust particles. Suspended in the gaseous nebula, these dust particles collide and
coalesce, growing into aggregates, then boulders, planetesimals, and eventually planetary
embryos. The embryos have sufficient gravity to capture gas from the nebula, and start to
form primitive atmospheres. Eventually, the embryos merge to form fully-grown planets.
The full journey from dust grain to planet constitutes an increase in mass of over 36 orders
of magnitude, and takes place over millions of years.

The key unanswered questions in planet formation are then: what are the key pro-
cesses that make this growth possible, and how do they depend on environment? What
is the inventory of planets, and in particular, of planets in the habitable zone? Focussing

10
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1.1. Overview of the planet formation process

on the planet’s atmosphere and potential to harbor life: what are the principle sources of
organics and volatiles, and what are the processes that played a role in their delivery?

In this thesis, we focus on the first - and least understood - step in the planet-formation
process: the coagulation, through successive sticking collisions, of microscopic dust par-
ticles into planetary building blocks several kilometers across (planetesimals). The struc-
ture of the protoplanetary disk, as well as the composition, size, and shape of the dust
particles determine the efficiency of this growth process. In particular, the dust grain
porosity (a measure for the internal density) plays an central role. For compact particles,
current theories predict several growth barriers, making it very difficult for them to gain
mass and grow larger than a meter in size. In fact, were it not for the observed ubiquity of
exoplanets, one might be tempted to conclude that planetesimal formation is a hopeless
endeavor. However, recent studies suggest dust grains might not be compact at all, but
rather form very open, porous structures. These porous aggregates behave very differ-
ently from compact ones - both aerodynamically and mechanically. As a result, some of
the growth barriers that limit the growth of compact particles might not apply to highly
porous ones.

The principle objective of this thesis is to understand how the microphysics of initially
tiny dust grains influence their potential to coagulate into macroscopic planetesimals. In
other words, how does a grain’s (collisional) history determine its porosity, and how does
that porosity influence the grain’s future? To answer these questions, we start at the
smallest scales, and slowly work our way up. Chapters 2 and 3 deal with the adhesive
contact between micrometer-size spheres, and describe the forces and energies needed
to break and re-arrange single adhesive bonds. In Chapter 4, porous dust coagulation
is modeled in detail in a localized part of the protoplanetary nebula. Then, in Chapter
5, we address the global dust evolution in a full protoplanetary disk, directly connecting
the microphysics of the growing aggregates to the eventual formation of a population of
planetesimals. Chapter 6 focusses on small dust grains in evolved debris disks: the relics
of planet-forming disks.

In the remainder of the introduction, the general concepts of star- and planet forma-
tion (Sect. 1.1) and the perilous journey from dust grain to planetesimal (Sect. 1.2) are
described. Dust microphysics, and its importance to the early stages of planet formation,
is described in Sect. 1.3, and an outline of this thesis is presented in Sect. 1.4.

1.1 Overview of the planet formation process

The standard theory of planet formation is that planets form out of a thin disk of gas
and dust that surrounds young stars (Safronov 1972; Goldreich & Ward 1973). These
protoplanetary disks, or accretion disks, are the natural by-products of star formation,
and their structure was first described by Shakura & Sunyaev (1973) and Lynden-Bell &
Pringle (1974). The main stages of star- and planet-formation, as they are believed to
occur in isolated and low-mass systems, are depicted in Fig. 1.2.

11



Chapter 1. Introduction

Star formation

Figure 1.2: Schematic of the star- and planet formation process for low-mass stars. (a) Molecular
clouds, composed of mostly hydrogen gas, form dark and cold cores. (b) When cores become
massive enough, they collapse under their own gravity. (c) The cloud’s non-zero angular momentum
prevents the material from accreting onto the core, forming an accretion disk. The accretion rate is
very high and angular momentum is removed by a (radial) outflow. (d) Accretion is slowing down,
and the protoplanetary disk, with a typical size of ∼100 AU is clearly visible. (e) The gas in the
protoplanetary disk is slowly dissipated. At the same time, dust particles are colliding, coagulating
into larger grains, and potentially forming planetary building blocks. (f) A planetary system has
formed. Figure from Hogerheijde (1998), after Shu et al. (1987).

1.1.1 Protoplanetary disk formation and structure

Low-mass stars form out of the gravitational collapse of the cold, dense cores of molecular
clouds (Fig. 1.2a). These cores, with sizes .0.1 pc, consist mainly of H2 gas, with about
1% of their mass present in the form of dust. The temperatures are around T ∼ 10−20 K,

12



1.1. Overview of the planet formation process

and gas number densities are of the order of n ∼ 104 − 105 cm−3. When such a core
becomes massive enough, the gas pressure can no longer support its self-gravity, and the
core will start to collapse. The critical mass above which clouds become unstable is called
the Jeans mass

MJ ' 2.9 M�
( T
10 K

)3/2 ( n
104 cm−3

)−1/2
. (1.1)

Thus, the typical mass of an unstable core is close to the mass of our Sun. When a core
exceeds the Jeans mass, it will start to collapse on a timescale comparable to the free-fall
timescale

tff ∼ (Gρ)−1/2 ∼ 105 yr
( n
104 cm−3

)−1/2
, (1.2)

with G the gravitational constant and ρ = nµmH the gas density, written in terms of the
mean molecular mass µ ' 2.34 and the hydrogen mass mH. The collapse of a protostellar
core is depicted in Fig. 1.2b. Describing the collapsing core as a sphere of uniform
density in solid body rotation, and assuming typical ratio of rotational to gravitational
energy of β = 0.02, we obtain a total angular momentum of Jcore ∼ 1054 g cm2 s−1, and a
specific angular momentum of lcore ∼ Jcore/M� ∼ 1020 cm2 s−1. Because of conversation
of angular momentum, the infalling material will create a rotationally supported disk (Fig.
1.2c), the size of which can be estimated by looking at the specific angular momentum in
a Keplerian disk

Rdisk =
l2core

GM�
∼ 100 AU. (1.3)

These disks, dubbed circumstellar disks, protoplanetary disks, or protoplanetary nebula,
are believed to be the sites of planet formation. The protoplanetary disk is clearly visible
during phases d) and e) of Fig. 1.2, but might already be present in the earlier phases
(e.g., Tobin et al. 2012; Murillo et al. 2013).

Assuming the disk is more or less axisymmetric, the general structure is described by
a temperature T (R, z) and density ρg(R, z), both functions of the radial distance to the star
R, and the height above the midplane z. We focus first on the vertical structure. The gas is
orbiting perpendicular to z, so there is no angular momentum keeping the gas from falling
to the midplane as a result of the vertical component of the central star’s gravity. Thus,
for the disk to be supported vertically, a pressure gradient has to balance the gravitational
force

c2
s
dρg

dz
= −

GM?z
(R2 + z2)3/2 ρg, (1.4)

with cs the sound-speed, and M? the mass of the central star. Assuming that the disk is
vertically isothermal, i.e., T (R, z) = T (R), and relatively flat, z � R, the solution can be
obtained as

ρ(z) = ρg,0 exp
(
−z2/2h2

g

)
, (1.5)

with ρg,0 the density in the midplane, hg ≡ cs/Ω the vertical disk scale height, and Ω =

(GM?/R3)1/2 the Kepler frequency. The temperature structure can be approximated by a
simple power law

T (R) = T0

(
R
Rc

)−q

K. (1.6)

13



Chapter 1. Introduction

For optically thin disks, the radiation flux directly received by a part of the disk scales
as F ∝ 1/R2. Since F ∝ T 4, this results in an exponent q = 1/2 for the temperature
power law. Similar values have been found observationally (e.g., Andrews & Williams
2005). Then, since hg = cs/Ω and cs = (kBT/µmH)1/2, we obtain hg/R ∝ R1/4, i.e., the
‘opening angle’ of the disk increases with radius; such disks are dubbed flaring disks.
More complex models for the disk temperature can be constructed by taking into account
radiative transfer, accretion, and dust opacities. Such models typically find that the mid-
plane is considerably colder than the surface layer of the disk, as stellar photons with short
wavelengths cannot penetrate this deep (e.g., Dullemond et al. 2007). The wide range of
densities, temperatures, and UV-intensities leads to a wide range of complex chemistry,
and variation in the gas-ice balance of volatiles (e.g., Dutrey et al. 2014; Pontoppidan et al.
2014). Of special importance for the dust evolution is the snowline, the location in the
protoplanetary disk behind which volatiles freeze out onto solid dust grains. The resulting
icy grains have very different sticking properties from bare silicate grains, which greatly
influences their collisional evolution (Sect. 1.2). The location of the snow line depends
on the stellar parameters and structure of the disk and the dust within it, but typically
Rsnow ∼ 3 AU (Min et al. 2011).

By integrating over the vertical direction, we obtain the gas surface density

Σg(R) =

∫ ∞

∞

ρg(R, z) dz =
√

2πρg,0hg. (1.7)

It is customary to describe the gas surface density with a truncated powerlaw (Lynden-
Bell & Pringle 1974; Hartmann et al. 1998a)

Σg(R) = Σ0

(
R
Rc

)−γ
exp

− (
R
Rc

)2−γ , (1.8)

although observational constraints on the form of Σg(R) are poor, especially in the outer
regions of the disk. The total disk mass equals

MD = 2π
∫ ∞

0
RΣg dR =

2π
(2 − γ)

Σ0R2
c (1.9)

provided γ , 2. The critical radius Rc is of the order of Rdisk (Eq. 1.3), and there are
several ways of constraining γ and/or MD. One is to look at how the solids are dis-
tributed in our own Solar System. By looking at the radial distribution of solids (mostly
rocky planets and the cores of gas giants), and assuming a dust-to-gas ratio of 10−2,
one finds that Σ(R) = R−3/2 is fairly accurate within 30 AU (the location of Neptune),
with Σg(1 AU) = 1.7 × 103 g cm−3 (Weidenschilling 1977b; Hayashi 1981). This model
is called the Minimum Mass Solar Nebula (MMSN), and yields a total disk mass of
∼10−2M�. However, the MMSN model assumes a number of things that are not nec-
essarily true; for example, it assumes the majority of solids originally present in the disk
ended up in planets, and that these planets did not move (migrate) significantly after their
formation. From observations, one finds MD/M� ' 10−3 − 0.2 and γ ' 0.9 around Sun-
like stars (Andrews et al. 2009).

14



1.1. Overview of the planet formation process

Figure 1.3: Schematic of a turbulent protoplanetary disk. On the left, various grain processes
are illustrated: turbulent diffusion (1); settling (2); radial drift (3); and grain-grain collisions with
different outcomes (4). On the right, the colored areas indicate which regions of the disk can be
probed by which instrument/telescope. Figure from Testi et al. (2014).

If the gas disk itself is very massive, it can become gravitationally unstable, and col-
lapse or fragment. The strength of the disk’s self-gravity is described by the Toomre
parameter

QT ≡
csΩ

πGΣ
, (1.10)

and disks with QT ≥ 1 are unstable. This condition can be rewritten as MD/M? & hg/R.
Typically hg/R = 0.05 − 0.1, and gravitational instability will only occur for the most
massive disks.

1.1.2 Gas and dust evolution
The picture sketched in the previous paragraph might suggest the protoplanetary disk is
a static, quiet environment. It is, however, anything but. The majority of protoplanetary
disks are accreting matter onto the central star, with typical accretion rates anywhere
between Ṁ ∼ 10−10 − 10−7 M� yr−1 (e.g., Muzerolle et al. 2000). The accretion rate, and
the timescale on which disks evolve in general, are related to the disk viscosity.

One source of viscosity are collisions between molecules; the resulting molecular
viscosity equals νmol ∼ csλmfp, with λmfp ∼ µmH/ρgσmol the gas molecule mean free
path, and σmol ' 2 × 10−15 cm2 the molecular cross section. Plugging in the numbers
for an MMSN disk, we obtain νmol ∼ 105 cm2 s−1. This results in a viscous timescale
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Chapter 1. Introduction

of tvis ∼ R2/νmol ∼ 1013 yr, much longer than the timescales on which gas disks evolve
(Sect. 1.1.4). Clearly, other sources of viscosity must be present. Without, for now,
specifying the source, it is instructive to assume an effective, turbulent viscosity, which
can be parametrized as (Shakura & Sunyaev 1973)

νT = αc2
s/Ω, (1.11)

with α a dimensionless parameter governing the strength of the turbulence. In this de-
scription, energy is put in at the largest scales (fluctuations with a size L, that evolve on
timescales tL), and trickles down to smaller scales. It makes sense to assume the turn-over
time of the largest eddies is set by the orbital period, i.e., tL ∼ Ω−1. These largest eddies
have velocities of vL = L/tL, and because LvL ∼ νT, this leads to vL ' α1/2cs. At the
bottom of the Kolmogorov cascade, the smallest eddies have a characteristic timescale
tη = Re−1/2tL, where Re = νT/νmol � 1 is the turbulence Reynolds number. For a steady-
state accretion disk, one can show that Ṁ = 3πΣgνT. Thus, if α does not vary with radius,
we find γ = 1 for the exponent of the surface density. Inserting numbers appropriate for
an MMSN-like disk at 30 AU, one finds α ' 10−2 corresponds to an accretion rate of
10−7 M� yr−1, and a viscous timescale of about a million years.

The parametrization of Eq. 1.11 is very idealized and might not be accurate depend-
ing on the mechanism driving the turbulence. Furthermore, even if the turbulence can
be parametrized locally, the strength of the turbulence (i.e., α) need not be constant in
the radial and vertical direction. Various candidates have been proposed as sources for
the turbulent viscosity, including self-gravity (Gammie 2001), magneto rotational insta-
bility (MRI) (Balbus & Hawley 1991), and baroclinic vortices (Klahr & Bodenheimer
2003; Klahr 2004). The current understanding of turbulence in relation to accretion in
protoplanetary disks is reviewed in Turner et al. (2014).

Apart from accreting onto the central star, several other disk dispersal mechanisms
are at work, including disk photo-evaporation and disk winds. A recent review on disk
dispersal mechanisms is given by Alexander et al. (2014). Observations indicate a disk
lifetime of ∼3 Myr (Sect. 1.1.4), and put constraint on the efficiency of the disk removal
mechanisms, but also on the timescales of giant planet formation, which must take place
before the gas is dissipated (Pollack et al. 1996). Crudely, planet formation can be split
into two stages: the formation of planetesimals out of microscopic dust grains (e.g., Testi
et al. 2014; Johansen et al. 2014); and the subsequent formation of planets out of said
planetesimals (e.g., Raymond et al. 2014). The word planetesimal usually refers to solid
bodies with sizes of &km, approximately the size above which self-gravity starts to play
a role for their further evolution. Sect. 1.2 expands upon the journey from dust grain to
planetesimal.

1.1.3 Evolved systems
After the disk gas has been removed, hopefully, a ‘naked’ planetary system remains (Fig.
1.2f). This phase lasts for the remainder of the lifetime of the central star, around ∼10 Gyr
for Sun-like stars.
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Planetary systems

A large number of exoplanets has now been discovered and characterized with a variety
of observational techniques (Fig. 1.1), and it is held that the average star in our galaxy is
orbited by several planets (Lissauer et al. 2011). These findings challenge, and put to the
test current models of planet formation, which have to explain the high occurrence rate
and diversity of observed (exo)planets.

One example is the discovery of so-called hot Jupiters: planets with a mass compara-
ble to Jupiter’s on tight compact orbits, with orbital periods that can be as short as several
days (the planets in the upper left part of Fig. 1.1). In an MMSN-like disk, these inner
regions of a protoplanetary disk do not hold enough mass to form Jupiter-size planets.
The existence of these hot Jupiters led to the realization that planets may migrate through
a disk, or be scattered later.

Indeed, the current distribution of planets does not necessarily reflect their formation
history exactly. First, newly-formed planets will interact with the disk, exchanging an-
gular momentum. These interactions can cause the planets to move radially through the
disk, crossing considerable distances. This migration can happen in both directions and
at different rates, depending on the disk structure and mode of migration (Baruteau et al.
2014). Second, even after the gas has dissipated, the young planetary system might not be
dynamically stable, and gravitational interactions between the planets (or even fly-by’s of
other stars) can result in dynamical instabilities, and major make-overs for the system’s
structure (e.g., Davies et al. 2014).

Debris disks

The final stage of planet formation is not necessarily efficient in all disks, or in all regions
within a disk. In the Solar System for example, the asteroid belt, located between Mars
and Jupiter, can be thought of as the remains of an unsuccessful attempt. It is believed
that in this particular case, the many mean motion resonances with Jupiter prevented
bodies from conglomerating further; but planet formation could be unsuccessful for many
reasons, not all of them related to nearby planets. For example, the original protoplanetary
disks might not have contained enough solids in the first place, or, the turbulence and
temperature structure of the disk might have made it a hostile environment for the growing
aggregates.

Many old systems have now been discovered that have so-called debris disks, rings
of debris similar to our asteroid belt, but often more massive and at larger separations
(see Matthews et al. 2014, for a complete review). In debris disks, the mass is usually
dominated by large, (super)km-size bodies, invisible to our telescopes. In the absence of
gas, these bodies suffer violent collisions resulting in a collisional cascade. At the bottom
of this cascade, dust particles with sizes of ∼µm are created, which can be observed. In
some of these systems, planets have been reported as well (Kalas et al. 2005, 2008; Marois
et al. 2008; Lagrange et al. 2010).
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1.1.4 Observational contraints
The star- and planet formation paradigm, as summarized by Fig. 1.2, can be tested directly
by studying the solids in the Solar System, and indirectly by observing radiation from
other systems.

Disk observations

Observations of young stellar objects provide valuable information about the properties of
protoplanetary disks. Here, we only skim the surface of the field of disk observations, and
refer the reader to Williams & Cieza (2011) and Testi et al. (2014) for extensive reviews.

Initially, because of their small angular size, protoplanetary disks could not be re-
solved, and their existence was inferred by studying the stellar spectral energy distribution
(SED) (Beckwith et al. 1990). The spectrum of a Sun-like star peaks in the UV and the
optical. When a disk surrounds the star however, significant flux is observed at longer
wavelengths, ranging from the mid-IR, to mm-wavelenghts; the result of both reprocess-
ing of stellar radiation, and of thermal emission of dust grains. The right-hand side of Fig.
1.3 shows approximately which regions of the disk emit mid-IR and mm emission. By
looking at the fraction of stars in star clusters that show such excess radiation, a typical
disk lifetime of ∼3 Myr can be inferred (e.g., Haisch et al. 2001), though some studies
suggest lifetimes beyond 10 Myr (Pfalzner et al. 2014).

Continuum observations at (sub)mm wavelengths probe the interior of the protoplan-
etary disk, where most of the dust mass is located. The flux at these wavelengths is
dominated by thermal emission of the dust grains, and can be approximated as

νFν ≈ νκνBν(T )
Md

R2 , (1.12)

with Bν(T ) the temperature-dependent Planck function, ν the frequency, κν the dust opac-
ity (per unit mass), and Md the total dust mass. By measuring the flux at multiple wave-
lengths, it is possible to constrain the slope of the opacity function κν ∝ νβ, where β is
called the spectral index. At (sub)mm wavelengths, the spectral index β depends on the
dust properties and its size-distribution, and can be used to constrain grain growth (Natta
& Testi 2004; Natta et al. 2007; Wilner et al. 2005; Ricci et al. 2010). Furthermore, when
the disk can be resolved angularly, observed variations in β can provide clues about how
grain growth varies with location in the disk (e.g., Pérez et al. 2012). However, interpreta-
tion of mm-observations is a precarious business, as the spectral index varies greatly with
not just particle size and distribution, but also grain chemical composition and porosity
(Cuzzi et al. 2014; Kataoka et al. 2014), and grain temperature (Demyk et al. 2012).

Now, facilities such as the Atacama Large Millimeter Array (ALMA), the Very Large
Telescope Interferometer (VLTI), and soon the James Webb Space Telescope (JWST), are
able to resolve protoplanetary disks down to scales approaching a few AU at micrometer-
millimeter wavelengts (see also Fig. 1.3). Such high-resolution observations reveal the
distribution of matter in disks, and variations in the disk’s structure at smaller and smaller
scales. So far, these observations have revealed coherent spatial structures such as gaps,
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spiral arms, and azimuthal asymmetries in the disk and dust structure (e.g., van der Marel
et al. 2013; Casassus et al. 2013; Pérez et al. 2014), possibly signs of planet formation
in action. Furthermore, tentative direct observations of young (forming) planets inside
protoplanetary disks confirm these disks are the principle sites of planet formation (Kraus
& Ireland 2012; Quanz et al. 2013).

Solar System

As an evolved system, our own Solar System holds clues to its formation history. Some
obvious, some less so. First, there are the planets; we already saw how the distribution of
planets led to the concept of the Minimum Mass Solar Nebula. Focussing on the proper-
ties of the planets, we notice a dichotomy: small rocky planets in the inner Solar System,
and massive gas giants in the outer parts. The division occurs somewhere between Mars
and Jupiter, and it is tempting to attribute this devision to the location of the snow line.

Moving to much smaller objects, a tremendous amount of information can be ob-
tained from studying meteorites (e.g., Russell et al. 2006; Connelly et al. 2012), small
chunks of asteroids that fall onto Earth. The largest class of meteorites are the chon-
dritic meteorites, which constitute the oldest known undifferentiated bodies in the Solar
System. These chondrites consist of three components: chondrules, calcium-aluminum-
rich inclusions (CAIs), and matrix material. Chondrules are spherical silicate crystals
with sizes between ∼50 µm and several mm, and are the dominant component in mete-
orites. CAIs are slightly larger, with sizes .cm, but less common. The matrix material is
composed of (sub)micron-size silicate grains, and fills the spaces between the chondrules
(and CAIs). Of these components, the CAIs are the oldest, and are believed to be the first
condensates in the Solar System. Radioactive dating places the formation of the CAIs
at 4.567 Gyr ago, while differences between CAIs indicate they formed during an inter-
val of ∼0.25 Myr. Dating indicates chondrules formed over a period of ∼2 Myr, starting
1− 2 Myr after the formation of the CAIs. It is now held that chondrules also formed ear-
lier, perhaps together with CAIs, but that these early chondrules were incorporated into
parent bodies that underwent differentiation (the magmatic iron meteorites). The spread
in formation ages between CAIs and chondrules suggest coagulation and planetesimal
formation occurred over several Myrs, a timespan comparable to the typical age of a pro-
toplanetary disk. Another interesting finding is that while chondrule sizes vary between
meteorites, their size distribution within a single parent body is relatively narrow. This
seems to indicate that a size-sorting mechanism was acting in the early protoplanetary
disk; and that the parent bodies formed only after some sorting was done. Much more can
be learned from the primitive materials in our Solar System, and the interested reader is
referred to the recent review of Gail et al. (2014).

1.2 From dust to planetesimal

For the formation of planets, the accumulation of solids is key. The molecular clouds
of the previous section form out of the tenuous interstellar medium (ISM). Thus, like
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the ISM, about 1% of their mass is in solid dust particles; typically particles with sizes
.0.3 µm (Mathis et al. 1977). Because of the high densities in the disk midplane, these
grains can collide and grow to larger sizes. Here, we discuss the main processes that
govern the growth of these particles towards, eventually, planetesimal sizes.

1.2.1 Dynamics of dust grains

The dynamics of small dust particles, suspended in a young protoplanetary disk, are gov-
erned mainly by their interaction with the turbulent gas. An important concept is the
particle stopping time ts, which describes how much time is needed for a dust particle
to loose its momentum due to friction with the surrounding gas. The stopping time is
often multiplied by the orbital frequency to form the Stokes number, Ωts, a dimensionless
quantity.

Imagine a dust particle with a size a, and mass m. Depending on the size of the particle
with respect to the gas mean free path, the stopping time is set either by Epstein or Stokes
drag

ts =


t(Ep)
s =

3m
4ρgvthA

for a <
9
4
λmfp,

t(St)
s =

4a
9λmfp

t(Ep)
s for a >

9
4
λmfp,

(1.13)

where vth =
√

8/πcs is the mean thermal velocity of the gas molecules, and A ' πa2 is the
particle’s cross section. In the midplane at 5 AU, λmfp ∼ 1 m, and small dust grains are
always in the Epstein regime.

While the gas is supported by a vertical pressure gradient, there is nothing stopping
the dust grains from settling to the midplane of the protoplanetary disk. By comparing
the vertical component of the stellar gravity to the gas drag experienced by a particle, one
obtains the terminal settling velocity vz = Ω2zts with z the height above (or below) the
midplane. The timescale for settling then equals tsett = (Ω2ts)−1. At 1 AU, a millimeter-
size dust particle has tsett ∼ 102 yr, very short compared to the disk lifetime. However,
the presence of turbulence will lead to particles diffusing (back) to the upper layers of the
disk. For relatively well-coupled particles, the diffusion timescale equals tdiff ∼ (αΩ)−1.
Particles for which the diffusion timescale is shorter/comparable to the settling timescale,
i.e., with ts ≤ α/Ω, will not settle efficiently, and inhabit the same volume as the gas.
Particles that are more decoupled will settle into a disk with a scale height (Youdin &
Lithwick 2007)

hd

hg
=

(
1 +

Ωts

α

1 + 2Ωts

1 + Ωts

)−1/2

, (1.14)

where hd/hg ≤ 1.
Apart from settling to the midplane, largish grains will also drift radially towards

the central star. The reason for this is that large grains, orbiting on Keplerian orbits,
loose angular momentum to the gas, which is orbiting at a slightly sub-Keplerian velocity
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because of the radial pressure gradient. As a result, grains drift inward with a velocity
(Weidenschilling 1977a)

vdrift = −
2Ωts

1 + (Ωts)2 ηvK, (1.15)

where an important quantity is the dimensionless pressure gradient η, defined as (Naka-
gawa et al. 1986)

η ≡ −
1
2

(
cs

vK

)2 ∂ ln(ρgc2
s)

∂ ln R
. (1.16)

with vK = RΩ the Keplerian orbital velocity. The timescales on which decoupled particles
drift in can be quite short, and radial drift poses a serious problem for further growth (Sect.
1.2.3).

Finally, an important concept for coagulation is the dust particle relative velocity, i.e.,
the velocity at which two grains with masses m1 and m2 collide. For (sub)micrometer
grains, the relative velocity is dominated by Brownian motion, and given by

∆vBM =

√
8kBT (m1 + m2)

πm1m2
, (1.17)

with kB the Boltzmann constant. For these small grains, the relative velocity ∆vBM ∼

mm s−1, but quickly decreases with increasing mass. For larger grains, an important
source for relative velocities is the turbulence. Relative velocities resulting from interac-
tion with the turbulent eddies are challenging to calculate. Based on the work of Voelk
et al. (1980), closed-form expression were derived by Ormel & Cuzzi (2007), as a function
of the stopping times of both particles. An important notion is that the largest turbulent-
induced relative velocities are achieved when Ωts ∼ 1, in which case ∆vturb ∼ α

1/2cs. In
addition, when two aggregates have very dissimilar stopping times, their different drift
and settling rates can be an important source of relative velocities. Differential drift ve-
locities also peak at a Stokes number of unity, at ∆vdrift ∼ ηvK.

1.2.2 Coagulation
Assuming all dust particles have similar properties (i.e., mass, size, stopping time), and
stick together upon colliding, the growth timescale is given by

tgrow ∼
1

ndσcoll∆v
, (1.18)

with nd the dust particle number density, ∆v the relative velocity between the dust parti-
cles, and σcoll the collisional cross section. Thus, simply speaking, growth is fastest when
densities are high, collisional cross sections are large, and relative velocities are high.

1.2.3 Growth barriers
There are several obstacles (or barriers) that have to be overcome by growing dust grains
in order to become planetesimals. In general, there are two distinct types of growth bar-
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riers: one pertaining to the collisional outcomes; the other involving rapid removal of the
dust particles from the disk.

Collisional barriers

When particles collide at high velocities, sticking will not be the most likely outcome,
and particles are more likely to bounce of each other, or even destroy and fragment. Over
the last two decades, a wealth of collision experiments has been collected in order to
identify exactly at which velocities growth is possible (see Blum & Wurm 2008, for an
in-depth review). For silicates, Güttler et al. (2010) have combined this ‘zoo’ of exper-
iments into the so-called Braunschweig collision model. In this model, colliding grains
are divided into ‘porous’ and ‘compact’ grains, and collisions are either between ‘similar-
size’ or ‘different-size’ particles; resulting in 8 possible collision types. Based on the
large collection of experiments, Güttler et al. (2010) then provided maps for each colli-
sion type, showing, as a function of particle mass and velocity, where sticking, bouncing,
and fragmentation are expected to occur. For ices, experimental studies become increas-
ingly challenging, mainly because of the low temperatures that have to be maintained
during the preparation and execution of the collision experiments. Nonetheless, experi-
mental results are becoming available (Gundlach et al. 2011; Aumatell & Wurm 2014),
indicating microscopic icy particles can achieve sticking at very high velocities (Gundlach
& Blum 2015).

The velocity above which sticking is unlikely depends on many factors, some of which
will be discussed in more detail in Sect. 1.3; but as a rough estimate, compact mm-size
aggregates of refractory particles tend to bounce at velocities &1 cm s−1, and fragment
above vfrag ∼ 1 m s−1. In the inner regions of protoplanetary disks typical collision ve-
locities are well above the fragmentation velocity for silicate particles. In general, full
models of dust coagulation find that, when dust grains are assumed to be compact at all
times, the bouncing and fragmentation prevent dust particles from growing much larger
than ∼cm (e.g., Brauer et al. 2008a; Birnstiel et al. 2010; Testi et al. 2014). However, ex-
periments suggest that grains might still gain mass in destructive collisions with smaller
particles (Wurm et al. 2005; Kothe et al. 2010). Such mass-transfer might then allow these
larger bodies to grow further (Windmark et al. 2012a).

In the cold outer regions, where sticky ices are present, the relative velocities are
lower (the turbulent velocity ∆vturb ∝ c1/2

s decreases with disk radius). In addition, porous
icy aggregates are stickier, and can dissipate collisional energy more easily. A bouncing
regime is then not expected for these aggregates, and the transition between sticking and
fragmentation occurs at several tens of m s−1. These icy aggregates are expected to survive
collisions with similar-size particles, offering a pathway for further growth (Okuzumi
et al. 2012).

The drift barrier

In the previous section it was shown that marginally decoupled grains will drift inward
with a velocity vdrift (Eq. 1.15). The drift timescale tdrift = R/vdrift is shortest for grains
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with Ωts = 1, for which tdrift ∼ (ηΩ)−1. Typically η ∼ 10−2, which means the drift
timescale can be very short indeed, ∼100 orbital periods. In other words, grains with
Ωts ∼ 1, situated around 1 AU from a Sun-like star, will drift inward on a 100 yr timescale
(Weidenschilling 1977a). This rapid removal of grains is often referred to as the radial
drift barrier.

Several ways have been suggested to circumvent the drift barrier. First, the existence
of pressure bumps in the gas disk can locally decrease (or even invert) the pressure gra-
dient, trapping particles in the pressure maxima (e.g., Kretke & Lin 2007; Pinilla et al.
2012a,b) (see also Sect. 1.2.4). Second, if the growth timescale is (much) shorter than
the timescale for drift, i.e., tgrow < tdrift, particles can outgrow the radial drift problem
(Okuzumi et al. 2012). For this to work, aggregates with Ωts ∼ 1 must be able to grow
through collisions, despite the the fact that relative velocities peak at these Stokes num-
bers.

1.2.4 Particle concentration mechanisms
The growth timescale of Eq. 1.18 depends on the dust particle number density. If the
dust and gas are well-mixed, the mass density of dust particles is roughly ρd ∼ Σd/hd,
and increases when grains settle to the midplane. There exist however several particle
concentration mechanisms that can locally and/or temporarily increase nd much further,
potentially leading to rapid growth. First, tightly-coupled particles (ts ∼ tη) can accumu-
late in the high-pressure regions between the smallest turbulent eddies (Cuzzi et al. 2001,
2008), though the total mass present in these particle concentrations might be small (Pan
et al. 2011). Second, pressure bumps or vortices, giving rise to variations of the order
hg, can effectively concentrate particles with 0.1 < Ωts < 10 (e.g., Kretke & Lin 2007),
though it is not clear how common such bumps and/or vortices are. Finally, populations
of bodies with 10−2 < Ωts < 1 can result in streaming instability, and collapse to form
planetesimals in a timescale compared to the orbital period (Youdin & Goodman 2005;
Johansen et al. 2007; Bai & Stone 2010a,b). For this to be possible, a dense midplane
layer of solids is required, where the dust-to-gas ratio is approximately unity. These con-
centration mechanisms are described in more detail in Johansen et al. (2014).

In summary, the turbulent gas disk is a complex environment, and the interplay be-
tween dust and gas can give rise not only to growth barriers, but also to particle concen-
tration mechanisms that are beneficial for growth. The efficiency of these mechanisms
however, depends sensitively on the aerodynamical properties of the present dust grains.

1.3 Dust microphysics

The microphysical structure of dust aggregates plays a major role in their (collisional) evo-
lution. First, the microstructure profoundly influences the aggregate’s mechanical prop-
erties, and therefor the collisional outcomes. For example, highly porous aggregates can
dissipate collision energy more easily, and are less likely to bounce. Second, the shape
and size of an aggregate influence its coupling to the gas, changing the particle’s stop-
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ping time, thus influencing the settling/drift behavior, collision velocities, and efficiency
of particle concentration mechanisms. Finally, porosity influences grain opacities (i.e., κν
in Eq. 1.12), changing the appearance of dust in disks. It is clear then that an intimate
understanding of the porosity evolution of dust aggregates is needed to understand the
details of dust coagulation (the first stages of planetesimal formation), and to accurately
interpret observations of dust in protoplanetary disks.

Two quantities are often used to describe the structure of porous aggregates; the first
is the filling factor φ, which represents the fraction of the aggregate’s volume that is taken
up by solids. A solid sphere has φ = 1, and the maximum filling factor of an aggregate
made up of mono disperse spheres is φ ' 0.74. Depending on the specifics of the growth
process, the filling factor of aggregates in astrophysical environments may be �1. The
second parameter is the fractal dimension δ f , which relates the mass and the size of the
aggregate through

m = k f

(a
r

)δ f

, (1.19)

with r the monomer radius. The fractal dimension can range from anywhere between 1
(for linear chains) to 3 (for homogeneous particles). It should be noted that δ f ' 3 does
not necessarily imply a compact aggregate, since k f can still be very small.

1.3.1 Early growth

Initially, the microscopic grains present in the protoplanetary disk collide very gently, at
velocities set by Brownian motion. When small grains meet at these velocities, they read-
ily stick together as the result of attractive surface forces. In this low-velocity hit-and-stick
regime, two modes of growth can be identified: one where aggregates grow by colliding
with same-size partners (CCA for cluster-cluster aggregation); and one where aggregates
grow by sweeping up small grains (PCA for particle-cluster aggregation). During CCA
growth, very open, porous aggregates are formed, that evolve with δ f ≈ 2, as found by
experimental studies (Blum et al. 2000; Krause & Blum 2004) and theoretical work (Os-
senkopf 1993; Kempf et al. 1999). This fractal growth is generally held to be an accurate
description of the start of the coagulation process in protoplanetary disks.

As the fluffy aggregates gain mass, the turbulence and differential settling begin to
dominate their collision velocities, which tend to increase. Then, as grains collide with
more momentum, collisions will be energetic enough to start to restructure the aggregates,
possibly compacting them. A schematic of hit-and-stick growth and compaction is shown
in Fig. 1.4. As illustrated in panel (b), hit-and-stick growth leads to the addition of voids
to the aggregate’s structure, leading to a decrease in φ, while the fractal dimension stays
constant at δ f ≈ 2. In the case of aggregate compaction (Fig. 1.4c), the changes in the
internal structure are more complex, and the most popular methods to study this process
have been so-called molecular dynamics simulations.
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in the Epstein regime. In reality, Stokes’ law breaks down when
the particle Reynolds number (the Reynolds number of flow
around the particle) is much greater than unity, but we neglect
this in our simulations for simplicity. We will discuss this point
further in Section 5.1.

The radial drift velocity is taken as

vr = − 2Ωts

1 + (Ωts)2
ηvK, (6)

where

2η ≡ −
(

cs

vK

)2 ∂ ln
(
ρgc

2
s

)

∂ ln r
(7)

is the ratio of the pressure gradient force to the stellar gravity
in the radial direction and vK = rΩ is the Kepler velocity
(Adachi et al. 1976; Weidenschilling 1977; Nakagawa et al.
1986). The radial drift speed has a maximum ηvK, which is
realized when Ωts = 1. In our disk model, η scales with r as
η = 4.0 × 10−3(r/5 AU)1/2, and the maximum inward speed
ηvK = 54 m s−1 is independent of r. Since η is proportional
to the gas temperature, the maximum drift speed would be
somewhat lower in colder disk models (Kusaka et al. 1970;
Hirose & Turner 2011). Equation (6) neglects the frictional
backreaction from dust to gas assuming that the local dust-
to-gas mass ratio is much lower than unity or the stopping
time of aggregates dominating the dust mass is much longer
than Ω−1. We examine the validity of this assumption in
Section 5.2.1.

In this paper, we also consider the collisional evolution of
aggregate porosities. We treat the mean volume V = (4π/3)a3

of aggregates with orbital radius r and mass m as a time-
dependent quantity. The evolutionary equation for V(r,m) is
given by

∂ (VN )
∂t

= 1
2

∫ m

0
[V1+2K](r,m′,m − m′)

× N (r,m′)N (r,m − m′)dm′

− V (r,m)N (r,m)
∫ ∞

0
K(r,m,m′)N (r,m′)dm′

− 1
r

∂

∂r
[rvr (r,m)V (r,m)N (r,m)], (8)

where

[V1+2K](r,m1,m2) = σcoll

2πhd,1hd,2

∫ ∞

−∞
V1+2∆v

× exp

(

− z2

2h2
d,12

)

dz (9)

with V1+2 being the volume of merged aggregates (described
in Section 2.3.1). Equation (8) is identical to the original
evolutionary equation for V derived by Okuzumi et al. (2009,
their Equation (16)) except that here we take the vertical
integration of the equation and take into account the radial
advection of dust. In deriving Equation (8), we have assumed
that the dispersion of the volume is sufficiently narrow at every
r and m (see Okuzumi et al. 2009). This “volume-averaging”
approximation allows us to follow the porosity evolution of
aggregates without solving higher-order moment equations
for the volume, and hence with small computational costs.
This approximation is valid unless the porosity distribution at

Figure 1. Schematic illustration of our porosity change model. Porous aggre-
gates with volumes V1 and V2 (a) before contact, and (b) just after contact. At this
moment, the volume of the new aggregate is given by V1+2,HS = V1 +V2 +Vvoid,
where Vvoid = Vvoid(V1, V2) is the volume of newly formed voids (Equa-
tion (11)). If the collision energy Eimp is much smaller than the rolling en-
ergy Eroll, the final volume of the new aggregate is equal to V1+2,HS. (c) If
Eimp ! Eroll, collisional compression occurs. In this case, the final volume
V1+2(<V1+2,HS) depends on Eimp.
(A color version of this figure is available in the online journal.)

fixed r and m is significantly broadened by, e.g., collisional
fragmentation cascades (Okuzumi et al. 2009).

2.3. Dust Model

2.3.1. Porosity Change Recipe

The functional form of V1+2 determines the evolution of
aggregate porosities in our simulation. In this study, we give
V1+2 as a function of the volumes of the colliding aggregates,
V1 = V (r,m1) and V2 = V (r,m2), and the impact energy
Eimp = m1m2∆v2/[2(m1 + m2)]. Before introducing the final
form of our porosity change recipe (Equation (15)), we briefly
review recent N-body collision experiments on which our recipe
is based.

Collisional compression depends on the ratio between Eimp
and the “rolling energy” Eroll (Dominik & Tielens 1997; Blum
& Wurm 2000; Wada et al. 2007). The rolling energy is de-
fined as the energy needed for one monomer to roll over 90◦

on the surface of another monomer in contact (Dominik &
Tielens 1997). When Eimp ' Eroll, two aggregates stick with-
out visible restructuring (the so-called hit-and-stick collision;
see Figure 1(b)). In this case, the volume of the merged ag-
gregate is determined in a geometric manner, i.e., indepen-
dently of Eimp. When Eimp ! Eroll, internal restructuring oc-
curs through inelastic rolling among constituent monomers
(Dominik & Tielens 1997; see also Figure 1(c)). In this case,
the final volume V1+2 depends on Eimp as well as on V1
and V2.

For hit-and-stick collisions (Eimp/Eroll → 0), Okuzumi et al.
(2009) obtained an empirical formula for V1+2,

V1+2 = V1+2,HS ≡ V1 + V2 + Vvoid, (10)

4

Figure 1.4: Sticking of porous aggregates. (a) Two aggregates, with volumes V1 and V2, collide at
a velocity ∆v. (b) At low velocities, the collision results in sticking without restructuring. Voids are
added, and the total volume of the resulting aggregate is V1+2,HS > V1 + V2. (c) At higher collision
velocities, significant restructuring takes place, and V1+2 < V1+2,HS. Figure from Okuzumi et al.
(2012).

1.3.2 Molecular dynamics simulations

One way to study the effects of restructuring, is to perform dynamic simulations that
resolve the (internal) forces between the aggregate’s constituents during a collision. Do-
minik & Tielens (1997) were the first to tackle coagulation using such an approach. In
their seminal paper, Dominik & Tielens simulated collisions between aggregates com-
posed of .100 micron-size monomers at a range of velocities, and defined various colli-
sion regimes, based on the characteristic energies of the monomer-monomer contact. The
various regimes are shown in Table 1.1. The two characteristic energies Ebreak and Eroll
correspond, respectively, to the breaking of a single adhesive bond, and to the rolling of
one monomer over another monomer by 90◦. The value of these critical energies depends
on monomer size and material, and will be discussed further in Sect. 1.3.3. Blum &
Wurm (2000) found their experimental results on sticking, restructuring, and fragmenta-
tion of silicate aggregates to be in qualitative agreement with the picture drawn in Table
1.1, adding that theory and experiments were in agreement when the critical energies were
adjusted by some factors of 10.

The work of Dominik & Tielens sparked many follow-up studies, involving an ever-
increasing number of monomers N. Studies have been performed looking at the me-
chanical properties of aggregates (e.g., Paszun & Dominik 2008; Seizinger et al. 2012;
Kataoka et al. 2013b); specifically looking at collisions between rotating partners (Paszun
& Dominik 2006); investigating the bouncing behavior of aggregates (Wada et al. 2011;
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Collision energy Outcome of collision
EK < 5Eroll Sticking without restructuring
EK > 5Eroll Onset of compaction
EK ∼ ncEroll Maximum compression
EK > ncEbreak Loss of some monomers
EK > 10ncEbreak Catastrophic disruption

Table 1.1: Collision outcomes for roughy equal-size aggregates in terms of the characteristic ener-
gies Ebreak and Eroll, and the total number of contacts nc. Based on Dominik & Tielens (1997, Table
3).

Seizinger & Kley 2013); focussing on the porosity evolution of aggregates in head-on col-
lisions (Wada et al. 2007, 2009; Suyama et al. 2008, 2012) and offset collisions (Paszun
& Dominik 2009); and examining the transition from growth to mass-loss with increas-
ing collision velocity (Wada et al. 2013). Fig. 1.5 shows how numerical aggregates have
evolved from 2D structures1 with N ∼ 102, to 3D aggregates with N ∼ 106 (e.g., Wada
et al. 2013). With monomer radii typically between 0.1 − 1 µm, the largest of these ag-
gregates have sizes .100 µm. Even though larger aggregates are challenging to simulate,
universal scaling laws can be obtained from the large collections of simulations. Re-
cently, Okuzumi et al. (2012) and Suyama et al. (2012) developed expressions for the
total volume of a newly-formed porous aggregate, based on the collision velocity, and
the properties of the colliders. They found that aggregates that grow through subsequent
compressive collisions with ∼same-size partners can maintain a highly porous structure,
with a nearly constant porosity that can be as low as φ ∼ 10−5 for aggregates consisting of
submicron icy monomers. Another interesting outcome of these simulations has been that
bouncing is only possible for aggregates whose coordination number (the average num-
ber of contacts per monomer) is higher than ∼6. In terms of porosity, this corresponds to
φ & 0.3 (Wada et al. 2011; Seizinger & Kley 2013).

Full coagulation models that include particle porosity as a second property (in addition
to particle mass) confirm that porosity matters a lot (Ormel et al. 2007; Okuzumi et al.
2009; Zsom et al. 2011). If particles can keep on growing highly-porously, which ice
aggregates might, rapid growth through the drift barrier could even be possible (Okuzumi
et al. 2012).

1.3.3 Radial and lateral forces
The main physical ingredient of the simulations of the previous section are the laws that
describe the various inter-monomer forces. Long-range forces such as gravity or elec-
trostatic forces are usually not included, and monomers can only exchange forces when
they are touching. When two grains are in contact (i.e., touching), 4 principle modes of

1It should be noted that, despite the subsequent addition of a third spatial dimension and the enormous
increase in the simulated number of monomers, the aggregates of Dominik & Tielens (1997) remain the only
ones in which the monomers had a distribution of radii, rather than being mono disperse.
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1.3. Dust microphysics

Figure 1.5: Improvements in numerical modeling of dust aggregates. Top left: Two-diminsional
aggregate consisting of 40 monomers (Dominik & Tielens 1997). Top right: Aggregate consisting
of 200 monomers (Paszun & Dominik 2009). Bottom left: Fractal aggregate consisting of 6 × 104

monomers (Seizinger et al. 2013). Bottom right: Relatively compact aggregate consisting of 1.28×
105 monomers (Wada et al. 2013). Images not to scale.

motion can occur: radial motion, rolling motion, sliding motion, and twisting (Fig. 1.6).
Prescriptions for the individual forces were obtained by Chokshi et al. (1993); Dominik &
Tielens (1995, 1996), and summarized in Dominik & Tielens (1997). These descriptions
were based on the Johnson-Kendall-Roberts (JKR) model of an adhesive and perfectly
elastic contact (Johnson et al. 1971; Johnson 1987).

The JKR contact model is an extension of the non-adhesive theory of Hertz (1882).
Hertz imagined two perfectly elastic spheres of radii r1 and r2. When the two spheres
are pressed together, a circular contact area with a radius a is created, and the spheres are
compressed slightly, so that their centers of mass (~x1 and ~x2) are separated by less then
r1 + r2. Then, the mutual approach can be defined as δ = r1 + r2 − |~x1 − ~x2| > 0. By
looking at the elastic energy stored in such a configuration, Hertz derived the repulsive
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A&A 560, A45 (2013)

Fig. 1. The four types of particle interaction: Compression/Adhesion
a), Rolling b), Sliding c), and Twisting d). Figure taken from Seizinger
et al. (2012).

estimate on the erosion e�ciencies expected for the more com-
pact aggregates formed during the growth process in a proto-
planetary disk.

2. Interaction model

2.1. Established model

In our simulations, aggregates are composed of thousands of
equal sized, spherical grains (also referred to as monomers).
Monomers interact with each other only if they are in contact.
Energy is dissipated upon deformation of these contacts caused
by the relative motion of the grains. Long range forces such as
electromagnetic forces or gravity are not taken into account.

We use nearly the same interaction model as proposed by
Dominik & Tielens (1997). To model the interaction of two
spherical grains they distinguish between four types of motions
(see Fig.1). The equations describing these types of motions are
mostly based on earlier theoretical work (Johnson et al. 1971;
Dominik & Tielens 1995, 1996). For rolling, sliding, and twist-
ing, the interaction remains elastic as long as the displacement
from the equilibrium state remains small. If a certain threshold
is exceeded, the motion enters the inelastic regime and energy
is being dissipated. Apart from one minor di↵erence Wada et al.
(2007) derived the same equations from corresponding poten-
tials. This brings the advantage of being able to track how much
energy is dissipated by which type of motion.

However, compared to laboratory experiments on the com-
pression of porous dust aggregates performed by Güttler et al.
(2009), the behavior predicted by the model of Dominik &
Tielens (1997) was too soft. To overcome this discrepancy,
Seizinger et al. (2012) modified the rolling and sliding interac-
tion. They observed much better agreement between simulations
and laboratory results by increasing the rolling interaction by a
factor of 8 and the sliding interaction by a factor of 2.5.

In this work, we employ the modified interaction model pro-
posed by Seizinger et al. (2012) with mr = 8 and ms = 2.5. The
material parameters are listed in Table 1.

2.2. Visco-elastic damping

The critical sticking velocity vcrit at which the transition from
sticking to bouncing occurs constitutes an important value when
comparing the collisional behavior predicted by a theoretical in-
teraction model with laboratory results. For micron sized silicate
grains JKR theory predicts vcrit ⇡ 0.1 ms�1. However, in labora-
tory experiments on the stickiness of such grains a considerably

Table 1. Material parameters.

Physical property Silicate

Particle radius r (in µm) 0.6
Density ⇢ (in g cm�3) 2.65
Surface energy � (in mJ m�2) 20
Young’s modulus E (in GPa) 54
Poisson number ⌫ 0.17
Critical rolling length ⇠crit (in nm) 2
Viscous damping time Tvis (in s) 1.25 ⇥ 10�11

higher sticking velocity of the order of 1 ms�1 has been measured
(Poppe et al. 2000).

As an attempt to overcome this discrepancy Paszun &
Dominik (2008) proposed surface asperities as a possible damp-
ing mechanism. Upon collision of two monomers small asper-
ities on their surfaces get flattened. The corresponding plastic
deformation would lead to the additional dissipation of kinetic
energy. The damping was applied by artificially lowering the
relative velocity of two monomers in the integration step where
they collided with each other. However, when performing simu-
lations with higher collisions velocities (>ms�1) Seizinger et al.
(2012) found that this damping mechanism introduced numeri-
cal instability.

In this work, we instead use the new damping force derived
by Krijt et al. (2013), who show that for viscoelastic materials,
the dissipative stresses in the contact area can be integrated to
yield a damping force

FD =
2TvisE

?

⌫2
a vrel, (1)

where a denotes the current contact radius and vrel the relative
normal velocity of the two monomers. The Poisson number ⌫
and the reduced Young’s modulus E

? = E/(2(1�⌫2)) are mate-
rial constants. The viscoelastic timescale Tvis is not well-known,
but values around 10�12�10�11 s allowed Krijt et al. (2013) to
reproduce collision experiments with single microspheres very
well.

The damping force given in Eq. (1) replaces the weak damp-
ing introduced by Seizinger et al. (2012) to prevent aggregates
from being heated up artificially (Paszun & Dominik 2008).

3. Erosion of RBD cakes

3.1. Calibration

In the first step, we calibrate our extended interaction model
using the results of laboratory experiments performed by
(Schräpler & Blum 2011). In their work, they shot a volley of
single monomers on a sample dust cake (from now on referred
to as projectiles and target). The samples have been generated
by random ballistic deposition (RBD) and had a high porosity
(Blum & Schräpler 2004). The velocity of the incoming projec-
tiles was 15, 30, 45, and 60 ms�1. After shooting a certain num-
ber of projectiles at the target the current weight of the target was
measured. By repeating this procedure they determined the evo-
lution of the mass loss with respect to the total projectile mass
exposure (see Schräpler & Blum 2011, Fig. 4).

In our simulations, we try to follow this procedure as closely
as possible. We start by generating a target via random ballis-
tic deposition. Owing to the computational demand imposed by
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Figure 1.6: Main modes of motion in an adhesive contact between (sub)micrometer-size adhesive
monomers: (a) radial (i.e., normal) motion, (b) rolling, (c) sliding, and (d) twisting. Figure from
Seizinger et al. (2013), after Dominik & Tielens (1997).

radial force between two spheres to equal

FH =
4E∗a3

3r
, (1.20)

while the size of the contact being related to the approach through a2 = rδ, and typically
δ � a � r. Here, the elastic properties of the spheres are described in a single combined
elastic modulus E∗, and r−1 = r−1

1 + r−1
2 is the reduced radius. For a finite contact radius,

FH > 0, and thus, the spheres will move apart in the absence of additional forces.
For microscopic bodies however, attractive surface forces can play an important role.

By realizing that the presence of a mutual contact area results in a reduction of the total
surface energy ∆US = πa2γ, with γ the mutual surface energy, Johnson et al. (1971)
obtained

δ =
a2

r
−

√
2πγa/E∗, (1.21)

and

FJKR =
4E∗a3

3r
−

√
8πγE∗a3. (1.22)

These relations are qualitatively different from the ones obtained by Hertz. First, the force
can change signs, i.e., become attractive, for certain combinations of δ and a. As a result,
there now exists an equilibrium solution where FJKR = 0 but the contact area is finite,
given by

aJKR =

(
9πγr2

2E∗

)1/3

. (1.23)

Second, contact can persist at negative values of δ. Physically, this means that when
spheres are pulled apart, a ‘neck’ of material will be formed that keeps the spheres in
contact even for ~x1 − ~x2 > r1 + r2. When this neck becomes too long, the situation
becomes unstable, contact is lost, and the spheres return to their spherical shape. The
force needed to achieve pull-off equals Fc = (3/2)πγr, independent of elastic properties.
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1.4. This thesis

These two effects have the consequence that a finite amount of energy has to be pro-
vided to break an existing bond. This energy is roughly

Ebreak ∼

(
γ5r4

E∗3

)1/3

. (1.24)

Thus, contacts between sticky (high γ), soft (low E∗) materials cost more energy to break.
When two monomers collide head-on, they will stick and remain together if the initial
kinetic energy EK ≤ Ebreak. Equating these two energies results in a sticking velocity
vstick ∝ r−5/6; in other words, smaller spheres stick at higher velocities. Comparing ices
and silicates, these considerations predict particles made of ice stick at velocities ∼10
times higher than silicate particles of a similar size.

When a lateral force is applied to center of mass of the sphere, a torque about the
contact area is created. Starting from the JKR adhesive contact, Dominik & Tielens (1995)
derived the critical rolling energy

Eroll = 6πγrξ, (1.25)

as the energy needed to roll two spheres over each other over 90◦. Here, ξ is the rolling
displacement, related to the asymmetry of the contact area during the rolling motion.
Dominik & Tielens connected the displacement to the intermolecular length scale, i.e.,
ξ ∼ 0.1 nm.

Recent developments in molecular dynamics simulations have focussed on the ability
to include an increasing number of monomers, and the contact description has not evolved
much since its introduction in Dominik & Tielens (1997), despite a number of discrep-
ancies with experimental results. First, the sticking velocity of individual monomers has
been measured by Poppe et al. (2000) to be around vstick ' 1 m s−1 for micron-size silicate
grains, while the sticking velocity estimated from JKR theory is roughly 10 times lower.
Second, the experimentally obtained rolling forces of Heim et al. (1999) indicate a value
of ξ � 0.1 nm. Several reasons have been suggested for these discrepancies, including
elastic waves, surface roughness, and deviations from elasticity, with many of the subse-
quent molecular dynamics simulations employing additional numerical factors to remove
the disagreement with theoretical predictions.

1.4 This thesis

In this introduction we started from scales of ∼100 AU, corresponding to the typical size
of a protoplanetary disk, and slowly worked our way down to through planets, planetes-
imals, dust grains, and eventually monomers, to eventually argue that the physical prop-
erties of the adhesive contact (corresponding to a scale .µm) are important for the early
phases of planet formation. In the remainder of this thesis, we will walk the opposite
route; starting from studying a single monomer-monomer contact (Chapters 2 and 3), we
simulate dust coagulation in a local part of a nebula (Chapter 4), and finally study the
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Chapter 1. Introduction

global evolution of dust in a full protoplanetary disk (Chapter 5), before making a short
excursion into the much older debris disk systems (Chapter 6).

The JKR model of an adhesive contact assumes the spheres are perfectly elastic, and
that the contact area is in equilibrium. The size of the contact area is then found by
minimizing the total surface- and elastic energy. Collisions however, are very dynamic
processes, with typical durations of the order of 10−8 s for µm-size spheres. Furthermore,
deviations from perfect elasticity are expected for realistic materials. In Chapter 2, we
set out to extend the contact model to include dissipation of energy in the bulk of the
colliding materials, and at the periphery of the adhesive contact. The new viscoelastic
contact model is tested by comparing the predicted sticking velocity, and coefficients of
restitution to a large set of published experiments on head-on collisions of small spheres.

In Chapter 3, we build on the viscoelastic model, and use it to re-evaluate the rolling
force between adhesive monomers (i.e., Fig. 1.6b). The main goal is to achieve a better
understanding of the rolling displacement parameter ξ (Eq. 1.25).

After these excursions into the world of contact mechanics, Chapter 4 constitutes the
return to astronomy. In this chapter, the collisional evolution of a population of dust par-
ticles (initially all submicron grains) in a single column outside the snow line of a proto-
planetary disk is studied. Coagulation is simulated using a special Monte Carlo technique
(based on Ormel & Spaans 2008) that allows us to resolve the entire mass distribution,
even parts that hardly contribute to the total dust mass budget. As the aggregates grow
through collisions, the evolution of their filling factor is calculated self-consistently, as
it is influenced by collisions, and non-collisional forces such as gas-drag or self-gravity.
The main goal of this chapter is to determine whether erosion, caused by high-velocity
impacts of small grains, can halt the rapid growth of porous aggregates through the radial
drift barrier. In addition to the full Monte Carlo simulations, a semi-analytical model is
introduced that is capable of capturing the evolution of the mass-dominating particles.

In Chapter 5, this semi-analytical model is developed further, and a new method is
introduced to simulate the evolution of the dust surface density on a global scale, as it
is changed by the combination of (porous) coagulation and radial drift. The method is
used to study the formation of the first generation of planetesimals, the generation that
is capable of forming out of a smooth gaseous nebula. Focussing on Sun-like stars, we
study where in the disk porous coagulation can result in the formation of planetesimals,
either through direct coagulation, or through streaming instability (Sect. 1.2.4) following
coagulation/erosion equilibrium.

Chapter 6 takes a different perspective on the particles in debris disks, and addresses
the lower end of the particle size distribution in these evolved systems. In debris disks
(Sect. 1.1.3), the mass is typically dominated by km-size objects while the surface area
of the solids resides in small dust particles, the results of a collisional cascade. In this
chapter, we investigate which processes determine the observed cut-off of the particle
size distribution around a few micrometer.

Finally, in Chapter 7, the main results of this thesis are summarized and promising
avenues for future work are discussed.
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Energy dissipation in head-on
collisions of spheres

S. Krijt, C. Güttler, D. Heißelmann, C. Dominik, and A. G. G. M. Tielens
Journal of Physics D: Applied Physics, Volume 46, Issue 43 (2013)

Abstract

Collisions between spheres are a common ingredient in a variety of scientific problems, and the
coefficient of restitution is a key parameter to describe the outcome of those. We present a new
collision model that treats adhesion and viscoelasticity self-consistently, while energy losses arising
from plastic deformation are assumed additive. Results show that viscoelasticity can significantly
increase the energy that is dissipated in a collision, enhancing the sticking velocity. Furthermore,
collisions well above the sticking velocity remain dissipative. We systemically compare the model
to a large and unbiased set of published laboratory experiments to show its general applicability. The
model is well capable of reproducing the important relation between impact velocity and coefficient
of restitution as measured in the experiments, covering a wide range of materials, particle sizes,
and collision velocities. Furthermore, the fitting parameters from those curves provide physical
parameters like the surface energy, yield strength, and characteristic viscous relaxation time. Our
results show that all three aspects – adhesion, viscoelastic dissipation and plastic deformation – are
required for a proper description of the kinetic energy losses in sphere collisions.
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Chapter 2. Energy dissipation in head-on collisions of spheres

2.1 Introduction

The study of the normal impact of a sphere and a second sphere or a substrate is a fun-
damental one, with applications in many different fields and scientific problems. The
outcome of a collision is typically described by the coefficient of restitution, the ratio of
the relative post- and pre-collision velocities, a measure of the amount of kinetic energy
that is lost during the collision. Its value determines the energy balance in collisional
systems such as granular gasses (Brilliantov et al. 1996; Pöschel et al. 2003), which find
applications in a wide range of physical environments. The question whether or not a col-
lision results in sticking is of importance for many practical problems, such as the trans-
portation of powders or granular materials, as well as for the study of the evolution of
agglomerates, for instance in astrophysical environments such as dense molecular clouds
(Ossenkopf 1993), protoplanetary disks (Dominik & Tielens 1997; Paszun & Dominik
2008; Wada et al. 2009), and planetary rings (Salo 1995; Salo et al. 2001). Conversely, a
proper description of these systems requires good understanding of the physical processes
involved and the material parameters describing them.

During a collision, various physical mechanisms can work together to dissipate kinetic
energy. The magnitude of the energy associated with these mechanisms will in general
depend on the target and projectile materials, their sizes, and the collision velocity. At low
collision velocities, the surface energy of the materials associated with the mutual contact
area is comparable to the kinetic energy, and will influence the collisional outcome, often
resulting in sticking. In more energetic collisions, adhesion becomes less important, and
sticking cannot be achieved through surface forces alone. Energy-loss mechanisms that
are dominant in this regime can include the excitation of elastic waves (Rayleigh 1906;
Reed 1985) and viscoelasticity (Brilliantov et al. 1996; Kuwabara & Kono 1987). Dur-
ing high impact velocities, the stresses in and around the contact area may become so
large that the material stops to behave elastically. Kinetic energy will then go into plastic
deformation, and this becomes the most important energy sink (Johnson 1987).

Despite extensive theoretical work studying these underlying physical processes, and
experimental studies with measurements of the coefficient of restitution for certain ve-
locities (e.g., Dahneke 1975; Wall et al. 1990; Dunn et al. 1995; Li et al. 1999; Kim
& Dunn 2007a; Sorace et al. 2009), few attempts have been made to combine different
experiments and systematically compare the observed coefficient of restitution to theoret-
ical predictions. In general, the experimental results show three different features (Güttler
et al. 2012): (1) A rapidly increasing coefficient of restitution for low velocities, possibly
preceded by sticking collisions. (2) A region where the coefficient of restitution does not
vary with collision velocity, and has a value that is significantly smaller than unity. (3)
At high velocities, the coefficient of restitution is seen to fall of with velocity. A com-
plete model for the collisional outcome has to be able to reproduces all three of these
characteristics.

In this work, we set out to create collision model for viscoelastic adhesive spheres,
which will be tested against published experimental results. While theoretical studies
including either viscoelasticity (Brilliantov et al. 1996; Kuwabara & Kono 1987), or ad-
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hesion (Johnson 1987; Chokshi et al. 1993) have been around for some time, combining
these two effects has proven notoriously difficult. In Sect. 2.2, we propose a dynamic
contact model for adhesive viscoelastic spheres. The main advancement of our model
is that the two variables that describe the contact – the contact radius and the distance
between the sphere’s centers – are treated as mutually independent, where most theories
assume an equilibrium relation between these quantities. The contact description is used
in Sect. 2.3 to describe head-on collisions between spheres, after which it is expanded to
include plastic deformation at high velocities. Next, the collision model is compared to a
large and unbiased set of collision experiments (Güttler et al. 2012). Fitting the model to
the various experimental results will reveal how well it is able to reproduce the collisional
outcomes, and allows to get a handle on the material properties governing the adhesive,
viscous, and plastic behavior in question (Sect. 2.4). The results are discussed in Sect.
2.5, after which the main conclusions are presented in Sect. 2.6.

2.2 Contact model
In the section we briefly revisit elastic contact theory (with and without adhesion), before
deriving the equations describing a viscoelastic contact.

2.2.1 Static contact
When two smooth elastic spheres of radii R1 and R2 are pressed together, they will deform
locally and share a circular contact area with radius a (Fig. 2.1). Assuming the contact is
small compared to the reduced radius R, and there are no forces acting outside the contact
area, we can write the pressure distribution in the contact area as a function of 0 ≤ r ≤ a
(Muller et al. 1980)

p(r) =
E∗

πR
a2 − 2r2 + Rδ
√

a2 − r2
, (2.1)

where R−1 ≡ R−1
1 + R−1

2 , and E∗−1 ≡ (1 − ν2
1)/E1 + (1 − ν2

2)/E2 is the combined elastic
modulus, combining the Young’s Moduli Ei and Poisson Ratios νi of the spheres. The
mutual approach is defined as δ ≡ R1 + R2 − |~r1 − ~r2|, where ~ri is the position of a sphere’s
center of mass. The pressure at a radius r is then completely defined by a and δ, and can
be both positive (compressive) and negative (tensile). The largest compressive stress is
found at r = 0, and for now we will assume this stress does not reach the material yield
strength, and thus plastic deformation does not occur.

While there is a singularity at the edge of the contact, the integral over the entire area
is convergent and yields the (elastic) inter-particle force

FE =

∫ a

0
2πrp(r) dr =

2E∗

3R

(
3aδR − a3

)
. (2.2)

The elastic strain energy stored in the contact equals (Muller et al. 1980)

UE =
E∗a3

3R

[
δ

(
3δR
a2 − 1

)
−

a2

5R

(
5δR
a2 − 3

)]
. (2.3)
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Figure 2.1: Schematic of the contact between two elastic spheres, showing the contact radius a and
mutual approach δ.

So far we have deliberately not assumed any relation between a and δ. In some cases
however, such relations do exist, and we will discuss two of these here, as we will compare
them to the viscoelastic model later.

Hertz theory

In the non-adhesive case, as described by Hertz (1882), only repulsive forces are consid-
ered. For a given δ, the corresponding equilibrium contact size can be found by minimiz-
ing UE, resulting in

a2 = Rδ, (2.4)

which, together with Eq. 2.2 returns the famous Hertzian force

FH =
4E∗a3

3R
. (2.5)

From these two equations we see that in the non-adhesive case the force and contact
size go to zero for δ = 0, and no solution exists for δ < 0. Additionally, the force is
always positive, so no stable configuration of touching spheres is possible in the absence
of external forces.

Johnson Kendall Roberts theory

To describe the adhesive case, Johnson et al. (1971) added a surface energy term

US = −πa2γ, (2.6)

where γ is the surface energy. Thus, when the circular contact area shrinks or expands,
the surface energy changes. For a certain value of δ, the contact area will adjust itself so
that

∂

∂a
(UE + US) = 0, (2.7)

which can be solved to give

δ =
a2

R
−

√
2πγa/E∗, (2.8)
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and consequently

FJKR =
4E∗a3

3R
−

√
8πγE∗a3. (2.9)

These final two relations describe Johnson Kendall Roberts theory (hereafter JKR theory),
and show that contact between adhesive particles can be maintained even for negative
approaches and negative forces. An important point is that an equilibrium exists at

aeq =

(
9πγR2

2E∗

)1/3

, (2.10)

where the inter particle force equals zero, assuming no external forces are acting. Indeed,
a pull-off force of Fc = −(3/2)πγR, independent of elastic properties, has to be overcome
in order to separate two spheres.

Several alternative adhesive theories exist. JKR theory is the result of assuming that
no forces act outside of the contact area. Also in the seventies, Derjaguin et al. (1975)
took the opposite approach, by assuming the contact size is Hertzian, and adhesive forces
to act in a ring around it. It was shown by Tabor (1977) that both theories are in fact
limiting cases, whose validity depends on the value of the Tabor parameter, defined as

µ ≡

 Rγ2

E∗2z3
0

1/3

, (2.11)

with z0 = 0.2 ∼ 0.4 nm the spacing between atoms. For µ > 5, i.e., large compliant
spheres, JKR theory is valid, while for µ < 0.1 Derjaguin Muller Toporov (DMT) theory
is preferred. In the transition regime the Maugis-Dugdale solution can be used (Dugdale
1960; Maugis 1992; Johnson & Greenwood 1997).

2.2.2 Dynamic contact
Here we ask ourselves what happens when the material making up the spheres is not per-
fectly elastic. More specifically, the material will be assumed to be linearly viscoelastic,
with a single relaxation time Tvis. We focus first on what this means for the contact edge,
after which we turn our attention to the bulk of the material.

Viscoelastic crack theory

The growing or receding contact area can be described as a Mode I crack of length 2πa that
is either closing or opening. For an infinite linear elastic material the crack is adequately
described by Griffith theory (Griffith 1921), returning Eq. 2.6. For viscoelastic materials
however, this approach breaks down as it predicts infinite strain rates for any non-zero
crack velocity1. The basis for a more advanced theory comes from Barenblatt (1962),

1This problem was circumvented by Brilliantov et al. (2007), who integrated over the elastic stresses before
taking the time-derivative (their Eq. 30). While the integral over the elastic stress is finite, and indeed equal
to the elastic force, the integral over the time-derivative of the elastic stress does not converge. More specific,
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who provided a solution for the infinite stresses. Based on this concept numerous theories
for propagating viscoelastic cracks have been developed (Schapery 1975a,b; Greenwood
& Johnson 1981; Schapery 1989; Hui et al. 1998; Baney & Hui 1999). The main result of
these studies is that energy is dissipated at the crack tip, creating an asymmetry between
opening and closing cracks, which causes Eq. 2.7 to break down. However, providing

∂U∗S
∂a

= −2πaGeff(ȧ), (2.12)

is the energy released/absorbed when the crack is closed/opened, and includes any vis-
coelastic losses at the crack tip, we may write

∂

∂a

(
UE + U∗S

)
= 0. (2.13)

In Eq. 2.12, the effective surface energy Geff is a function of crack velocity ȧ. For suffi-
ciently slow cracks, Geff = γ, and Eq. 2.13 reduces to Eq. 2.7 as expected. In Appendix
2.A we show for which crack opening velocity this occurs. For larger crack speeds how-
ever, Geff > γ for opening cracks, and Geff < γ for healing ones. This causes so-called
adhesion hysteresis at the contact edge, and has been experimentally verified (Maugis &
Barquins 1978). Combining Eqs. 2.12 and 2.13 yields

Geff(ȧ) =
E∗

2πaR2 (a2 − δR)2. (2.14)

For a certain combination of a and δ, the above relation can be used to find the current
effective surface energy, and thus ȧ. The exact shape of Geff(ȧ) is quite complex. Here, we
will use results of Greenwood (2004), who combined the work of Barenblatt and Schapery
with a Maugis-Dugdale potential around the crack tip. The material is described as a
three-element solid, with a relaxation timescale Tvis and a ratio of relaxed to instantaneous
elastic modulus k. The effective surface energy is then written as

Geff(ȧ) ≡ β(ȧ)γ, (2.15)

which can be inserted into Eq. 2.12. Analytical functions are provided relating ȧ to β. For
the majority of crack speeds, and almost independent of k, we can use (Greenwood 2004)

σ2
0Tvis

E∗γ
ȧ =


0.15

[
β log

(
1 − k
1 − β

)]−1

for ȧ > 0,

−0.24β
[
log

(
1 − k

1 − 1/β

)]−1

for ȧ < 0,

(2.16)

swapping the integral and derivative using Leibniz’s rule results in a boundary term proportional to ȧp(a), which
is infinite in JKR-theory. A more detailed theory of what happens close to the contact edge is needed, and has
become available in the form of viscoelastic crack theory described here.
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where σ0 ' γ/z0 is the size of the attractive force acting in the region described by
the Maugis-Dugdale model. For low speeds, Eq. 2.16 looses accuracy, and Greenwood
(2004) provides, specifically for k = 0.02,

σ2
0Tvis

E∗γ
ȧ =



(0.1035x + 0.3421) x1.116 for 0.29 < β < 1,
where x = (1/β − 1)

− (0.2112x + 0.3939) x1.1403 for 1 < β < 3.7,
where x = (β − 1).

(2.17)

These relations have successfully been used to explain adhesion hysteresis in oscillatory
normal loading (Wahl et al. 2006), and in the rolling contact of polymers (Greenwood
et al. 2009). More recently, Barthel & Frétigny (2009) studied viscoelastic cracks for
the same three-element material model, but replaced the Maugis-Dugdale potential with
a more realistic one, finding results similar to Eqs. 2.16 and 2.17.

The above form of adhesion hysteresis is often called mechanical hysteresis (Chen
et al. 1991), and disappears when the contact loading/unloading cycle is performed at
infinitely low velocities. A different kind is ‘chemical hysteresis’, where material close
to the surface is left in a physically different state after the loading/unloading cycle (Chen
et al. 1991; Chaudhury & Whitesides 1991; Chaudhury & Owen 1993). In this work, we
assume mechanical hysteresis to be the dominant process.

Bulk dissipative force

When two viscoelastic spheres are pressed together at a finite velocity, a significant
amount of energy might also be dissipated in the bulk of the material. When dissipa-
tion and strain rates are small everywhere, the total stress tensor can be written as a linear
combination of the elastic and a dissipative stress tensor (Landau & Lifshitz 1965). We
follow this approach, and write the dissipative stress as being proportional to the time-
derivative of the elastic one (Brilliantov et al. 1996; Kuwabara & Kono 1987). Realizing
we are interested only in the normal component of the dissipative stress within the contact
area, we can write

σdis(r) = A
d
dt

p(r) = A
[
∂p(r)
∂δ

δ̇ +
∂p(r)
∂a

ȧ
]
, (2.18)

where p(r) is the elastic pressure distribution given by Eq. 2.1, and the proportionality
constant A is a combination of viscous and elastic constants with units of time, which we
approximate as A ∼ Tvis/ν

2 (Brilliantov et al. 1996, 2007).
Similar to Eq. 2.2, the dissipative stresses can be integrated to yield the bulk dissi-

pative force. The integration should be over all the dissipative stresses, except for those
arising from the crack propagation, which are accounted for by the viscoelastic crack the-
ory described in Sect. 2.2.2. More specifically, we will separate the influence of the bulk
deformation from the crack-induced stresses by only taking into account the δ̇-term in Eq.
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Chapter 2. Energy dissipation in head-on collisions of spheres

2.18. This allows us to write

FD = A
∫ a

0
2πrδ̇

∂p(r)
∂δ

dr = 2AE∗aδ̇. (2.19)

The dissipative force thus depends on both a and δ̇, becomes negligible when the contact
size goes to zero, and always has the same sign as δ̇, ensuring it will act like a true drag
term and always oppose motion.

2.3 Head-on collisions
The contact model put forward in Sect. 2.2 can be used to calculate the evolution of the
contact between two spheres that collide head-on. In this section, we limit ourselves to
equal-sized spheres of the same material, but the theory described here can be applied
to sphere-wall collisions by adjusting the effective mass and radius accordingly. The
material properties are chosen to resemble water-ice microspheres (table 2.2). This com-
bination of material properties has a Tabor parameter of µ ' 14, which would put this
in the JKR limit when viscoelasticity was not present. The value of Tvis is regarded as
unknown, and will be varied later on to probe the effect the viscoelastic nature has on the
evolution of the collision.

In Sect. 2.2.2 we obtained the elastic and dissipative force between two spheres as
a function of the contact size, their mutual approach, and the time-derivatives of these
variables. These are all the tools we need to numerically integrate a collision at a certain
velocity, realizing that the evolution of the mutual approach is given by

δ̈ = −
1

m∗
(FE + FD) , (2.20)

where the forces are given by Eqs. 2.2 and 2.19. The reduced mass m∗−1 = m−1
1 + m−1

2 can
be written in terms of density and radius. Meanwhile, the evolution of the contact size is
governed by Eqs. 2.14 – 2.17. The moment of first contact is taken as t = 0, and as we do
not allow for long-range forces the initial conditions for the mutual approach are

δ(0) = 0,

δ̇(0) = vin.

(2.21)

As Eq. 2.14 does not allow a = 0, we have to make an analytical approximation for the
initial growth of the contact area, see Appendix 2.B. Using these initial conditions, Eqs.
2.14, 2.16, 2.17 and 2.20 have to be solved simultaneously to obtain the evolution of δ
and a in time.

2.3.1 Bouncing collision
Figure 2.2 shows the evolution of the contact size and elastic force as a function of mutual
approach, for a head-on collision at 8 m s−1, and Tvis = 10−11 s. The relations from Hertz

38



2.3. Head-on collisions

1 0 1 2 3 4
Mutual approach [m] 1e 8

0.0

0.5

1.0

1.5

2.0

2.5

C
o
n
t
a
c
t
 
s
i
z
e
 
[
m
]

1e 7

This work

Hertz

JKR

1 0 1 2 3 4
Mutual approach [m] 1e 8

0

1

2

3

E
l
a
s
t
i
c
 
F
o
r
c
e
 
[
N
]

1e 5

This work

Hertz

JKR

Figure 2.2: Evolution of the contact size (left) and elastic force (right) versus mutual approach, for
an 8 m s−1 bouncing collision with the properties of ice (table 2.2) and a viscous relaxation time of
Tvis = 10−11 s. Predictions of Hertz (Eqs. 2.4 and 2.5) and JKR theory (Eqs. 2.8 and 2.9) are also
plotted, and the star marks the equilibrium point in JKR theory. The vertical dashed lines show the
snap-on in JKR theory, where the contact radius and force jump to a finite value when the spheres
first touch at δ = 0.

theory and JKR theory are also shown, and the star marks the equilibrium point in JKR
theory (FJKR = 0). At the start of the collision, δ = 0, and it is clearly visible in the left
panel of Fig. 2.2 that the contact area initially grows very fast, as its radius increases to
∼0.1 µm with δ hardly changing. This ‘snapping on’ is a consequence of the adhesive
forces, and results in the contact being larger then predicted by Hertz theory. As a direct
consequence, the force is negative early on, and the spheres are accelerated towards each
other. However, the effective surface energy is smaller than the static value, so both the
contact radius and the force do not reach the JKR-value. As the spheres compress, kinetic
and surface energy are converted into elastic energy2, and the spheres are brought to a halt
at some maximum δ. Here, the motion is reversed, and the spheres start to move apart.
During unloading (rebound), the contact area is shrinking, and the effective surface energy
is larger than the static one, causing the contact area to be larger than expected from JKR,
and the force to be smaller. During the rebound, the spheres will cross the point δ = 0, but
maintain contact as a result of the attractive surface forces. Because of the large effective
surface energy, the maximum tensile force can be seen to be a factor 2 or so larger than
the classic pull-off force from JKR theory, and contact can be maintained for even longer.
Since both a and δ are followed individually, the collision can be integrated as a goes to
zero. The total collision time, ∼1.7 × 10−8 s, can be compared to the one expected from
Hertz theory, which can be estimated as (Rayleigh 1906; Johnson 1987)

tH = 2.87
(

m∗2

RE∗2vin

)1/5

, (2.22)

2In Appendix 2.C the energy budget during the collision is described in more detail.
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Figure 2.3: Evolution of the contact size (left) and elastic force (right) versus mutual approach, for
a 2 m s−1 sticking collision with the properties of ice (table 2.2) and a viscous relaxation time of
Tvis = 10−11 s. Predictions of Hertz (Eqs. 2.4 and 2.5) and JKR theory (Eqs. 2.8 and 2.9) are also
plotted, and the star marks the equilibrium point in JKR theory. The vertical dashed lines show the
snap-on in JKR theory, where the contact radius and force jump to a finite value when the spheres
first touch at δ = 0.

and equals, for this particular set-up, 1.4×10−8 s. Thus, the combined effects of viscoelas-
ticity and adhesion have lengthened the collision by about one fifth.

2.3.2 Sticking collision

At lower velocities, the pre-collision kinetic energy becomes comparable to the dissipated
energy, and sticking can be achieved. Figure 2.3 shows the evolution of the contact for
a collision similar to the one from Fig. 2.2, but at a velocity of vin = 2 m s−1. Initially,
the collision resembles the faster one, but as there is less kinetic energy available, the
maximum contact size and mutual approach reached are somewhat smaller. During re-
bound, the spheres are not able to separate, and instead oscillate back and forth, spiraling
towards the JKR equilibrium point as a result of the dissipative effects. In a purely elastic
scenario, the oscillation would not be dampened. The kinetic energy is dissipated within
a couple of oscillations, on a timescale of a few times 10−8 s (see Appendix 2.C). The
energy absorbed as a result of the dissipative properties will be converted into heat. At
this stage, we do not take into account any effects an increased temperature might have
on the material properties, and simply view this energy as lost.

2.3.3 Coefficient of restitution

To capture the outcome of a collision in a single quantity, we calculate the coefficient
of restitution eA. There are several definitions for this coefficient in terms of velocity or
energy (Stronge 1990), but for the normal collisions described in this work the two are
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2.3. Head-on collisions

identical, and we can write the coefficient of restitution as

eA = −
δ̇(tc)
δ̇(0)

, (2.23)

where tc is the collision time. The resulting value can be compared to two cases in which
analytical estimates are possible. In the elastic JKR limit the coefficient of restitution
equals (Johnson 1987; Thornton & Ning 1998)

eJKR =

√
1 −

(
vc

vin

)2

, (2.24)

where

vc =

(
14.18

m∗

)1/2 (
γ5R4

E∗2

)1/6

, (2.25)

is the sticking velocity, below which all collisions will result in sticking. Alternatively, we
may look at the non-adhesive viscoelastic case. In the limit where dissipation is small, the
coefficient of restitution can be estimated as (Brilliantov et al. 1996; Schwager & Pöschel
1998)

eD ' 1 − 1.92
(

A
tH

)
. (2.26)

If one were to assume adhesion and viscoelastic dissipation do not influence each other,
these two energy losses can be added to yield

eI =

√
e2

JKR + e2
D − 1. (2.27)

However, adhesion and viscoelasticity cannot be treated independently as substantially
more energy is dissipated. For example; the collision described in Fig. 2.2 has eI = 0.92,
while the numerical viscoelastic model employed here results in eA = 0.66.

Figure 2.4 shows the variation of the coefficient of restitution with velocity, and com-
pares it to the above estimates. Focussing first on the lowest velocities, we see that the
sticking velocity is increased substantially. Towards the higher velocities, the results ap-
pear to approach the limit described by Eq. 2.26. Comparison with Eq. 2.27 shows that
treating adhesion and viscoelasticity separately will significantly underestimate not only
the sticking velocity, but the amount of energy dissipation over the entire velocity range.
The effect of varying the reduced radius is shown in Fig. 2.5, where collisional outcomes
at a fixed velocity are shown. Again, the difference between the theory developed here and
Eq. 2.27 is substantial, although it vanishes for larger spheres, where the kinetic energy
is much larger than the dissipated energy, and collisions are almost completely elastic.

An important parameter for many studies is the sticking threshold velocity vs; the
maximum velocity at which colliding particles will stick. Figure 2.5 shows the sticking
velocity as a function of reduced radius and viscous relaxation time for water-ice parti-
cles. The sticking velocity in the non-viscous case (Eq. 2.25) is plotted for comparison.
For very small values of Tvis the material effectively behaves elastically and Eq. 2.25 is
retrieved. For larger values of the relaxation time, the sticking velocity can be increased
significantly, especially for small particle sizes.
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Figure 2.4: Coefficient of restitution (COR) for head-on collisions as a function of impact velocity
(solid red). Properties of ice and a viscous relaxation time of Tvis = 10−11 s are used.
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Right: Sticking velocity as a function of reduced radius for the material properties of ice. The
non-viscous sticking velocity of Eq. 2.25 is plotted for comparison.

2.3.4 Plastic deformation
During a collision, the stress in the material can become so large that it starts to yield
plastically. In a contact between spheres, ignoring adhesion and viscosity, the maximum
shear stress is attained right beneath the contact area and on the axis of symmetry. Using
either the Tresca or von Mises criterion, it can be shown that plastic deformation in the
region below the contact will start when the pressure in the center of the contact area p0
exceeds 1.6 times the yield strength Y of the material in simple tension (Johnson 1987).
We can write a condition for the impact velocity for which yield is just initiated.

v2
y = 10.2

R3 p5
y

m∗E∗4
, (2.28)
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where py = 1.6Y denotes the pressure at the center of the contact area at the onset of
plastic deformation (Johnson 1987). Note that since vy scales with R3/m∗, the yield ve-
locity does not depend on size, assuming Y is independent of size. When the impact
velocity is larger than vy, a plastic region will be created underneath the contact area, and
the pressure distribution will flatten off (Hardy et al. 1971). For even faster collisions
the maximum pressure grows from 1.6Y to about 3Y , at which point the plastic region
reaches the sphere’s free surface, plastic flow is no longer contained and the situation
becomes more complicated (Johnson 1987).

An analytical model for the coefficient of restitution is provided by Thornton & Ning
(1998), where the pressure distribution is cut off above a critical py. It is shown that this
cutoff results in a force which depends linearly on the approach δ. In addition, Thornton
and Ning assumed that during the rebound phase the forces are Hertzian, but the radius of
curvature is altered because of the plastic yield during loading. The resulting coefficient
of restitution equals

eP =


1 for v̂ > 1,(
6
√

3/5
)1/2 (

1 − 1
6 v̂

2
)1/2

×

[
v̂/

(
v̂ + 2

√
6
5 −

1
5 v̂

2
)]1/4

for v̂ ≤ 1,

(2.29)

where v̂ = (vy/vin). If no plastic deformation occurs, the collision is perfectly elastic and
eP = 1. If the impact velocity exceeds vy, the coefficient of restitution will drop off. At
velocities well above the yield velocity eP ∝ (vy/vin)1/4. More advanced models exist,
that treat the variation of the central pressure and the unloading phase more carefully (Wu
et al. 2003; Wu et al. 2005) or include adhesion (Mesarovic & Fleck 2000). However, for
the purpose of this work, we choose the model of Thornton & Ning to describe the plastic
behavior. For the constant cutoff pressure we use py = 1.6Y .

For typical material parameters the yield velocity lies well above the sticking veloc-
ity (Thornton & Ning 1998), and it seems reasonable to assume the effects of adhesion
and plastic deformation can be treated separately. Assuming the energy losses resulting
from adhesion/viscosity and plastic deformation are being additive, we can write the total
coefficient of restitution as

e =

√
e2

A + e2
P − 1, (2.30)

where eA is obtained by numerically integrating δ̇ in Eq. 2.23.

2.4 Comparison to experiments
The model presented in Sect. 2.3 can be compared to experiments performed on colliding
spheres where adhesion is of some importance, i.e., small spheres and/or low velocities.
Experiments with colliding microspheres have been performed for some decades now,
with results often in the form of a series of coefficients of restitution as a function of ve-
locity. In general, most experimental results look similar to Fig. 2.4, and also show some
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üttler

et
al.

(2012).

44



2.4. Comparison to experiments

dissipation towards higher velocities. In addition, fitting a purely elastic adhesive model
has on some occasions yielded unrealistically high values for the surface energy (Sorace
et al. 2009). In this section we set out to fit the model to a large set of published experi-
mental results, with the aims of testing its applicability, and deriving the key parameters
that govern the adhesive, viscoelastic, and plastic behavior.

2.4.1 Method
Available collision experiments reporting coefficients of restitution have been collected
and reviewed by Güttler et al. (2012). Here, we select those experiments from the dataset
that resemble head-on and non-rotating collisions, and where the effects of surface rough-
ness are believed to be small. Moreover, we are interested only in the data where a drop
in the coefficient of restitution towards lower velocities is visible. With this, we hope to
choose an unbiased sample, which is also as complete as possible to the best of our knowl-
edge. The selected experiments are summarized in table 2.1, where the materials, particle
sizes, and examined velocities are shown. The micrometer experiments are all sphere-
wall collisions, while the millimeter particles were collided sphere on sphere. Table 2.2
lists the various materials, together with their properties.

To fit the experimental results, we use the elastic material properties from table 2.2,
and treat γ, Tvis and Y as fitting parameters. While the surface energy might be considered
as known, the values listed in table 2.2 under γL correspond to clean surfaces in perfect
contact. These conditions are not necessarily met during an experiment, and the value
of the surface energy might differ accordingly. Therefore, we allow γ to vary and will
compare the result to the literature value in Sect. 2.4.2. For a particular experiment, the
best fit is obtained by minimizing

χ2 =
1
N

N∑
n=1

[
eexp(vn) − e(vn)

]2
, (2.31)

where N is the total number of data points, and the theoretical e(vn) is given by Eq. 2.30.
The value of χ2 is calculated for a grid of values for γ, Tvis and Y , after which the uncer-
tainty in each individual parameter is taken as the range in which this parameter can vary
without χ2 growing by more than a factor of 2. For experiments where the error on the
coefficient of restitution was provided, this method yielded uncertainties comparable to
the size of the 1σ confidence limit.

2.4.2 Results
We recognize three global characteristics in the experiments: (1) At low velocities, the
outcome is dominated by adhesive and viscous forces, sometimes resulting in sticking.
Just above the sticking velocity the COR rises steeply but does not reach unity. (2) To-
wards slightly higher velocities, the kinetic energy increases and the effects of adhesive
forces decrease. However, as a result of the bulk dissipative force collisions are still dissi-
pative, and regions where the COR is nearly constant and well below unity are observed
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Material E (GPa) ν ρ (g cm−3) cs (m s−1) γL (J m−2)
Metals/Minerals

aluminium alloy 70 0.345 2.7 5092 0.59
(stainless) steel 190 0.28 7.92 4898 1.62
molubdenum 320 0.33 10.28 5579 2.81
polished quartz 54 0.17 2.6 4557 0.025
silicon 180 0.33 2.33 8789 1.42
mica 90 0.33 3. 5477 0.77
copper 130 0.34 8.94 3813 1.11
Ag-coated glass 72 0.21 2.6 5261 0.61

Polymers
PSL 3.4 0.33 1.026 1820 0.025
tedlar 2 0.33 1.46 1170 0.018
acrylic 3 0.35 1.22 1568 0.02
lucite 2.6 0.3 1.18 1484 0.02
PVT 3 0.33 1.2 1581 0.02
AF 1.17 0.33 1.35 931 0.01

Others
ceramics 370 0.26 3.86 9790 0.04-5
water ice 7 0.25 1.00 2645 0.37

Table 2.2: Different materials with their elastic properties and densities. The soundspeed has been
calculated as cs = (E/ρ)1/2. Surface energy values come from Chokshi et al. (1993); Gilman (1960);
Mark (1999); Siegel et al. (2003); Król & Król (2006); Kim & Dunn (2007b), and references therein.

for almost every experiment. These regions, covering up to factors of 3–4 in velocity,
cannot be adequately explained by purely elastic adhesive theory, as the COR is expected
to rise to 1 rapidly above the sticking velocity. (3) Some experiments show a drop in
the COR towards high velocities. This drop is explained by plastic deformation. In the
majority of the experiments however, the high velocities needed to observe this part are
not reached.

Figure 2.6 shows two examples of the produced fits. All other fits, as well as a table
giving the fitting parameters and uncertainties for each individual experiment, are pre-
sented in Appendix 2.D. Perusal of the fits reveals good agreement between model and
experiments. The three global characteristics outlined above are in a natural way con-
tained with this theory in terms of the adhesion and the viscous dissipation at the contact
edge, the bulk viscous dissipation, and plastic deformation. For comparison, we plot in
Fig. 2.6 curves neglecting viscoelasticity (dashed lines). It is clear that a model including
only adhesive forces and plastic deformation is unable to describe the experimental results
at intermediate velocities.
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Figure 2.6: Three typical examples of the fits produced in Sect. 2.4. Of these, only the rightmost
experiment covers the plastic deformation regime. The dashed curves show JKR theory (Eq. 2.24),
where the surface energy has been chosen such that the low velocity part of the data is described
well. For the rightmost curve, plastic deformation (Eq. 2.29) was added when creating the dashed
curve.

Surface energy

Figure 2.7(a) shows the surface energy values for the best fitting models. The values have
been normalized to the literature value, obtained by combining3 the corresponding surface
energies from table 2.2. The solid gray line indicates γ = γL. The majority of the derived
surface energies lie very close to the literature value.

A handful of experiments show a large uncertainty in the determination of γ, and
we briefly discuss why. For Dahneke’s PVT experiment, the reason is that the drop in
the COR towards low velocities is not very distinct. For the mm-sized experiments the
large uncertainty is a result of the scatter in the data, and the fact that the majority of the
data points lie close to unity. As a result, model curves that combine a negligibly small
value for Tvis with a large surface energy, cannot be rejected on the basis of the method
outlined above. However, non-zero values for the viscous relaxation time do describe
the data more accurately, and the surface energies for these fits lies significantly closer to
γL, alleviating the issue of the high apparent surface energies as put forward by Sorace
et al. (2009). Moreover, measurements by Sorace et al. of the COR at high speeds4 range
between 0.90 and 0.95, supporting the hypothesis that the energy loss observed is caused
by more than just adhesive forces.

Yield strength

The obtained yield strengths are shown in Fig. 2.7(b), normalized to the Young’s modulus
of the softer material. The gray arrows correspond to experiments where plastic defor-
mation does not occur at the velocities studied, and therefore give lower limits on the

3For like materials, γ equals twice the surface free energy, and for different materials the surface energies
can be combined as γ ' 2

√
γ1γ2.

4These results are not included in the fitting procedure as it is unclear at which velocity they were obtained.

47



Chapter 2. Energy dissipation in head-on collisions of spheres

10-1 100 101 102 103

γ/γL

Sorace et al. acrylic

Sorace et al. ceramics

Sorace et al. steel

Li et al. 90 micron

Li et al. 55 micron

Kim and Dunn

Dunn et al. aluminium

Dunn et al. copper

Dunn et al. coated steel

Dunn et al. steel

Dunn et al. tedlar

Wall et al. tedlar

Wall et al. mica

Wall et al. silicon

Wall et al. molubdenum

Dahneke PVT

Dahneke PSL

(a) Surface energy

10-3 10-2 10-1

Y/Ei

Sorace et al. acrylic

Sorace et al. ceramics

Sorace et al. steel

Li et al. 90 micron

Li et al. 55 micron

Kim and Dunn

Dunn et al. aluminium

Dunn et al. copper

Dunn et al. coated steel

Dunn et al. steel

Dunn et al. tedlar

Wall et al. tedlar

Wall et al. mica

Wall et al. silicon

Wall et al. molubdenum

Dahneke PVT

Dahneke PSL

(b) Yield strength

Figure 2.7: Best fit values for the surface energy and yield strength. The surface energy has been
normalized to the literature value obtained from table 2.2, and the yield strength is normalized to
the Young’s Modulus of the softer particle. The estimated error is indicated by the solid lines, and
gray arrows indicate lower limits. Experiments are ordered from smallest (top) to largest (bottom)
reduced radius.

material strength5.
In macroscopic metal bodies plastic flow is the result of the motion of a dislocation

through the crystalline lattice structure, and the yield strength is typically orders of mag-
nitude smaller than the Young’s modulus. The typical density of such dislocations that
intersect a unit plane equals 1012 − 1013 m−2, or between 1 and 10 per square micrometer
(Kraft et al. 2010). On sub-micrometer scales, very few dislocations are available and the
yield strength is expected to approach the theoretical strength of 0.2 Ei, largely indepen-
dent of material (Petch 1968). To describe the size dependence of the yield strength, an

5For the PVT (Dahneke 1975) and tedlar and molubdenum experiments (Wall et al. 1990), the best fitting
models did include plastic deformation towards high velocities, but models without could not be rejected.
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empirical power law of the form

Y = Y0 + kl−n, (2.32)

is often used, with Y0 the macroscopic yield strength, l the characteristic length scale, k a
constant, and n = 0.5 the classical Hall-Petch value (Petch 1953). Experimentally derived
values range between 0.5 > n > 1 for metals (Brenner 1956, 1957; Volkert & Lilleodden
2006; Zhu et al. 2012), suggesting there are multiple deformation mechanisms acting, that
cannot be captured in a single power law (Kraft et al. 2010). For polymers a theoretical
strength of 0.2 Ei has been predicted by Frenkel (1926), while experimental values of the
yield strength in bulk glassy polymers (Brown 1971; Kozey & Kumar 1994) and metallic
glasses (Johnson & Samwer 2005) are about an order of magnitude smaller, and appear
to be correlated with temperature as well as elastic modulus.

We estimate the length scale l on which the plastic deformation occurs in the collision
experiments, as being equal to the maximum Hertzian contact radius

l =

15m∗v2
inR2

16E∗

1/5

. (2.33)

To obtain a single value for l for every experiment in table 2.1, we use a representative
velocity equal to half the maximum velocity used in that particular set up. The obtained
normalized yield strengths are plotted in Fig. 2.8(a) as a function of l. For comparison,
we plot the result of Lifshitz & Kolsky (1964), who found a yield velocity of 0.3 m s−1

for steel spheres with a 3.18 mm radius. The observed material strengths vary by about a
factor of 20, and appear to approach the theoretical strength for the smallest length-scales.
These results confirm that the drop in coefficient towards high velocities is indeed caused
by plastic yield.

Relaxation timescale

Of the fitted parameters, the viscous relaxation time is considered the most uncertain.
Figure 2.8(b) shows the best fit values plotted against the reduced radius. For the theory
of Sect. 2.2 to be valid, the relaxation time needs to be small compared to the collision
time tc. As a lower limit for the collision time we can use the Hertzian approximation
(Eq. 2.22), realizing that any adhesive and/or viscous effects will act to increase the
collision time. The Hertzian collision time is plotted as a gray solid line in Fig. 2.8(b)
for typical properties (E∗ = 10 GPa, ρ = 2 g cm−3 and vin = 10 m s−1). The gray dashed
line corresponds to tH × 10−3. The fitted values for the relaxation time lie well below
the collision time, validating the use of our model. While the mm-sized experiments
technically yield upper limits, we prefer to think viscoelastic behavior is important also
at these sizes, as negligibly small values for Tvis result in very large surface energies, and
fail to explain the high-velocity points presented by Sorace et al. (2009). The apparent
relation between the relaxation time and reduced radius is curious, and will be further
discussed in Sect. 2.5.
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Figure 2.8: (a) Variation of normalized yield strength with particle radius. Gray triangles represent
lower limits, and the horizontal dotted line shows the theoretical strength of Y/Ei = 0.2. For
l > 10−6 m many dislocations will be available, while they are scarce for smaller sizes (see text).
The red square corresponds to data from Lifshitz & Kolsky (1964). The red dashed lines show
Y ∝ l−0.5 and Y ∝ l−1 (Kraft et al. 2010). (b) Relaxation times as a function of reduced radius. The
solid and dashed gray lines indicate typical values for tH and tH × 10−3 respectively.

2.5 Discussion

A collision between spherical particles results in some kinetic energy being lost. As a
result, the rebound velocity is smaller than the incoming velocity. In this work we put
forward a collision model that treats adhesion and viscoelasticity in a self-consistent way,
and assume the energy losses arising from plastic deformation to be additive.

Incorporating dissipative viscoelastic stresses into a static contact description such as
JKR theory is not straightforward. The problem is the existence of a theoretically infinite
tensile stress at the contact edge, which causes infinite stress rates when the contact area
grows or shrinks at a finite rate. Integration of the dissipative stresses will then inevitably
result in an infinitely large dissipative force. A solution to this problem comes from
viscoelastic crack theory (Greenwood 2004), and is included in the contact description by
allowing for an effective surface energy, which varies as a function of the rate with which
the contact advances/recedes. To be able to describe the contact hysteresis that ensues,
we follow the evolution in time of both the contact radius and the mutual approach. Some
distance from the contact edge, the stress rates are dominated by the changes in the mutual
approach, rather than the crack opening or closing. The dissipative stresses arising here
can be integrated to yield a dissipative stress. With analytic expressions for the total
normal force between two non-rotating particles, a head-on collision at a certain velocity
can be solved numerically, yielding the total energy loss and coefficient of restitution.

Regarding the particle size and elastic modulus as known, the model is fitted to exper-
imental results and yields values for the surface energy, the viscous relaxation timescale,
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and the yield strength. While the obtained values for the surface energy and yield strength
compare well to expected values, it is difficult to judge whether the inferred material re-
laxation time is realistic, partly because of the viscoelastic model that is used, in which
the material relaxes linearly on a single timescale. This is a very simplistic view, as more
realistic materials contain numerous characteristic time- and length scales corresponding
to (parts of) molecules, chains of molecules, or lattice structures. The experiments clearly
reveal the effect of viscous dissipation for all particle sizes and therefore, by necessity,
at all collision timescales. This immediately implies that the relevant viscous dissipation
timescale is longer for collisions between larger grains (Fig. 2.8(b)). We interpret this
along the lines outlined above: when larger volumes are involved in the collision process,
larger structures can be activated in the dissipation process, and these larger structures by
necessity require longer timescales to act.

The collision model used throughout this work does not take into account energy lost
in the excitation of elastic waves, or the presence of surface asperities. We shall discuss
these assumptions briefly. During a collision of two bodies, elastic waves will be excited
that travel back and forth and carry a part of the initial kinetic energy. In the non-adhesive
case this energy is expected to be negligible if the collision velocity is well below the
material soundspeed (Rayleigh 1906), which is the case for the experiments encountered
in this work (see table 2.2). However, the presence of adhesion might enhance the elastic
wave energy around the lower velocities, increasing the sticking velocity slightly (Chokshi
et al. 1993).

The presence of surface asperities can influence the collisional outcome profoundly.
Irregularities that are large compared to the contact size will alter the local reduced radius,
while smaller asperities can be crushed to dissipate energy (Tsai et al. 1990) or survive
and act to reduce the effective surface area and therefore the effect of adhesive forces
(Tabor 1977). Several authors provided information on the particle roughness. For the
fluorescein particles, Wall et al. (1990) provided an upper limit on the roughness of 3 nm.
The steel particles were stated to be smooth to within the resolution of the scanning elec-
tron microscope (SEM), while the surface of the target showed a height standard deviation
of ∼ 1 nm (Li et al. 1999). An SEM was also used by Dunn et al. (1995) to study their
surfaces, who found the steel to be virtually flawless within the resolution of 4 nm. The
softer targets showed some irregularities on the micron scale. Unfortunately, Dahneke
(1975) and Sorace et al. (2009) provided no information on the roughness of the parti-
cles they used. For more details on the surface conditions in the various experiments the
reader is referred to Güttler et al. (2012) or the original experimental works. The typical
diameter of the contact area ranges between about 100 nm and 20 µm for the smallest and
largest spheres described here, while the mutual approach is a factor (a/R) smaller. Thus,
contact will be made over many small asperities simultaneously, and their presence is not
expected to significantly alter the collisional outcome. The obtained surface energies, as
plotted in Fig. 2.7, show no systematic deviation from literature values. Therefore, we
believe that in general the effects of both elastic wave excitation and surface asperities are
small. The collision model also assumes a Tabor parameter µ > 5 (Tabor 1977; Johnson
& Greenwood 1997). The values of the Tabor parameter (calculated using γL) are given
in Fig. 2.6 and in the supplementary material. While two experiments are perhaps limit-
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ing cases, the majority of the experiments have µ � 5, justifying the use of the collision
model.

2.6 Conclusions

In this work we have studied the collision between adhesive, viscoelastic spheres in a
self-consistent way, by following the evolution of both the contact size, and the mutual
approach of the sphere’s centers of mass independently. The contact edge is described
using viscoelastic crack theory, whereas deformations in the bulk of the material give rise
to a dissipative force. The main results are:

1. The combined effects of viscoelasticity in the bulk and at the contact edge can cause
significant deviations from static adhesive contact theory. As a result, there is no
unique relation between the contact size and the mutual approach.

2. Because energy is dissipated through viscoelastic effects both in the bulk and at
the contact edge, the sticking velocity can be significantly increased from the value
predicted based on elastic adhesive theory. Well above the sticking velocity the
viscoelastic effects still cause significant energy loss, and a coefficient of restitution
of less then unity.

3. Assuming viscoelasticity and adhesion can be treated separately results in a signif-
icant underestimation of the energy lost during a collision.

The model is extended to include plastic deformation at high velocities, and compared to
a large set of experimental results resulting in the determination of the surface energy, ma-
terial yield strength, and viscous relaxation time. The main findings can be summarized
as follows:

4. The collision model is remarkably successful in describing a large number of ex-
periments, varying in experimental set-up, particle materials, particle size, and col-
lision velocity. Removing any one of the three energy-loss mechanisms results in a
dramatic decrease in the quality of the fit.

5. The surface energy values obtained from the experiments are in good agreement
with literature values. The majority of the derived surface energies lies within a
factor of two of the expected values. The remaining small differences are expected
and can easily be attributed to elastic waves and surface roughness.

6. Through fitting the yield velocity, a value for the material yield strength can be
obtained. For the majority of experiments plastic yield is not observed, resulting in
a lower limit for this parameter. The resulting values for the yield strength lie within
the expected range, and approach the theoretical strength of about 0.2×Young’s
modulus for the smallest sizes.

52



2.A. Quasi-static limit

7. When viscous dissipation is important, the relaxation timescale has to be well below
the collision timescale. We observe a correlation between the relaxation timescale
and the reduced radius of the sphere(s). We suggest that this relationship reflects
the activation of relaxation in larger and larger structures as the collision size scale
increases.

Acknowledgements

Dust studies at Leiden Observatory are supported through the Spinoza Premie of the
Dutch science agency, NWO. C.G. is grateful for the support of the Japan Society for
the Promotion of Science (JSPS). D.H. acknowledges funding from the German Research
Council (DFG) under grant B1298/11-1. The authors would like to thank J. Blum for
encouraging discussions.

2.A Quasi-static limit

Here we estimate the timescales below which the effects of viscosity are small, and the
elastic limit is retrieved. Turning our attention first to the bulk dissipation, the effect of
Tvis becomes negligible when

FD

FE
< 10−2. (2.34)

Plugging in Eqs. 2.2 and 2.19, and assuming the Hertzian relation Eq. 2.4 reduces the
above equation to

Tvis < 10−2 ν2tc, (2.35)

where we have used (δ/δ̇) ∼ tc. Thus, bulk dissipation will have little effect on the energy
balance if the relaxation timescale is much smaller than the collision timescale. A similar
result can be obtained directly from Eq. 2.26.

The magnitude of the adhesion hysteresis depends on the crack velocity. We assume
the quasi-static limit to be retrieved when the difference between effective and static sur-
face energy is of order 10−2. Making use of Eq. 2.17, appropriate for low crack velocities,
we find this holds when σ2

0Tvis

E∗γ

 |ȧ| < 10−3. (2.36)

In a collision, ȧ will vary significantly, but we may obtain a typical value from Hertzian
theory, where ȧ = δ̇(R/2a), allowing us to rewrite the above limit as

Tvis < 10−3 z0

a

(
2E∗z0

γ

)
tc. (2.37)

Relaxation timescales longer than this will result in adhesion hysteresis, and affect the
collisional outcome if the energy that is dissipated in this way is comparable to the kinetic
energy. The fraction E∗z0/γ is relatively small for materials like ice or polymers, but can
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be substantially larger for metals or minerals like quartz (see table 2.2). As a result, the
relative importance of crack and and bulk dissipation will vary per material.

For the ice particles considered in Sect. 2.3, the term in brackets is of order unity,
while (z0/a) ∼ 10−3. Comparison of Eqs. 2.35 and 2.37 reveals energy dissipation at
the contact edge can take place for shorter timescales, and when the bulk of the material
behaves elastically. For a 4 m s−1 collision between the ice spheres of table 2.2, Eqs. 2.35
and 2.37 both hold for Tvis = 10−14 s. For this value of the relaxation time, numerical
integration of the equations of motion yields e = 0.93, which is in excellent agreement
with the quasi-static result: eJKR = 0.93.

2.B Intial condition for contact area
At the point of first contact, a = δ = 0, causing Geff , as defined by Eq. 2.14, to be
indefinite. To account for this, we take an approach very similar to Sect. 4.1 of Greenwood
& Johnson (2006), the main difference being that our approximation is focussed on δ = 0,
whereas the former uses FE = 0.

Setting the mutual approach to zero in Eq. 2.14 returns

a =

(
2πR2Geff

E∗

)1/3

. (2.38)

As ȧ is practically infinite, we can assume Geff should have the minimum value of kγ. In
this case (β = k), Eq. 2.16 cannot be used, and an analytical approximation is required.
Following a similar approach as Greenwood & Johnson (2006), we can approximate the
time since contact formation, for a given β, as

1.198 Tvisσ
2
0

(
R

E∗2γ

)2/3

t ' (s4 − 1) log
(

1 − k
1 − s4

)
− 1.5 log(1 + s + s2)

−
√

3 arctan
(

2s + 1
√

3

)
+ 3s(1 + s3/4), (2.39)

where s ≡ β1/3. Now, a value of β arbitrarily close to k can be chosen, and the above
two equations will return the corresponding contact size, and time difference, providing a
starting point for ȧ. The assumption that δ = 0 is justified as the contact initially grows
so rapidly, the mutual approach hardly changes. For our numerical integrations, we have
used the starting value of Geff = 1.01kβ.

2.C Energy budget during collision
It proves useful to examine the various energies in the system during the collision. First,
the kinetic energy is taken to equal

UK =
1
2

m∗δ̇2. (2.40)
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Figure 2.9: Evolution of the kinetic energy (UK), elastic energy (UE), surface energy (US), and
energy dissipated at the crack (UCD) and in the bulk (UBD), for a 8 m s−1 bouncing collision with
the ice properties of table 2.2 and a viscous relaxation time of Tvis = 10−11 s. The energies are
normalized to the initial kinetic energy of the collision.

We already have an expression for the elastic energy in Eq. 2.3, and the surface energy is
given by Eq. 2.6. The total amount of energy that has been dissipated at the crack tip at a
time t′ can be written as

UCD =

∫ t′

0
2πa(1 − β)γȧ dt. (2.41)

This quantity is always positive, as ȧ has the same sign as (1 − β). Lastly, the energy that
has been dissipated in the bulk by FD at some time t′ is obtained through

UBD =

∫ t′

0
FDδ̇ dt. (2.42)

Figure 2.9 shows these energies, normalized to the kinetic energy at t = 0, for the
same collision as described in Fig. 2.1. The brief acceleration phase the spheres go
through immediately after t = 0 can be seen to have a negligible effect on the kinetic
energy in this particular case. During the loading phase, the growth of the contact area
results in energy being added to the system, and the surface energy grows increasingly
negative. Energy is steadily dissipated in the bulk and at the crack tip. As the motion
is reversed, the elastic energy starts to decrease while the surface energy grows, as new
surface is being created. At the end of the collision, 37% and 19% of the initial kinetic
energy has been dissipated at the crack tip and in de bulk of the material respectively,
indicating that the adhesion hysteresis has a large influence on the energy balance in the
system. Furthermore, the collision is clearly asymmetric, as the rebounding phase, which
starts after UK reaches zero, is significantly longer than the loading phase. Figure 2.10
shows the various energies for the sticking collision of Fig. 2.4. Most of the initial kinetic
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energy and the released surface energy are dissipated (mainly at the crack tip), while a
fraction remains stored in elastic energy.
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Figure 2.10: Evolution of kinetic energy (UK), elastic energy (UE), surface energy (US), and energy
dissipated at the crack (UCD) and in the bulk (UBD), for a 2 m s−1 sticking collision with the ice
properties of table 2.2 and a viscous relaxation time of Tvis = 10−11 s.
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2.D. Fits

2.D Fits

Experiment γ (J m−2) Y (MPa) Tvis (s)

Sorace et al. acrylic 0.48+14.52
−0.43 > 67 < 8 × 10−8

Sorace et al. ceramics 37.8+62.2
−30.8 > 2980 < 5 × 10−9

Sorace et al. steel 5.47+18.53
−3.47 > 2040 8.90+13.10

−8.80 × 10−9

Li et al. 90 micron 1.49+0.71
−0.59 > 3130 1.12+0.28

−0.17 × 10−9

Li et al. 55 micron 2.74+0.76
−0.74 > 2670 5.08+1.92

−1.08 × 10−10

Kim and Dunn 0.39+0.61
−0.19 > 464 1.72+2.78

−1.62 × 10−10

Dunn et al. aluminium 0.97+0.28
−0.22 > 2490 5.16+0.84

−0.66 × 10−11

Dunn et al. copper 1.34+0.46
−0.59 > 3050 3.90+1.10

−0.90 × 10−11

Dunn et al. coated steel 2.55+0.95
−0.85 > 3320 1.03+0.67

−0.53 × 10−11

Dunn et al. steel 2.42+0.98
−0.92 > 3310 1.55+0.95

−0.85 × 10−11

Dunn et al. tedlar 0.21+0.06
−0.06 > 245 1.70+0.60

−0.20 × 10−10

Wall et al. tedlar 0.16+0.04
−0.04 > 90 8.85+5.15

−2.85 × 10−11

Wall et al. mica 0.13+0.02
−0.02 192+28

−12 9.79+1.21
−1.79 × 10−11

Wall et al. silicon 0.17+0.05
−0.03 153+22

−23 5.97+2.03
−2.47 × 10−11

Wall et al. molubdenum 0.15+0.07
−0.05 > 120 5.74+3.26

−3.74 × 10−11

Dahneke PVT 0.11+0.12
−0.10 > 280 3.07+1.93

−1.77 × 10−12

Dahneke PSL 0.11+0.03
−0.02 > 271 2.14+1.11

−0.64 × 10−12

Table 2.3: Fit parameters obtained in Sect. 2.4. The experiments are ordered from largest (top) to
smallest reduced radius.
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Figure 2.11: Best fitting models for the complete set of experiments. Note that the scale on the
vertical axis varies. The value of the Tabor parameter µ (Sect. 2.5) is shown above each plot.
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Figure 2.11: (continued) Best fitting models for the complete set of experiments. Note that the
scale on the vertical axis varies. The value of the Tabor parameter µ (Sect. 2.5) is shown above each
plot.
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Abstract

The rolling friction of adhesive microspheres is an important quantity as it determines the strength
and stability of larger aggregates. Current models predict rolling forces that are 1 to 2 orders of
magnitude smaller than observed experimentally. Starting from the well-known Johnson-Kendall-
Roberts (JKR) contact description, we derive an analytical theory for the rolling friction based on
the concept of adhesion hysteresis, e.g., a difference in apparent surface energies for opening/closing
cracks. We show how adhesion hysteresis causes the pressure distribution within the contact to be-
come asymmetrical, leading to an opposing torque. Analytical expressions are derived relating the
size of the hysteresis, the rolling torque, and the rolling displacement, ξ. We confirm the existence
of a critical rolling displacement for the onset of rolling, the size of which is set by the amount of
adhesion hysteresis and the size of the contact area. We demonstrate how the developed theory is
able to explain the large rolling forces and particle-size dependence observed experimentally. Good
agreement with experimental results is achieved for adhesion hysteresis values of (∆γ/γ) ' 3 for
polystyrene, and (∆γ/γ) ' 0.5 for silicates, at crack propagation rates of 0.1 µm s−1 and 1−10 µm s−1

respectively.
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Chapter 3. Rolling friction of adhesive microspheres

3.1 Introduction

The forces between contacting micrometer-sized particles are an important ingredient in
scientific studies in many different fields. Some applications include industrial issues as
the transportation of powders and sands, the coagulation of aerosols in the Earth’s atmo-
sphere, and the initial steps of planet formation in proto-planetary disks around newly-
born stars.

As a result of the small surface-to-mass ratio of micrometer-sized bodies, attractive
Van der Waals forces have an important effect on the inter particle forces (Johnson et al.
1971; Derjaguin et al. 1975). For the normal (i.e., radial) motion, the surface forces can
cause the particles to adhere together and coagulate, the details of which have been studied
extensively both theoretically (Dominik & Tielens 1997; Kempf et al. 1999) and exper-
imentally (Blum & Wurm 2000). Lateral forces experienced during rolling or sliding
have received somewhat less attention, but are equally crucial when studying the struc-
ture and strength of larger aggregates (Dominik & Tielens 1997). Except for very compact
aggregates, the restructuring of aggregates will occur by bending arms or chains of mi-
crospheres, and individual sphere-sphere contacts act as hinge points. If little friction is
associated with the rolling or sliding motion, aggregates will be weak against restruc-
turing. More specifically, Kataoka et al. (2013b) have shown the compressive strength
of a porous macroscopic aggregate depends directly on the rolling friction between its
constituent particles.

Experimentally measuring the torque between adhesive micro particles is challenging.
Still, numerous authors have succeeded using very different techniques, including manip-
ulating single (Ding et al. 2007; Sümer & Sitti 2008) or chains of microspheres (Heim
et al. 1999) with an atomic force microscope (AFM), resolving restructuring events in
time (Blum & Wurm 2000; Gundlach et al. 2011), and non-contact techniques (Peri &
Cetinkaya 2005; Peri & Cetinkaya 2005a,b).

From the theoretical side, the rolling force between adhesive microspheres has been
studied by Dominik & Tielens (1995), who showed an asymmetry in the mutual contact
area will give rise to an opposing torque. The size of this asymmetry was assumed to
equal the interatomic distance. The theory is still widely used in N-body simulations
studying the behaviour of large ensembles of micrometer-sized particles (Okuzumi et al.
2012; Kataoka et al. 2013b; Seizinger et al. 2013), despite the fact that the parameter
governing the asymmetry has to be increased by one to two orders of magnitude to match
the experimental results.

In this work we set out to expand the model of Dominik & Tielens (1995) to allow for
adhesion hysteresis and viscoelastic losses in the contact area, in an attempt to explain the
large rolling forces observed experimentally. In Sect. 3.2, we investigate how viscoelas-
ticity affects the contact region, and we derive analytical expressions relating the rolling
torque, the level of asymmetry of the contact, and relevant material properties. The devel-
oped theory is compared to experimental results on rolling spheres in Sect. 3.3. Results
are discussed in Sect. 3.4 before the main conclusions are summarized in Sect. 3.5.
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3.2. Theory of rolling friction

3.2 Theory of rolling friction

3.2.1 Equilibrium adhesive contact

To determine the rolling friction of an adhesive microsphere, a detailed knowledge is
required of the contact area, and how it changes in time. Here, we briefly revisit elastic
contact theory in the absence of external torques. When discussing normal forces between
spheres of radii R1 and R2, two parameters suffice to describe the mutual contact. These
are the contact radius a and the distance of mutual approach δ. Combining equations 5
and 11 of Muller et al. (1980), the pressure distribution within the contact area is given as
a function of 0 ≤ r ≤ a

p(r) =
E∗

πR
a2 − 2r2 + Rδ
√

a2 − r2
, (3.1)

where R−1 ≡ R−1
1 + R−1

2 equals the effective radius, and E∗−1 ≡ (1− ν2
1)/E1 + (1− ν2

2)/E2 is
the combined elastic modulus, with Ei the Young’s Moduli and νi the Poisson Ratios of the
spheres – see also Johnson (1987). We deliberately write the pressure distribution in terms
of both a and δ, because the presence of adhesion hysteresis will lead to non-equilibrium
configurations (Krijt et al. 2013). The elastic normal force between the spheres is found
by integrating the pressure distribution

FE =

∫ a

0
2πrp(r) dr =

2E∗

3R

(
3aδR − a3

)
, (3.2)

To describe the contact between a sphere and a flat surface, R2 → ∞ and R = R1 equals
the sphere radius.

In the non-adhesive and perfectly elastic case, a unique relation between these two
parameters exist, as described by Hertz (1882). In this limit, the elastic force is always
repulsive. Almost a century later, Johnson et al. (1971) expanded the work of Hertz to
include adhesion. Their theory (hereafter JKR theory) shows that when the material’s sur-
face energy is taken into account, the contact area is enlarged compared to the Hertzian
case, and contact can be maintained for negative values of δ by the formation of an ad-
hesive neck. In addition, a stable point exists where particles stay in contact when no
external force is present. At this equilibrium point, FE = 0 and the contact radius is given
by

aeq =

(
9πγR2

2E∗

)1/3

, (3.3)

with γ the combined surface energy. In JKR theory, a unique relation between a and δ
exists,

δ =
a2

R
−

√
2πγa/E∗, (3.4)

and in principle a single parameter suffices to describe the contact region and the inter
particle force.
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Chapter 3. Rolling friction of adhesive microspheres

It should be noted that JKR theory is valid only for large values of the Tabor parameter
(Tabor 1977):

µ ≡

 Rγ2

E∗2z3
0

1/3

, (3.5)

with z0 ∼ 0.2 − 0.4 nm the spacing between atoms. For µ > 5, JKR theory can be used,
while for µ < 0.1 Derjaguin-Muller-Toporov theory is accurate (Derjaguin et al. 1975).

In the JKR contact description, the stresses at the contact’s periphery are singular.
Treating the contact edge as a circular Mode I crack of length 2πa, we can define a stress
intensity factor as

N = lim
r→a

p(r)
√

a − r. (3.6)

The energy release associated with the creation of new surface, the ’strain energy release
rate’, then equals

G = π
N2

E∗
=

E∗

2π

(
a2 − Rδ

)2

aR2 , (3.7)

similar to the case of rolling cylinders (Greenwood et al. 2009). In the perfectly elastic
case, we may identify this as the surface energy, and set G ≡ γ. When adhesion hystere-
sis is present however, the value of G needed for crack propagation depends on whether
the crack is opening (Gop > γ) or closing (Gcl < γ), and is often written as a function
of opening/closing rate, i.e., the crack velocity (Maugis & Barquins 1978; Greenwood
2004; Greenwood & Johnson 2006; Barthel & Frétigny 2009). The difference between
the opening/closing effective surface energies ∆γ ≡ (Gop − Gcl), is called adhesion hys-
teresis, and can be caused in a number of ways. For viscoelastic materials, the high strain
rates close to the crack tip give rise to viscoelastic hysteresis, where (∆γ/γ) can vary be-
tween effectively zero to several orders of magnitude, depending on the rate with which
the surfaces are brought together or separated (Schapery 1975a,b; Maugis & Barquins
1978; Greenwood & Johnson 1981; Schapery 1989; Hui et al. 1998; Baney & Hui 1999).
Alternatively, so-called interdigitation1 of molecular groups across the interface can give
rise to substantial adhesion hysteresis, (∆γ/γ) up to about unity, depending on the dynam-
ics of the surface molecules involved (Chen et al. 1991; Chaudhury & Whitesides 1991;
Yoshizawa et al. 1993; Chaudhury & Owen 1993). For silicates, Vigil et al. (1994) have
shown adhesion hysteresis can occur as a result of slow structural and chemical changes
at the surface. Depending on the amount of water in the gas surrounding the silicates, the
hysteresis varied significantly from 0 to 10 mJ m−2 (see Fig. 12 of Vigil et al. 1994).

3.2.2 Asymmetric contact description
When the sphere is subjected to an external torque, the sphere’s centre of mass will move,
and this will have an effect on the contact area itself. In the perfectly elastic case, the
applied torque will cause the sphere to roll virtually without any resistance. In reality,

1Following Yoshizawa et al. (1993), the term interdigitation is used to describe any thermally activated
processes involving molecular reorientation across an interface, including interdiffusion, interpenetration, en-
tanglement, and any other molecular reorientation process occurring across an interface.
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3.2. Theory of rolling friction
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(A): Symmetric contact (B): Asymmetric contact

+ +

y

z

x

Figure 3.1: Side view of an adhesive sphere on a flat substrate. (A) shows the symmetric case,
when there are no torques acting and a1 = a2 = aeq. (B) Asymmetric situation during rolling under
the influence of an external force in the x-direction. Here, a1 > aeq > a2. The centre of mass of the
sphere (+), and the centre of the contact (F) are also shown.

materials are not perfectly elastic, and energy will be dissipated in the bulk of the material,
and at the edges of the adhesive contact; in the remainder of the text these regions are
referred to as the ‘bulk’ and ‘crack’ regions. The dissipation in both of these regions will
give rise to torques opposing the rolling motion. In the remainder of this section, we
focus on the torque arising from the crack region, and develop a more detailed theory of
what happens to the contact during rolling. In Sect. 3.4, we give estimates for the bulk
dissipation.

In rolling, the contact is asymmetric, where one side is an opening crack and the other
a closing crack. Hence, it follows from Eq. 3.7 that the contact radius will vary for dif-
ferent parts of the contact region, causing it to no longer be spherical. For the contact
between a cylinder and a flat, the contact region is rectangular and an analytical solution
is possible (Greenwood et al. 2009). In the case of a sphere, we expect G to vary con-
tinuously along the periphery of the contact, as the angle between the opening/closing
crack and the direction of motion changes. However, in the interest of obtaining an an-
alytical solution, we follow Dominik & Tielens (1995) in approximating the contact as
being comprised of two semi-circles with radii a1 and a2. The pressure distribution then
becomes

p(r, φ) =


p(r)a=a1 for r cos φ > 0,

p(r)a=a2 for r cos φ < 0,
(3.8)

where δ is the same for both halves, and the pressure in each half is given by Eq. 3.1.
Note that while both halves share the same δ, the radii of the two semi-circles differ, as
a result of the different values of G at the leading and trailing edges. It is for this reason
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Chapter 3. Rolling friction of adhesive microspheres

1.0 0.5 0.0 0.5 1.0
x/a

1.0

0.5

0.0

0.5

1.0

y
/
a

(A): Pressure distribution

5

4

3

2

1

0

1

2

3

4

5

[
N
 
m
−

2]

1e7

1.0 0.5 0.0 0.5 1.0
x/a

1.0

0.5

0.0

0.5

1.0

y
/
a

(B): Torque contributions

10

8

6

4

2

0

2

4

6

8

10

[
m
 
N
 
m
−

2]

Figure 3.2: (A) The asymmetric pressure distribution for ξ/a = 0.1 viewed from the top, for a
sphere rolling in the x-direction. (B) shows the torque contributions for the same contact. The
centre of mass of the sphere (+), and the centre of the contact (F) are offset. These particular
numbers correspond to the contact between a PSL microsphere with radius 5 µm and a PSL table.

that we avoided using an equilibrium relation between a and δ in Eq. 3.1. There is a
finite displacement between the centre of mass of the sphere (projected onto the contact
surface, x = 0) and the centre of the contact, given by

ξ =
1
2

(a2 − a1). (3.9)

Writing a = (a1 + a2)/2, the contact can now be fully described by the three parameters
ξ, a and δ. Figure 3.2A shows the pressure distribution of Eq. 3.8 for ξ/a = 0.1, while a
and δ correspond to JKR equilibrium.

The contributions to the torque about the y-axis have been plotted in Fig. 3.2B. From
the figure it is clear that the largest torques originate close to the crack at locations furthest
from the y-axis. The region close to x = 0, where the assumption that the cracks are in
Mode I is expected to loose accuracy, has a negligible contribution. To find the (total)
opposing torque that results from such a pressure distribution we have to integrate over
all torque contributions in the contact area

M =

∫ ∫
contact

xp(x, y) dx dy

=
E∗

4R

[
(a2

1 − δR)2 − (a2
2 − δR)2

]
. (3.10)

With the aid of Eq. 3.7, the torque can be written as

M =
R
2

(πa1G1 − πa2G2) . (3.11)

where G1 and G2 are the strain energy release rates at the trailing and leading edges of the
contact. From conservation of energy, one might expect to find M = 2R(a1G1 − a2G2),
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3.2. Theory of rolling friction

slightly different from Eq. 3.11. We attribute the different prefactor to the geometry of the
contact area, and the fact that different parts of the crack region contribute to the torque
with different lever arms (see Fig. 3.2B).

Realizing that, in the asymmetric case, the total elastic force equals

FE =
2E∗a
3R

(
3δR − a2 − 3ξ2

)
, (3.12)

the torque of Eq. 3.10 can be rewritten as

M = (a1 + a2)(a1 − a2)
E∗(a2

1 + a2
2 − 2δR)

4R

= ξ

[
−FE +

4E∗a3

3R

]
. (3.13)

In the case of zero load (FE = 0) and small asymmetry, the contact size is approximately
given by the Eq. 3.3, and we obtain

M = 6πγRξ, (3.14)

in agreement with Dominik & Tielens (1995). Lastly, it is useful to obtain a relation be-
tween the rolling displacement and the strain energy release rates. For small asymmetries,
a1 ' a2 ' aeq and we can compare Eqs. 3.11 and 3.14 to find

ξ =
aeq

12
(G1 −G2)

γ
. (3.15)

With this mathematical framework in place, we can now discuss what happens when an
external torque is exerted on a stationary sphere.

3.2.3 The onset of rolling

The general picture is then the following. Imagine, as in Fig. 3.1A, a sphere on a substrate
in JKR equilibrium, so that a1 = a2 = aeq and G1 = G2 = γ. When the sphere is subjected
to an external torque, the displacement between the centre of mass and the centre of the
contact will grow, as illustrated in Fig. 3.1B. As a direct consequence, a1 and a2 will
change (we will take subscript 1 to refer to the trailing half, in accordance with Fig.
3.1B). As a result of a1 and a2 changing, the strain energy release rates will start to differ
from γ as dictated by Eq. 3.7. Initially however, γ < G1 < Gop, and the crack is unable
to open at the trailing edge, effectively pinning the contact. Only when G1 reaches Gop,
crack propagation will start at the trailing edge. Setting (G1 −G2) = (Gop −Gcl) ≡ ∆γ, we
can identify a critical displacement for the onset of true rolling motion

ξcrit =
aeq

12
∆γ

γ
. (3.16)

67



Chapter 3. Rolling friction of adhesive microspheres

This relation is an important result. It reveals that the critical rolling displacement ξcrit
is set by the size of the contact radius and the difference between the opening and clos-
ing apparent surface energy2. This picture is different from the approach of Dominik &
Tielens (1995), where the critical displacement was assumed to equal the inter-atomic dis-
tance, about 0.3 nm, independent of the particle’s radius and elastic properties. If (∆γ/γ)
is constant, the critical displacement represents a fixed fraction of the contact radius, and
is expected to scale with R2/3. When (∆γ/γ) varies, deviations from this slope are to be
expected.

3.2.4 Steady-state rolling

When a sphere has started rolling, the opposing torque is given by Eq. 3.11, with the strain
energy release rates now equal to Gop and Gcl. Viscoelastic materials often show Gop
and Gcl to depend on the crack velocity. This behaviour slightly complicates the picture
described above, and it might prove necessary to solve the evolution of the sphere and the
cracks in time. This method has been used by Greenwood et al. (2009) for the adhesive
contact of a rolling cylinder. However, in the case of a constant externally-applied torque,
a steady state will be realised where the contact shape is preserved and ȧ1 = ȧ2 = 0. The
external torque is then balanced by the opposing torque arising from the contact area, and
the crack opening/closing velocity is equal to the velocity of the sphere’s centre of mass.
In this case, we can still make use of Eq. 3.11 developed here, realizing ∆γ corresponds
to the adhesion hysteresis at that particular crack velocity.

It should be noted that most viscoelastic theories predict adhesion hysteresis to disap-
pear as the crack opening or closing rate approaches zero (Greenwood 2004; Barthel &
Frétigny 2009). In the absence of other sources of hysteresis, this assumption leads to fric-
tionless rolling at infinitely low rolling velocities, and would imply structures built from
adhesive spheres are unstable under external forces (e.g., gravity) on very long timescales.
We are not aware of such behaviour having been observed experimentally.

3.2.5 Rocking motion

Interesting behaviour is observed when the external force is removed before ξcrit is reached.
Suppose a sphere in equilibrium receives a velocity kick in the horizontal direction at a
time t = 0. Provided the angle over which the sphere rocks is small, it can be written as
θ = ξ/R. The evolution of ξ in time is then given by

Iξ̈(t) = RM (3.17)

with M the torque arising from the contact area, and I = (2/5)mR2 the moment of inertia
of the sphere. Of course, the size of the torque depends on the asymmetry of the contact.

2This approach was originally proposed by professor K. L. Johnson in a private letter to the authors of
Dominik & Tielens (1995) in 2005.
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Quantity Silicate PSL
E (GPa) 54 3.4
ν (-) 0.17 0.33
ρ (g cm−3) 2.6 1.026
γ (J m−2) 0.025 0.025

Table 3.1: Material properties for silicate and polystyrene (PSL) as used in this work. Note that
for like materials, the total surface energy is twice the value listed here, which corresponds to an
individual surface.

For ξ < ξcrit, the contact is pinned and we can write

a1(t) = aeq − ξ(t)
a2(t) = aeq + ξ(t). (3.18)

Making use of Eq. 3.14, the equation of motion becomes

ξ̈(t) =
6πγR2

I
ξ(t), (3.19)

which is readily identified as a harmonic oscillator with frequency

f0 =
1

2π

(
6πγR2

I

)1/2

=
3

4π

(
5γ
ρR3

)1/2

. (3.20)

For microspheres, this frequency is typically of the order of 100 kHz, and has been ob-
served experimentally (Peri & Cetinkaya 2005; Peri & Cetinkaya 2005a,b). We will dis-
cuss these experiments in Sect. 3.3.1.

3.3 Comparison to experiments
Now that we have a theory of rolling friction, we can compare the predictions to a number
of published experiments measuring either the rolling torque or the rolling displacement.
For this purpose, we will focus on two materials: polystyrene (PSL) and silicates (SiO2),
see table 3.1. In this section, we will discuss various experimental results within the
framework of the theory developed in Sect. 3.2.

3.3.1 Polystyrene microspheres

Constant-velocity rolling

For PSL, Sümer & Sitti (2008) have measured the rolling force using an atomic force
microscope (AFM) for 5, 10, and 15 µm. The spheres were pushed over a glass substrate
at a constant velocity of 0.1 µm/s. As care was taken to apply the pushing force a height
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Figure 3.3: Experimental results of Sümer & Sitti (2008) (�) for the rolling force of a PSL mi-
crospheres on a glass substrate. Solid lines correspond to Eq. 3.11 assuming different values for
(∆γ/γ) and a1 = a2 = aeq, in which case the rolling force scales with R2/3. The black dashed line
corresponds to Eq. 3.14, assuming ξ = 0.3 nm, and the dotted line shows the expected bulk torque
for Q = 102 (see Sect. 3.4).

R from the substrate, we can relate this force to a rolling torque via Fext = Mext/R. Figure
3.3 shows the results of (Sümer & Sitti 2008) in comparison to Eq. 3.11, for various values
of (∆γ/γ). The theory of Dominik & Tielens (1995), i.e., Eq. 3.14 with ξ = 0.3 nm, is
shown for comparison.

Figure 3.3 shows how the theory of Sect. 3.2 explains two key features of the exper-
imental results: the rolling force is substantially larger than expected from ξ = 0.3 nm,
and the rolling force increases with increasing radius. Indeed, a hysteresis characterized
by (∆γ/γ) ' 3 reproduces the experimentally observed rolling force well for all three mi-
crosphere radii. For these particular particles, this corresponds to a rolling displacement
of several tens of nanometers, approximately two orders of magnitude larger than z0.

Critical displacement

In a somewhat similar study, Ding et al. (2007) moved PSL microspheres across a flat
silicon substrate, by pushing the spheres with an AFM cantilever. The diameters of the
spheres used varied between 22.5 and 26.8 µm. After each push, a scanning electron
microscope (SEM) image was obtained to find the new position of the microsphere, while
the pushing force could be calculated from the cantilever’s deflection. As a result of this
experimental setup, the motion of the spheres is discontinues, and difficult to simulate
in detail. An interesting result of Ding et al. (2007) however is that a change in rolling
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Figure 3.4: Experimental results of Ding et al. (2007) (F) for the critical rolling displacement of a
PSL microspheres on a silicon substrate. Solid lines refer to Eq. 3.15, for different values of (∆γ/γ).

stiffness was observed for most particles, after a total displacement between 73 and 94
nm. Ding et al. attributed this change in rolling stiffness to the transition from pre-rolling
(no contact readjustment) to true rolling motion.

Figure 3.4 shows the observed critical rolling displacements, and compares them to
predictions of Eq. 3.16. While the rolling displacements are orders of magnitudes larger
than the atomic spacing, the results can be understood in terms of adhesion hysteresis.
The inferred value of (∆γ/γ) ' 2.5. Unfortunately, the variation in particle radius3 is too
small to test the correlation between ξcrit and R predicted by Eq. 3.16.

Rocking microsphere

Another interesting opportunity to study the critical displacement comes in the form of the
experiments conducted by Peri & Cetinkaya (2005); Peri & Cetinkaya (2005a,b), where
rocking motions are excited in the adhesive contact of a PSL microsphere (21.4 µm in
diameter) on various substrates. From the fact the microsphere oscillates in the lateral
direction, it was inferred that the contact edges are effectively pinned (see Sect. 3.2.5).
Moreover, the motion is damped within a dozen oscillations, something that might well
be explained by the bulk dissipative torque. The experimental results can be understood
within the framework of the theory of Sect. 3.2.5.

We choose to focus on the aluminium substrate, as the experimental results appear
to be the cleanest (see Figs. 10 and 14 of Peri & Cetinkaya 2005), and use the elastic

3In fact, the size of the particle corresponding to the left-most point in Fig. 3.4 was not determined individ-
ually, and assumed equal to the nominal sphere diameter of 21.4 µm (see table 1 of Ding et al. 2007)
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properties of table 1 of Peri & Cetinkaya (2005) and a surface energy of 0.1 J m−2. For
this particular setup, aeq ' 380 nm. When the sphere is excited and the contact pinned,
the centre of mass will oscillate with frequency f0 set by Eq. 3.20. This frequency, 150
kHz for this particular PSL-aluminium system, was found by Peri & Cetinkaya (2005);
Peri & Cetinkaya (2005a,b) to compare very well with the experimental observations.

The maximum observed rocking angle in the experiments4 was 0.16◦, corresponding
to ξ = 30 nm (two orders of magnitude larger than z0), and a maximum torque of roughly
M = 6×10−13 Nm. Comparing this offset to the contact radius we find ξ = 0.08aeq. Since
this maximum ξ < ξcrit, we can use Eq. 3.16 to find a lower limit of (∆γ/γ) > 0.95.

3.3.2 Silicate microspheres

Silicates (SiO2) are thought to play an important role in the formation of Earth-like plan-
ets, and because of this many experiments involving silicates have been performed over
the last decade or two (see Blum & Wurm 2008; Güttler et al. 2010 for excellent re-
views). Heim et al. (1999) measured a rolling force of (8.5 ± 0.3 ± 1.3) × 10−10 N for
1.9 µm-diameter silicate particles, by taking a chain of microspheres and bending it in
a periodic manner. The frequency of the bending motion varied between 0.1 and 1 Hz.
Blum & Wurm (2000) examined several restructuring events in microsphere structures
and obtained a rolling force of (5.0 ± 2.5) × 1010 N, for coated SiO2 particles of 1.9 µm
in diameter. Lastly, using a similar approach Gundlach et al. (2011) measured a rolling
force of (12.1 ± 3.6) × 10−10 N for 1.5 µm-diameter SiO2.

The experimental results are compared to the adhesion hysteresis model in Fig. 3.5.
At first sight, it appears the rolling force drops with particle radius. However, we attribute
the scatter in rolling force values to differences in experimental procedures, and believe
that the current data with its uncertainties is not enough to test the radius-dependence of
the rolling force. Nonetheless, the results can be understood in terms of (∆γ/γ) ∼ 0.5.
This suggests the size of the adhesion hysteresis is smaller than for the polystyrene of
Figs. 3.3 and 3.4. The absolute size of the rolling displacement is significantly smaller
than the one found for PSL particles in the previous section. The reason is twofold. For
one, the smaller value of (∆γ/γ) causes ξ to be a smaller fraction of the contact radius.
Second, the contact radius itself is much smaller for the silicate particles considered here,
as they are smaller and harder.

We must address that the contact model presented here is a continuum one, and is
expected to break down when the sizes of individual atoms start to play a role. In Fig.
3.5 for example, we see that for some radii, the predicted torque lies below the curve
corresponding to Dominik & Tielens (1995). When that occurs, the rolling displacement
ξ is smaller than the size of an atom, and one might question whether it is physically
meaningful to have a difference between a1 and a2 that is arbitrarily small. The question
whether continuum descriptions can still be used in this regime is beyond the scope of this

4This maximum angle was quoted for the PSL-silicon combinations, but as the values of the vertical dis-
placement is very similar for the PSL-aluminum system (compare Figs. 8 and 10 Peri & Cetinkaya 2005) we
expect it applies here as well.

72



3.4. Discussion

10-7 10-6 10-5

Effective radius [m]

10-10

10-9

10-8

10-7

R
o
l
l
i
n
g
 
f
o
r
c
e
 
[
N
]

DT95 (ξ=0.3nm)

Equal-sized silica spheres

(∆γ/γ) =2

(∆γ/γ) =1

(∆γ/γ) =0.5

(∆γ/γ) =0.2

Q=102

Figure 3.5: Rolling force versus effective radius for equal-sized silica microspheres. Symbols refer
to experimental results of Heim et al. (1999) (•), Blum & Wurm (2000) (N), and Gundlach et al.
(2011) (�). Solid lines correspond to Eq. 3.11 assuming a1 = a2 = aeq and different values for
(∆γ/γ). The black dashed line corresponds to Eq. 3.14, assuming ξ = 0.3 nm, and the dotted line
corresponds to the bulk rolling force for Q = 102 (see Sect. 3.4).

work, and has to be addressed with the use of molecular dynamics simulations (Tanaka
et al. 2012).

3.4 Discussion
In this work we propose a model for the rolling friction of microspheres based on the
concept of adhesion hysteresis. In the case of rolling of a spherical contact area, the
geometry does not allow for an analytical solution. However, by assuming that the con-
tact consists of two semi-circles with different radii, an approximate analytical solution
can be achieved. When the contact is close to JKR equilibrium, and the asymmetry is
small compared to the contact radius itself, simple expressions relating the torque, con-
tact asymmetry, and adhesion hysteresis exist, and are given by Eqs. 3.14 and 3.15. In the
presence of external loads, the more general result Eq. 3.13 can be used, while the effect
of the external load on the size of the contact radius and the approach should be taken into
account.

Comparison of the theory to experiments of rolling microspheres reveals that the new
model is capable of explaining two key results; the variation of the rolling force with
particle radius, and the observation that the rolling displacement can be much larger than
the inter-atomic distance. Good agreement between theory and experiments is achieved
for adhesion hysteresis values of (∆γ/γ) ' 3 for PSL, and (∆γ/γ) ' 0.5 for silicates.
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Chapter 3. Rolling friction of adhesive microspheres

When the asymmetry in the contact is small, the strain energy release rate at the contact
edge is not large enough to cause the crack to move, effectively pinning the contact area.
If no external forces are acting, this will cause the sphere to oscillate back and forth. An
example of such behaviour is observed in the experiments of Peri & Cetinkaya (2005).
From the maximum rocking angle reached in the experiments, we infer (∆γ/γ) > 0.95.

Two main origins of adhesion hysteresis are mechanical, i.e., arising from viscoelas-
tic losses near the crack tip, or chemical hysteresis, connected to the state and dynam-
ics of surface groups and molecule chains (see Sect. 3.2.1). The latter can give rise to
(∆γ/γ) ∼ 1, similar to the values observed in Sect. 3.3. However, further comparison
would require a detailed knowledge of the molecular dynamics at the surfaces involved,
and is beyond the scope of this work. For viscoelastic materials, a theoretical prediction
for the apparent surface energy has been obtained by Greenwood (2004); Greenwood &
Johnson (2006). For a three-element solid, characterized by a single viscoelastic relax-
ation time, T , they show that the departure of G from γ is set by the non-dimensional
crack velocity v∗ ≡ ȧγT/(z2

0E∗), with ȧ the crack opening/closing velocity. A difference
in apparent surface energy of 3 and 0.5 then corresponds to a v∗ of 2 and 0.1 respectively
(through Fig. 6 of Greenwood 2004). For the experiments of Sümer & Sitti (2008), the
crack velocity equals the rolling velocity of 10−7 m s−1. For the experiments plotted in
Fig. 3.5, the rolling velocities are estimated5 to lie between 10−6 − 10−5 m s−1. Plugging
in the material properties and correct ȧ returns T = 7×10−2 s for the PSL particles of Fig.
3.3, and T = 5 × 10−4 s for the silicates of Fig. 3.5. For polystyrene at room temperature,
the obtained T−1 does not coincide with either α or β relaxation peaks, which occur at
much lower frequencies (Fig. 8.20 of Sperling 2007), but might correspond to one of
several other relaxation peaks (Yano & Wada 1971). Alternatively, much shorter relax-
ation timescales were obtained by Krijt et al. (2013) by fitting rebound experiments of
micrometer-sized spheres, indicating that a viscoelastic model with a single characteristic
relaxation time might not accurately describe the material response over a large range of
strain frequencies. However, as there is virtually no variation in rolling velocity in the
experiments used in Sect. 3.3, connecting the observed adhesion hysteresis to a viscous
relaxation time remains speculative.

Thus, measurements of the rolling friction of adhesive spheres provide a powerful
window into adhesion hysteresis of the materials involved, as the observed torque can be
directly related to the difference in apparent surface energies on both sides of the contact.
So-called JKR experiments (e.g., Chaudhury & Owen 1993; Lorenz et al. 2013) are also
powerful, but require knowledge of the contact size throughout the loading-unloading ex-
periment, which is challenging for the relatively small contacts between microspheres.
Additional experiments, that measure the rolling force of microspheres in a controlled
manner, will provide valuable insight in the behaviour at the crack tip. Specifically, exper-
iments probing a broad range of rolling velocities will allow a more thorough comparison
to viscoelastic crack theory.

So far, we have neglected the effects of bulk energy dissipation on the rolling torques.

5These numbers are obtained by estimating the rolling angle and timescales from Figs. 3 of Blum & Wurm
(2000) and 7 of Gundlach et al. (2011).
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The elastic energy stored in a spherically symmetric contact equals (Muller et al. 1980;
Brilliantov et al. 2007)

UE =
E∗a3

3R

[
δ

(
3δR
a2 − 1

)
−

a2

5R

(
5δR
a2 − 3

)]
, (3.21)

where again we have deliberately omitted making use of an equilibrium relation between
a and δ. Assume now the sphere rolls over a distance 2a. In that case, a surface element
that passed through the contact area has undergone a complete stress cycle. Assuming
the bulk dissipation is small, the total energy loss associated with the elastic strain energy
can then be estimated as UB ∼ (π/Q)UE, with Q the ‘quality factor’6. The reciprocal of
the quality factor is associated with the ratio of energy dissipated to the energy stored in
dynamic loading, and can be viewed as a fundamental measure of mechanical dissipation
(Lakes 2009). In the case of rolling friction, the reciprocal of the quality factor is identical
to Tabor’s hysteresis loss factor (Tabor 1955), apart from a numerical factor of order unity
(Johnson 1987).Typical values for the quality factor in solids are 10 − 102 for polymers,
103 for glass and soft metals, but may vary with frequency. As the sphere rolled over 2a,
the torque associated with this bulk energy loss can be written as7

MB =
UBR
2a
∼
πUE

Q
R
2a
. (3.22)

Earlier we obtained the torque arising from the region close to the crack. Making use of
Eq. 3.11 while plugging in a1 ∼ a2 ∼ aeq and the surface energy US = −πa2

eqγ, we can
compare the sizes of the two torques to find

MB

MC
∼

(
UE

US

) (
π

Q

) (
γ

∆γ

)
. (3.23)

While approximate, the above expression is very instructive; and we will briefly discuss
the three terms on the right-hand side of Eq. 3.23. Firstly, in a JKR equilibrium contact,
the total energy is always negative, as the particles are bound. This immediately tells us
the surface energy dominated the elastic energy. If external forces are present, the elastic
energy can be increased significantly, potentially changing the value of (UE/US). In the
specific case of a sphere resting on a flat surface, the gravitational force on the sphere
is such an external force. For a silicate sphere, gravity will cause significant deviation
from the JKR equilibrium only for sphere radii larger than a millimeter. Alternatively, the
potential presence of dust or asperities can decrease the effective contact area, and reduce
the overall importance of the surface energy and adhesion (Tabor 1977). Secondly, the

6In treatises of viscoelastic materials, the loss tangent tan δ is often used. To avoid confusion with the mutual
approach, we will use the quality factor instead. These are related through Q−1 ' tan δ.

7In the Hertzian case, Eq. 3.22 is in agreement with the results of Brilliantov & Pöschel (1998, 1999), who
obtained an expression for the rolling torque for non-adhesive elastic spheres by integrating small dissipative
stresses in the contact area, provided their viscoelastic constant, A, is related to the quality factor through
Q ∼ (2a/vroll)/A. This relation is expected since A has units of time, and (2a/vroll) is the typical stress timescale
probed by the moving contact.
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ratio (π/Q) is very small for solids. At different frequencies, different mechanisms will
be responsible for demoing, and the behaviour of Q as a function of frequency will dif-
fer per material. A wide range of experimental techniques are used across the frequency
spectrum to measure Q (Lakes 2009, Fig. 6.25), but typical values at Hz to kHz frequen-
cies and at room temperatures are 10 − 102 for polymers, 103 for glass and soft metals,
and orders of magnitude larger for structural metals and quartz (Lakes 2009, p.208). In
a typical crystalline solid, the quality factor is relatively constant as a function of fre-
quency, while the Q-spectrum of a typical amorphous polymer shows more pronounced
peaks, corresponding to various molecular motions (Lakes 2009, Figs. 8.1 and 8.2). Thus,
we expect (MB/MC) � 1 for small and smooth adhesive spheres in a JKR equilibrium
contact, justifying the approach of Sect. 3.2. This finding is supported by experiments
on adhesive cylinders (Maugis 1985; She et al. 1998; Greenwood et al. 2009), where the
observed rolling torque was attributed solely to adhesion hysteresis. Alternatively, the
presence of asperities, additional external loads, very low quality factors, or negligible
adhesion hysteresis, will act to increase the relative importance of the bulk dissipation.

From the damped oscillation in the experiment of Peri & Cetinkaya (see Sect. 3.3.1),
we can derive an order-of-magnitude number for the quality factor. First, we modify the
expression for the total elastic energy to include the contact asymmetry

UE(a1, a2, δ) =
1
2

[UE(a1, δ) + UE(a2, δ)] , (3.24)

where UE(ai, δ) is given by Eq. 3.21. Using this relation, we see that for an asymmetry
of ξ/a = 0.08, the elastic energy is increased by about ∆UE = 0.1UE compared to the
symmetric case. During the oscillation, this energy is converted into rocking motion
and vice versa, and in a single oscillation to a maximum ξ and back, a fraction π/Q of
∆UE is dissipated. Now, we can write down a condition for the timescale on which this
excess energy is dissipated, and the oscillation is stopped. It is instructive to express this
timescale in a number of periods:

f0
∆UE

(d/dt)∆UE
∼

Q
π
. (3.25)

From the observation that the oscillations is damped in roughly 10 periods, we obtain
Q ∼ 30, in agreement with typical quality factors of polymeric materials at kHz frequen-
cies (Lakes 2009), strengthening our assumption that the damping originates from energy
dissipation in the bulk of the material.

3.5 Conclusions
Our main findings can be summarized as follows:

1. For microspheres in JKR equilibrium, rolling friction will be dominated by dissi-
pation associated with the opening and closing of the cracks on both sides of the
contact region (e.g., adhesion hysteresis).
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2. For a fixed adhesion hysteresis (∆γ/γ), the critical rolling displacement equals a
constant fraction of the contact radius, and therefore scales with R2/3.

3. The theory is capable of reproducing a variety of experimental results, explaining
in a natural way the large observed values of the rolling force and rolling displace-
ment during pushing experiments (Figs. 3.3, 3.4 and 3.5); the rocking motion of
microspheres for small rolling angles, and the observed radius-dependence of the
rolling force (Fig. 3.3).

4. Applying the theory to experimental results indicates adhesion hysteresis for polystyrene
roughly equals (∆γ/γ) ' 3, and (∆γ/γ) ' 0.5 for silicate particles.

Owing to their simple forms, Eqs. 3.14 and 3.15 can be directly integrated in simulations
of systems of adhesive spheres, while future experiments measuring the rolling forces
for different velocities and particle sizes can be used to test and discriminate between
different models of adhesion hysteresis.
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Abstract

The coagulation of microscopic dust into planetesimals is the first step towards the formation of
planets. The composition, size, and shape of the growing aggregates determine the efficiency of this
early growth. In particular, it has been proposed that fluffy ice aggregates can grow very efficiently
in protoplanetary disks, suffering less from the bouncing and radial drift barriers. While the collision
velocity between icy aggregates of similar size is thought to stay below the fragmentation threshold,
they may nonetheless lose mass from collisions with much smaller projectiles. As a result, erosive
collisions have the potential to terminate the growth of pre-planetesimal bodies. We investigate
the effect of these erosive collisions on the ability of porous ice aggregates to cross the radial drift
barrier. We develop a Monte Carlo code that calculates the evolution of the masses and porosities
of growing aggregates, while resolving the entire mass distribution at all times. The aggregate’s
porosity is treated independently of its mass, and is determined by collisional compaction, gas
compaction, and eventually self-gravity compaction. We include erosive collisions and study the
effect of the erosion threshold velocity on aggregate growth. For erosion threshold velocities of 20−
40 m s−1, high-velocity collisions with small projectiles prevent the largest aggregates from growing
when they start to drift. In these cases, our local simulations result in a steady-state distribution, with
most of the dust mass in particles with Stokes numbers close to unity. Only for the highest erosion
threshold considered (60 m s−1) do porous aggregates manage to cross the radial drift barrier in the
inner 10 AU of MMSN-like disks. Erosive collisions are more effective in limiting the growth than
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Chapter 4. Erosion and the limits to planetesimal growth

fragmentary collisions between similar-size particles. Conceivably, erosion limits the growth before
the radial drift barrier, although the robustness of this statement depends on uncertain material
properties of icy aggregates. If erosion inhibits planetesimal formation through direct sticking, the
sea of ∼109 g, highly porous particles appears suitable for triggering streaming instability.

4.1 Introduction

Despite the apparent ease with which nature is forming planets, current models of planet
and even planetesimal formation have problems growing large bodies within the typical
gas disk lifetime of ∼106 years (Haisch et al. 2001). The process of planetesimal forma-
tion is a complex one, with many different processes acting on a variety of lengths and
timescales (see Testi et al. 2014 and Johansen et al. 2014 for recent reviews).

The first step towards planetesimal formation is the coagulation of small dust aggre-
gates that stick together through surface forces. As aggregates collide and stick to form
larger aggregates, these aggregates have to overcome several hurdles on their way to be-
coming planetesimals. One important obstacle faced by a growing dust aggregate is the
radial drift barrier (Whipple 1972; Weidenschilling 1977a). When aggregates grow to a
certain size (about a meter at 1 AU and a millimeter at 100 AU, assuming compact par-
ticles) they will decouple from the pressure-supported gas disk, and start to lose angular
momentum to the gas around them. As a result, said particles will drift inward.

Even before radial drift becomes problematic, the coagulation of aggregates can be
frustrated by catastrophic fragmentation or bouncing (Blum & Wurm 2008; Güttler et al.
2010; Zsom et al. 2010), which prevents colliding aggregates from gaining mass. These
problems are alleviated somewhat by including velocity distributions between pairs of
particles (Windmark et al. 2012b; Garaud et al. 2013) in combination with mass transfer
in high-velocity collisions (Wurm et al. 2005; Kothe et al. 2010), though these solutions
require the presence of relatively compact targets.

Recently, it has been proposed that icy aggregates, if they can manage to stay very
porous, suffer less from these barriers, and might be able to form planetesimals locally
and on relatively short timescales (Okuzumi et al. 2012; Kataoka et al. 2013a). Very
porous, or fluffy, aggregates are less likely to bounce (Wada et al. 2011; Seizinger &
Kley 2013), and icy particles have much higher fragmentation threshold velocities than
refractory ones (Dominik & Tielens 1997; Wada et al. 2013), but perhaps most surprising
was the finding that porous aggregates can outgrow the radial drift barrier, by growing
very rapidly as a result of their enhanced collisional cross section (Okuzumi et al. 2012).
However, Okuzumi et al. (2012) assumed perfect sticking between colliding aggregates,
neglecting possible mass-loss in aggregate-aggregate collisions.

We study the effects of the existence of an erosive regime for icy aggregates, where
collisions at low mass ratios will produce erosive fragments at velocities below a criti-
cal erosion threshold velocity (Schräpler & Blum 2011; Seizinger et al. 2013; Gundlach
& Blum 2015). Our goal is to quantify how erosion influences the direct formation of
planetesimals through coagulation. To this end, we develop a local Monte Carlo coagu-
lation code, capable of simulating the vertically-integrated dust population, tracing both
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the evolution of the mass and the porosity of the entire mass distribution self-consistently.
Sect. 4.2 describes the models we use for the protoplanetary disk and the dust aggregates.
In Sect. 4.3, we present the numerical method, which is based on the work of Ormel
& Spaans (2008). Then, we test our model against the results of Okuzumi et al. (2012)
(Sect. 4.4.1), after which we expand the model to include compaction from gas pressure
and self-gravity according to Kataoka et al. (2013a) (Sect. 4.4.1), and erosive collisions
(Sect. 4.4.2). In Sect. 4.5, we compare the results to a simple semi-analytical model, and
describe which processes can limit coagulation in different parts of protoplanetary disks.
Discussion of the results and implications takes place in Sect. 4.6, and conclusions are
presented in Sect. 4.7.

4.2 Disk and dust models
The disk model and collisional compaction prescription are based on Okuzumi et al.
(2012), to which we add non-collisional compaction processes (Sect. 4.2.4) and a model
for erosive collisions (Sects. 4.2.3 and 4.2.3).

4.2.1 Disk structure
The disk model used in this work is based on the minimum-mass solar nebula (MMSN)
of Hayashi (1981). The evolution of the gas surface density and temperature as a function
of radial distance R from the Sun-like central star are given as

Σg = 152
( R
5 AU

)−3/2

g cm−2, (4.1)

T = 125
( R
5 AU

)−1/2

K. (4.2)

The gas sound speed is given by

cs =

√
kBT/mg = 6.7 × 102

( R
5 AU

)−1/4

m s−1, (4.3)

with kB the Boltzmann constant and mg = 3.9 × 10−24 g the mean molecular weight. The
Kepler frequency equals

Ω =
√

GM�/R3 = 1.8 × 10−8
( R
5 AU

)−3/2

s−1. (4.4)

Assuming an isothermal column, the gas density drops with increasing distance from the
mid plane z according to

ρg =
Σg
√

2πhg
exp

−z2

2h2
g

 , (4.5)

with the relative vertical scale height of the gas hg/R = 0.05(R/5 AU)1/4. The turbulent
viscosity is parametrized as νturb = αc2

s/Ω following Shakura & Sunyaev (1973), and α is

81



Chapter 4. Erosion and the limits to planetesimal growth

assumed to be constant in both the radial and the vertical direction. The eddie turn-over
time of the largest eddies equals tL = Ω−1.

In our local model, the surface density of the dust is related to the gas surface density
through Σd/Σg = 10−2, but the vertical distribution of dust depends on its aerodynamic
properties. The dust is described by a Gaussian, with the dust scale height hd set by the
stopping time ts of the dust particle through (Youdin & Lithwick 2007)

hd

hg
=

(
1 +

Ωts

α

1 + 2Ωts

1 + Ωts

)−1/2

. (4.6)

Thus, settling becomes important when a dust particle reaches Ωts ∼ α.

4.2.2 Dust properties

Initially, all dust particles are assumed to be spherical (sub)micron-size monomers. In
time, these monomers coagulate through collisions, and aggregates of considerable mass
can be formed. Any aggregate is described by two parameters: the mass m, and the filling
factor φ. Since aggregates are made up of monomers the mass can be written as m = Nm0,
with N the number of monomers and m0 the monomer mass. Following Okuzumi et al.
(2012), we define the internal density of an aggregate as ρint = m/V , with V = (4/3)πa3

the volume of the aggregate, and a its radius. An aggregate’s radius is defined as a =

[5/(3N)
∑N

k=1(~rk−~rCM)2]1/2, with~rk the position of monomer k and~rCM the position of the
aggregate’s center of mass (Mukai et al. 1992; Suyama et al. 2008; Okuzumi et al. 2009).
By definition, monomers have an internal density of ρint = m0/V0 = ρ0, while aggregates
can have ρint � ρ0. Since we are interested in region beyond the snow-line, we focus
here on monomers composed of mostly ice, and use a density of ρ0 = 1.4 g cm−3. For the
monomer radius we use a0 = 0.1 µm. We define the filling factor as

φ ≡
ρint

ρ0
, (4.7)

as a measure for the internal density.
In the rest of this section, we describe the main ingredients for the simulations pre-

sented in Sect. 4.3. These are: the relative velocities between aggregates, the equations
governing the evolution of ρint through mutual collisions as well as gas ram pressure and
self-gravity, and models for the destructive processes of erosion and fragmentation.

Relative velocities

We take into account relative velocities arising from Brownian motion, turbulence, set-
tling, radial drift and azimuthal drift (see Sect. 2.3.2 of Okuzumi et al. 2012). The relative
contribution of the velocity components depends strongly on the size and aerodynamic
properties of the dust grains in question. More specifically, the relative velocity is a func-
tion of the stopping times of the particles. Depending on the size of the particle, the
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stopping time is set either by Epstein or Stokes drag

ts =


t(Ep)
s =

3m
4ρgvthA

for a <
9
4
λmfp,

t(St)
s =

4a
9λmfp

t(Ep)
s for a >

9
4
λmfp,

(4.8)

where vth =
√

8/πcs is the mean thermal velocity of the gas molecules, and λmfp =

mg/(σmolρg) is the gas molecule mean free path. Taking σmol = 2 × 10−15 cm2, we obtain
λmfp = 120(R/5 AU)11/4 cm at the disk mid plane. In Eq. 4.8, a = a0(V/V0)1/3 refers to
the dust particle radius, while A is the projected cross section of the particle averaged over
all orientations, which can be obtained using the formulation of Okuzumi et al. (2009).

Equation 4.8 is accurate when the particle Reynolds number Rep = 4avdg/(vthλmfp) <
1, with vdg the relative velocity between the gas and the dust particle. The Reynolds
number can become large when aggregates grow very big or their velocity relative to the
gas is very large. In general, the stopping time can be written as

ts =
2m

CDρgvdgA
. (4.9)

In the Stokes regime the drag coefficient equals CD = 24/Rep, and the stopping time
becomes independent of vdg. However, for larger Reynolds number the stopping time
becomes a function of the velocity relative to the gas. This regime is called the Newton
drag regime. Since the relative velocity depends in turn on the stopping time, we have to
iterate to find the corresponding stopping time. Following Weidenschilling (1977a), we
use

CD =


24(Rep)−1 for Rep < 1,

24(Rep)−3/5 for 1 < Rep < 800,

0.44 for 800 < Rep.

(4.10)

Figure 4.1 shows Stokes numbers (Ωts) for different particles in the mid plane of a MMSN
disk at 5 AU. Different lines show compact particles (red), porous aggregates with con-
stant φ = 104 (yellow), and aggregates with a constant fractal dimension of 2.5 (green).
For the solid lines, all drag regimes (Epstein, Stokes and Newton) have been taken into
account, while the dashed lines indicate the results using only Epstein and Stokes drag,
i.e., assuming that Rep < 1. Focussing on the D f = 2.5 aggregates, we can clearly dis-
tinguish the different drag regimes. The smallest particles are in the Epstein regime, and
switch to the Stokes regime around Ωts = 10−3. Then, at a mass of m/m0 ∼ 1021, the
Reynolds number exceeds unity and we enter the second regime of Eq. 4.10. We note
that this transition occurs before Ωts = 1. The most massive particles, m/m0 > 1026 are in
the regime where CD = 0.44. Compact particles on the other hand, reach Ωts = 1 while
still in the Epstein drag regime.
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Figure 4.1: Particle Stokes numbers as a function of mass, in the mid plane of an MMSN disk
at 5 AU. Different lines show compact particles (red), porous aggregates with constant φ = 104

(yellow), and aggregates with a constant fractal dimension of 2.5 (green). For the solid lines, all
drag regimes (Epstein, Stokes and Newton) have been taken into account, while the dashed lines
indicate the results using only Epstein and Stokes drag. Horizontal lines indicate Ωts = 1 (where
drift is fastest) and Ωts = α = 10−3 (where particles start to settle to the mid plane).

The turbulence-induced relative velocity between two particles with stopping times
ts,1 and ts,2 ≤ ts,1 has three regimes (Ormel & Cuzzi 2007)

vturb ' δvg ×


Ret

1/4 Ω(ts,1 − ts,2) for ts,1 � tη,

1.4 . . . 1.7
(
Ωts,1

)1/2 for tη � ts,1 � Ω−1,(
1

1 + Ωts,1
+

1
1 + Ωts,2

)1/2

for ts,1 � Ω−1,

(4.11)

where δvg = α1/2cs is the mean random velocity of the largest turbulent eddies, and
tη = Ret

1/2tL is the turn-over time of the smallest eddies. The turbulence Reynolds num-
ber is given by Ret = αc2

s/(Ωνmol), with the molecular viscosity νmol = vthλmfp/2. We will
refer to the first two cases of Eq. 4.11 as the first and second turbulence regimes. Relative
velocities between similar particles (similar in the sense that they have comparable stop-
ping times) are very small1 in the first turbulence regime because of the (ts,1 − ts,2) term,
but considerably larger in the second regime.

1According to Eq. 4.11, vturb = 0 for aggregates with identical stopping times in the first turbulence regime.
In reality, the dispersion in the aggregate’s mass-to-area ratio will give rise to a small relative velocity. We treat
this dispersion in the same way as Okuzumi et al. (2012), by taking into account the standard deviation in the
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Chapter 4. Erosion and the limits to planetesimal growth

Figure 4.2 shows the mid plane relative velocity in m s−1 (contours), and its dominant
source (color), for a range of combinations of masses mi and m j. The velocities have
been calculated for the disk properties of Sect. 4.2.1, at 5 AU, and assuming a turbulence
α = 10−3. The left plot corresponds to two compact particles (ρint = ρ0), and the right plot
to two very porous ones (ρint = 10−4ρ0). The general picture is the same for all porosities:
Brownian motion dominates the relative velocity at the smallest sizes, followed by tur-
bulence for larger particles, and systematic drift for bodies that have Ωts ∼ 1. However,
the masses at which various transitions occur can vary by several orders of magnitude de-
pending on the particle porosity. For this particular location and turbulence strength, there
is no combination of particle masses whose relative velocity is dominated by differential
settling.

4.2.3 Collisional outcomes

A collision between porous aggregates can have a number of outcomes, ranging from
perfect sticking to catastrophic fragmentation. For silicates, Blum & Wurm (2008) and
Güttler et al. (2010) offer reviews of the various outcomes as observed in laboratory ex-
periments. For porous ices, experimental investigations are scarce, and we have to turn
to numerical simulations when predicting the outcome (e.g., Dominik & Tielens 1997;
Wada et al. 2007; Suyama et al. 2008; Wada et al. 2009).

In general, a collision can result in sticking, erosion, or fragmentation, depending
on the relative velocity and the mass ratio R(m) ≡ mi/m j ≤ 1 of the colliding bodies.
Collisions between particles with comparable masses result in catastrophic fragmentation
if they collide above the fragmentation velocity (Sect. 4.2.3). When colliding bodies have
a mass ratio R(m) � 1, catastrophic fragmentation of the larger body is difficult, but the
collision can result in erosion if the velocity is high enough. The transition from erosion
to the fragmentation regime occurs at a mass ratio R(m)

crit , specified in Sect. 4.2.3. In an
erosive event, the larger body will lose mass. From Figure 4.2 it is clear that the highest
velocities are reached between particles with very different masses, and thus erosion might
very well be a common collisional outcome. We discuss erosion in more detail in Sect.
4.2.3. We should note at this point that we do not consider bouncing collisions. For
relatively compact silicate particles, bouncing is frequently observed in the laboratory
(e.g., Güttler et al. 2010), and indeed can halt growth in protoplanetary disks (Zsom et al.
2010). However, in porous aggregates, the average coordination number (the number of
contacts per monomer) is much lower than in compact ones. As a result, collision energy
is more easily dissipated, and it is safe to neglect bouncing (Wada et al. 2011; Seizinger
& Kley 2013).

mass-to-area ratio of a porous aggregate (Okuzumi et al. 2011). The size of this standard deviation, normalized
by the mean mass-to-area ratio, is parametrized as ε, which we take to equal 0.1, following Okuzumi et al.
(2011).
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4.2. Disk and dust models

Catastrophic fragmentation

For collisions between roughly equal icy aggregates (mass ratio R(m) ≥ 1/64), Wada et al.
(2013) find a critical fragmentation velocity of

vfrag ' 20
(

Ebreak

m0

)1/2

' 80
(

a0

0.1 µm

)−5/6

m s−1. (4.12)

The quantity Ebreak represents the energy needed to break a single mononer-monomer con-
tact (Dominik & Tielens 1997). Collisions below this critical velocity result in sticking,
while collisions at or above vfrag result in fragmentation of the collision partners.

The case for erosion

The relative velocity between similar-sized aggregates will generally not reach the frag-
mentation velocity (Eq. 4.12) behind the snow line in a protoplanetary disk, especially not
if the turbulence is weak. However, relative velocities between particles with very differ-
ent masses can be much larger than velocities between similar particles, especially when
radial and azimuthal drift are important (Figure 4.2). In this paper, we study the effects of
an erosive regime, where collisions at low mass ratios will produce erosive fragments at
velocities below a critical erosion threshold velocity veros . vfrag. Here, we briefly revisit
numerical and experimental studies of erosion, before outlining the erosion model used
in this work. The process of erosion can be described by two main quantities: the erosion
threshold velocity, veros, above which erosion takes place, and the (normalized) erosion
efficiency, εeros, that indicates how much mass is eroded in units of projectile mass.

For silicate particles, Güttler et al. (2010) summarize a number of experimental in-
vestigations and describe a threshold velocity of a few m s−1, and an erosion efficiency
that increases roughly linearly with collision velocity. Similar trends were observed by
Schräpler & Blum (2011), who found an erosion threshold velocity of a few m s−1 us-
ing micron-size silicate projectiles. We note that the threshold velocity is comparable
to the monomer sticking velocity of micron-size silicate particles (Poppe et al. 2000).
In the experiments of Schräpler & Blum (2011), the erosion efficiency also increased
with impact velocity, reaching ∼10 for the highest velocity of 60 m s−1 (their Figure 5).
Seizinger et al. (2013) used molecular dynamics simulations, based on a new viscoelastic
model (Krijt et al. 2013), to reproduce the experimental results. In addition, Seizinger
et al. (2013) studied the variation on the threshold velocity and erosion efficiency with
projectile mass, showing a trend of decreasing erosion threshold with decreasing mass
ratio (e.g., their Figure 11). For monomer projectiles, the threshold velocity equals the
monomer-monomer sticking velocity vs '

√
Ebreak/m0, after which it increased linearly

with velocity to eventually flatten off around 10 m s−1. This flattening off indicates the
onset of catastrophic fragmentation, and occurs at a mass ratio of ∼10−2.

For ice particles, Gundlach & Blum (2015) present recent experimental results on the
sticking and erosion threshold of (sub)micron-size particles. For a projectile distribution
between 0.2 − 6 µm (with a mean value of 1.5 µm) impinging an icy target with a filling
factor φ ' 0.5, an erosion threshold of 15.3 m s−1 was found. These results confirm the
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Chapter 4. Erosion and the limits to planetesimal growth

Figure 4.3: (a) Schematic of a collision between unequal particles with a mass ratio R(m) =

(mproj/mtarget) � 1. (b) Sticking occurs when vrel < veros. The mass of the projectile is added to
the target. (c) Collisions above the erosion threshold velocity lead to erosion. The mass loss of the
target is given by the erosion efficiency εeros and the mass of the projectile.

increased stickiness of ice compared to silicate particles, and indicate veros could indeed be
very high for (monodisperse) 0.1-µm monomers, possibly even >60 m s−1. However, the
aggregates acting as targets in the simulations presented here have a much higher porosity
(φ ∼ 10−3), and the lower coordination number is expected to reduce the erosion threshold
(Dominik & Tielens 1997). Lastly, while Gundlach & Blum (2015) used a distribution
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4.2. Disk and dust models

of grain sizes, numerical investigations (e.g., Seizinger et al. 2013; Wada et al. 2013),
for computational reasons, often employ a monodisperse monomer distribution, making
a direct comparison difficult. For a single grain size, the size significantly influences the
strength of the aggregates, with larger monomers leading to weaker aggregates (Eq. 4.12).
Little is known about the expected grain sizes in the icy regions of protoplanetary disks,
let alone their size distribution, or about the effect a monomer size distribution has on the
strength and collisional behavior of porous aggregates.

For these reasons, we believe that the existence of an erosive regime for icy aggre-
gates is plausible. However, at present the data are unfortunately ambiguous with other
simulations indicating the opposite trend: that the mass-loss in low mass ratio collisions
is relatively small. Using molecular dynamics N-body simulations Wada et al. (2013)
find that the threshold velocity (where fragmentary collisions become more numerous
than sticky collisions) increases for smaller mass ratios, suggesting that only similar-size
particles colliding at vfrag fragment efficiently. This trend of an increased erosion thresh-
old for smaller size ratios is corroborated by recent simulations by Tanaka et al. (in prep).
This would imply that for monodisperse submicron grains, both threshold velocities might
not be reached (cf. Eq. 4.12 and Figure 4.2). In this paper, we bury the uncertainty of
the erosion threshold velocity in the parameter veros, which we vary to investigate the
implications of effective versus ineffective erosion.

Erosion model

Erosive collisions only occur below a mass ratio R(m)
crit , and their outcome is parametrized in

terms of a (velocity-dependent) erosion efficiency. In accordance with Güttler et al. (2010)
and Seizinger et al. (2013) we will use R(m)

crit = 10−2. For smaller mass ratios, we will
assume a constant value for veros, that does not depend on mass ratio or projectile/target
porosity. We vary veros between 20 and 60 m s−1, corresponding to (1/4)vfrag and (3/4)vfrag
for 0.1 µm monomers (Eq. 4.12). In the erosive regime, the normalized erosion efficiency
can be written as

εeros = c1

(
vrel

veros

)γ
, (4.13)

with c1 ∼ 1 (Güttler et al. 2010; Seizinger et al. 2013). While in supersonic cratering
collisions γ = 16/9 (Tielens et al. 1994), the velocities encountered in this work are
not that high and at most comparable to the sound speed in porous aggregates (Paszun
& Dominik 2008). Hence, we will use γ = 1, in agreement with both numerical and
experimental work in the appropriate velocity range (Güttler et al. 2010; Schräpler &
Blum 2011; Seizinger et al. 2013).

Lastly, we need a prescription for the filling factors after an erosive collision. We
assume that i) the filling factor of the target remains unchanged, and ii) the filling factor
of the fragments is found by assuming they have the same fractal dimension as the target,
where the target’s fractal dimension D f is estimated as

D f ' 3
[
1 −

log(φ)
log(m/m0)

]−1

. (4.14)
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Chapter 4. Erosion and the limits to planetesimal growth

The assumptions of the erosion model employed in this work are discussed further in Sect.
4.6.

4.2.4 Aggregate compaction

An aggregate’s porosity can be altered through collisions, or through non-collisional
mechanisms. In this section, we first describe how porosity can increase and decrease
as the result of sticking collisions. Then, we discuss gas- and self-gravity compaction.

Collisional compaction

When two particles i and j collide at a relative velocity vrel that is below the thresholds
for fragmentation or erosion, the particles stick, and form a new aggregate with mass
mi + m j. The internal density of the new particle depends on how the impact energy com-
pares to the energy needed for restructuring. When the impact energy is not enough to
cause significant restructuring, particles grow by hit-and-stick collisions, and very fractal
aggregates can be formed (Kempf et al. 1999). When the impact energy is much larger,
significant restructuring can take place, reducing the internal density of the dust aggre-
gates. In this work, we will make use of the model presented in Suyama et al. (2012) and
Okuzumi et al. (2012). Specifically, we use Eq. 15 of Okuzumi et al. (2012) to calculate
the volume of the a newly-formed aggregate, as a function of the masses and volumes of
particles i and j, the impact velocity, and the rolling energy Eroll; the energy needed to
roll two monomers over an angle of 90◦ (Dominik & Tielens 1997).

Gundlach et al. (2011) measured the rolling force between ice particles with radii of
∼1.5 µm to be 1.8 × 10−3 dyn, implying a rolling energy of 1.8 × 10−7 erg. Assuming
the rolling force is size-independent (Dominik & Tielens 1995), the rolling energy is then
often extrapolated using Eroll ∝ a0. Recently however, Krijt et al. (2014) showed that
the rolling force scales with the size of the area of the monomers that is in direct contact,
resulting in Froll ∝ a2/3

0 , and Eroll ∝ a5/3
0 , leading to significantly smaller rolling energies

when extrapolating down to monomer radii well below a micrometer. In this work, we
use the scaling law of Krijt et al., resulting in a rolling energy of 4 × 10−9 erg for 0.1-µm
radius ice particles. Physically, a lower rolling energy means less energy is needed to start
restructuring of an aggregate. As a result, a lower rolling energy will lead to compacter
aggregates.

Gas and self-gravity compaction

Aggregates can also be compressed by the ram pressure of the gas, or their own gravity,
if they become very porous or massive. For low internal densities, Kataoka et al. (2013b)
found that the external pressure a dust aggregate can just withstand equals

Pc =
Eroll

a3
0

φ3. (4.15)
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This pressure can then be compared to the pressure arising form the surrounding gas and
from self-gravity

Pgas =
vdgm
πa2ts

, Pgrav =
Gm2

πa4 , (4.16)

with G the gravitational constant, in order to see whether an aggregate will be compacted
as a result of these non-collisional processes (Kataoka et al. 2013a). In this work, we will
take these effects into account in a self-consistent way, while calculating the collisional
evolution of the dust distribution.

4.3 Monte Carlo approach

Numerical techniques for studying coagulation can be divided in two categories2: integro-
differential methods (e.g., Weidenschilling 1980; Dullemond & Dominik 2005; Birnstiel
et al. 2010), and Monte Carlo (MC) methods (Gillespie 1975; Ormel et al. 2007; Zsom
& Dullemond 2008). Tracing particle porosity as well as mass becomes computationally
expensive in the integro-differential approach. A solution to this issue was presented by
Okuzumi et al. (2012), who assumed the porosity distribution for a given mass bin was
narrow, but could vary in time. Since we are interested in including erosive processes,
this assumption is not expected to hold, and for this reason we opt for the Monte Carlo
method.

The approach to calculate the collisional evolution is based on the distribution method
as described in Ormel & Spaans (2008). In this section, we briefly revisit the method,
focussing on what is new in this work.

We let f (~x) be the (time-dependent) particle distribution function, with ~xi the unique
parameters describing dust particle i, in our case mass and filling factor3. For every pair
of particles i and j, one can determine the collision rate as

Ci j = Ki j/S, (4.17)

with S the surface area of the column4, and Ki j the collision kernel, which in this case
equals

Ki j =
σi j

2πhd,ihd, j

∫ ∞

−∞

vrel(z) exp

 −z2

2h2
d,i j

 dz, (4.18)

where hd,i is given by Eq. 4.6, and hd,i j = (h−2
d,i + h−2

d, j)
−1/2 and σi j = π(ai + a j)2 equals the

collisional cross section (Okuzumi et al. 2012). This rate equation takes into account that
particles with different properties inhabit different vertical scale heights, and is correct as
long as the coagulation timescale is longer than the vertical settling/diffusion timescale. In
this work, we approximate the integral over z by assuming the mid plane relative velocity

2See Dra̧żkowska et al. (2014) for a comparison between the two methods in the breakthrough growth case.
3All other quantities (e.g., stopping time, volume, size) can be calculated from these two numbers.
4The size of the column is set by the total mass in the simulation and the dust surface density at the column’s

location.
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Chapter 4. Erosion and the limits to planetesimal growth

is a good indication for vrel throughout the column. This allows us to solve the integral
analytically and write

Ki j '
σi jhd,i j
√

2πhih j
vrel(z = 0). (4.19)

For the purpose of this paper, this approximation is sufficiently accurate, since most of the
growth is expected to take place near the mid plane.

Then, we can define the total collision rate for particle Ci =
∑

j>i Ci j, and the total col-
lision rate Ctot =

∑
i Ci. With all these rates known, 3 random numbers are used to identify

which particles collide, and the time ∆t after which this collision occurs. The colliding
particles are then removed from f , and the collision product is added. As a result, all
collision rates Ci have to be adjusted, since the particle distribution f has changed. This
cycle is then repeated.

The simple method has two main drawbacks. First, the time needed for updating the
rates in between collisions scales with N2, where N is the total number of particles. Sec-
ond, this method describes 1 collision per cycle, which can become a problem whenever
the mass distribution is broad.

4.3.1 Grouping method
Rather than following every particle individually, identical particles can be grouped to-
gether. In our approach, the dust distribution is described by N f particle families. Within
a single family, all particles have identical properties, in our case mass and internal den-
sity. In every family i, there are wi particle groups, each containing 2zi individual particles,
where we call zi the zoom factor. The total number of particles in a single family therefor
equals gi = wi2zi , and the total number of particles is N =

∑
i gi. Instead of 2 particles col-

liding per cycle, collisions now happen between groups of particles (see Ormel & Spaans
2008, for details about this method). Letting i refer to the group with the lower zoom
factor, we obtain for the group collision rates

λi j =

 wiw j2ziCi j for i , j,

wi(wi2zi − 1)Cii for i = j,
(4.20)

where the i = j case in Eq. 4.20 describe so-called in-group collisions. Like before,
we can define the total collision rate per family λi =

∑
j≥i λi j, and the total collision rate

λtot =
∑

i λi, which can be used to determine which groups collide and when. This grouped
approach has tremendous advantages, but there are also pitfalls, which we discuss in the
following section.

4.3.2 Sequential collisions
Imagine the collision between a group of large bodies i with a group of much smaller
bodies j, such that mi � m j. Thus, a total of 2zi i-particles will collide with 2z j j-particles.
Assuming z j � zi, every i-particle in the group will collide with 2z j−zi j-particles in a
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4.3. Monte Carlo approach

single sequence before the collision rates are updated and the next groups to collide are
chosen. We are assuming that the collision rates and the relative velocity between i and j
particles are constant during this sequence, but this is only true if the properties of particle
i do not change significantly. For this reason we include the group splitting factor Nε, that
limits the number of collisions to 2z j−zi−Nε .

We let δmi be the change in the mass of the larger particle i, after a single collision
with a j-particle. Assuming the changes are small, we can then extrapolate to find the
total change after the full sequence of collisions

∆mi

mi
=

2z j−zi−Nεδmi

mi
. (4.21)

Now, by imposing that (∆mi/mi) ≤ fm, we obtain

N(m)
ε =

[
− log2

(
fmmi2zi

δmi2z j

)]
, (4.22)

where the square brackets indicate that N(m)
ε is truncated to integers ≥0, which has the

effect of particles with mass ratios ≥ fm always colliding 1-on-1. In the case of perfect
sticking, obviously δmi = m j, and Eq. 4.22 reduces to Eq. 12 of Ormel & Spaans (2008).
We write an equivalent expression for the filling factor of the bigger grain

N(φ)
ε =

[
− log2

(
fφφi2zi

δφi2z j

)]
, (4.23)

where δφi denotes the change in φ after a single collision. The two limits are combined
by writing

Nε = max
(
N(m)
ε ,N(φ)

ε

)
, (4.24)

and ensure that neither the filling factor, nor the mass of the larger particle change by
too much during a single Monte Carlo cycle. We note that Nε is not only a function
of the masses and densities of both particles, but also of the relative velocity, since this
influences δφi (and δmi, when erosion is present). In this work, we will typically use
fm = fφ = 0.1.

Imposing this limit has two consequences. First, since the group of i-particles can
now only collide with part of the group of j-particles, this needs to be taken into account
when the group collision rates are calculated, changing Eq. 4.20 into

λi j =

 wiw j2zi+NεCi j for i , j,

wi(wi2zi − 1)Cii for i = j.
(4.25)

Second, since it can occur that only part of a group collides, group numbers wi can now
become fractional. This is fine as long as wi ≥ 1, ensuring that at least one full group
collision can occur in the future (Ormel & Spaans 2008).
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Chapter 4. Erosion and the limits to planetesimal growth

4.3.3 The distribution method

For a given number of family members gi, we have some freedom in choosing zi; either
creating many groups with a few members (low zi) or a few groups with many members
(high zi). This choice for the zoom factors is crucial because it determines how many
groups of a certain mass exist, which is related to the numerical resolution in that part of
the mass range. Two approaches for determining the zoom factors have been proposed by
Ormel & Spaans (2008).

One approach is the so-called equal mass method, in which one strives to have groups
of equal total mass. This method is essentially identical to the method of Zsom & Dulle-
mond (2008). With this approach, the peak of the mass distribution is very well traced,
but parts of the particle distribution that carry little mass are described by a few groups,
resulting in larger uncertainties. The second option is the distribution method, where one
strives to have an equal number of groups per mass decade, independent of the total mass
present in that interval. The difference between the two methods is nicely illustrated in
Figure 4 of Ormel & Spaans (2008). Since we are interested in erosion, it is crucial to
resolve the particle distribution over the entire mass range. It is for that reason that we
adopt the distribution method.

In practice, this means that at certain times during the simulation, we calculate the
total number of particles N10 in every mass decade. The optimal zoom number for families
in that mass range then equals

z∗ =

[
log2

(N10

w∗

)]
, (4.26)

where w∗ is the desired number of groups per mass decade. In this way, we construct a
function z∗(m), which gives the desired zoom number for a family with particle mass m.
We then check every existing family: if a certain zoom number is too big, we magnify
the group (zi → zi − 1, wi → 2wi) until zi = z∗(mi). Similarly, if the zoom number is too
small, we demagnify (zi → zi + 1, wi → wi/2). The (de)magnification process conserves
particle number, but does force one to update the various collision rates. A more detailed
description of (de)magnification is given by Ormel & Spaans (2008). In the rest of this
work, we calculate and update the zoom factors after every 102 collision cycles, whenever
the peak or average mass has changed by >5%, or when the maximum mass has changed
by >50%, which we found to ensure a smooth evolution of the zoom factors. We will use
w∗ = 60 for the perfect sticking calculations, and w∗ = 40 for the ones including erosion.

4.3.4 Merging

Lastly, we have to address the merging of families. It can occur that demagnification
results in a group number wi < 1, which is not allowed. When this occurs, the family
does not contain enough individual particles to adopt zi = z∗(mi). At this point, the family
is insignificant. As we are simulating a fixed volume and the total mass needs to be
conserved, we merge the family with another, healthy (meaning wi > 1) one. First, we
find the family j that resembles family i the most. In order to do so, we find the family that
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4.4. Results

gives the largest product (R(m))(R(φ))3, where R(φ) ≤ 1 is the ratio of the filling factors5.
Then, we merge the families into a new family k with properties

gk = gi + g j, mk =
migi + m jg j

gi + g j
, φk =

φigi + φ jg j

gi + g j
. (4.27)

The new zoom- and group numbers are chosen such that zk = z∗(mk). Merging is neces-
sary to suppress the total number of groups.

4.3.5 Non-collisional compaction

Non-collisional compaction is implemented as follows: whenever a new aggregate is cre-
ated in a collision, we calculate its compressive strength using Eq. 4.15, and compare this
to the external pressures from gas ram pressure and self-gravity, calculated with Eq. 4.16
(Kataoka et al. 2013a). If either one of the external pressures exceeds Pc, we compactify
the dust grain (i.e., increase φ) until the aggregate can withstand the external pressures.

4.3.6 Erosion

For every collision, we check if the conditions for erosion are met (i.e., vrel > veros and
R(m) < R(m)

crit), and if so, we determine the erosion efficiency using Eq. 4.13. After a single
erosive event, the mass that does not end up in the target body equals (1 + εeros)mproj, see
Figure 4.3. To limit the number of new families, we redistribute this mass over fragments
with a mass of mfrag = mproj/10.

4.4 Results

In this section we show the results of our simulations for different erosion recipes, com-
paction mechanisms, turbulence strengths, and disk locations. When discussing the parti-
cle distribution at a given time, we shall use a number of quantities. These are the average
mass and porosity

ma = 〈mi〉, φa = 〈φi〉, (4.28)

which trace the properties of the average particle, and the peak mass and filling factor

mp =
〈m2

i 〉

〈mi〉
, φp =

〈miφi〉

〈mi〉
, (4.29)

which trace the properties of the mass-dominating particle. We will also use the maximum
mass mmax, which is simply the mass of most massive particle.

5This combination of R(m) and R(φ) is used because the spread in masses is typically larger than the one in
porosities, and we want to avoid merging particles with very different porosities if possible.
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Figure 4.4: Evolution of the normalized particle mass distribution at 5 AU with α = 10−3, assuming
perfect sticking and without compaction through gas and self-gravity. Only Epstein are Stokes
drag are considered. Solid lines indicate averages over 4 Monte Carlo runs with identical starting
conditions, and the shaded areas represent a spread of 1σ.

4.4.1 Perfect sticking

Collisional-compaction-only scenario

As a test for the Monte Carlo approach, we attempt first to match the trends observed in
Okuzumi et al. (2012), who assumed perfect sticking between the dust grains. We adopt
a turbulence strength parameter of α = 10−3, and focus on a vertical column at 5 AU in
a typical MMSN disk. At this point, we only include collisional compaction and omit
erosion. To allow a direct comparison to the work of Okuzumi et al., we do not include
the effects of Newton drag for particles with large Reynolds numbers in this simulation.
In the rest of this work, Newton drag is always included self-consistently.

Figure 4.4 shows the evolution of the normalized mass distribution m2 f (m) as a func-
tion of time. Solid lines mark the average over 4 Monte Carlo runs. Thanks to the dis-
tribution method described in Sect. 4.3.3, the sampling of the mass distribution is very
good over the entire mass range: even at later times, when most of the mass is located in
particles with masses of ∼1015 g, the distribution of particles all the way down to 10−9 g
is resolved remarkably well, despite these particles only making up a very small fraction
of the total mass.

When we compare Figure 4.4 to Figure 7 of Okuzumi et al. (2012), it is clear that our
local MC method yields very similar results. We recognize the familiar narrow mass peak
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Figure 4.5: Evolution of the growth- and radial drift timescale of the peak mass for the perfect stick-
ing model at 5 AU with α = 10−3. The dotted line indicates (tdrift/30). Only collisional compaction
has been taken into account.

when growth is governed by Brownian motion, followed by a broader distribution once
turbulence kicks in. Once particles reach Ωts ∼ 1 (m j ' 1010 g in this case), systematic
drift greatly increases their collision rate, and very rapid growth ensues. The slight differ-
ence in timescales is attributed to i) the slightly different value for the rolling energy, ii)
our approximation of Eq. 4.18, and iii) our use Eq. 4.8 to calculate the stopping times,
while Okuzumi et al. used ts = t(Ep)

s + t(St)
s to ensure a smooth transition between Epstein

and Stokes drag (S. Okuzumi, private communication).
While we take into account drift-induced relative velocities, the dust particles are

bound to our simulated column and cannot move radially through the disk. To test the
validity of this assumption, we compare the growth timescale of the peak mass, defined
as

tgrow ≡
mp

(dmp/dt)
, (4.30)

to the radial drift timescale at that mass

tdrift ≡
R

vdrift(mp)
. (4.31)

The radial drift velocity is given by (Weidenschilling 1977a)

vdrift = −
2Ωts

1 + (Ωts)2 ηvK , (4.32)

where vK = RΩ is the Keplerian orbital velocity, and η can be written as (Nakagawa et al.
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1986)

η ≡ −
1
2

(
cs

vK

)2 ∂ ln(ρgc2
s)

∂ ln R
= 4 × 10−3

( R
5 AU

)1/2

. (4.33)

Figure 4.5 shows both the growth and radial drift timescales during the complete evo-
lution of the peak mass. Initially, relative velocities are dominated by Brownian motion.
Since this velocity drops with increasing particle mass, the growth timescale increases.
Around a mass of 10−9 g, turbulent velocities start to dominate the relative velocity, and
the growth timescale stays approximately constant. Particles larger than 103 g enter the
second turbulent regime as ts(mp) > tη. In this regime, velocities between similar particles
are increased (see Eq. 4.11), which leads to a decrease in the growth timescale. Since the
growth timescale is always much smaller than the drift timescale, the aggregates in this
simulation do indeed out-grow the radial drift barrier.

Including gas and self-gravity compaction

The next step is to include compaction by gas pressure and self-gravity, as described
in Sect. 4.2.4. In addition, we now take into account Newton drag for particles with
large Reynolds numbers. Figure 4.6 shows the results for the same disk parameters as
before. The general shape of the evolution looks similar to Figure 4.4 initially, but from
the corresponding times it is clear that the growth is slower for the largest aggregates.
The main reason for this is that the largest dust grains are compacted by the gas and
self-gravity, resulting in a smaller collisional cross section. In addition, the aerodynamic
properties are different, which affects the relative velocities.

The growth- and drift timescales are plotted in Figure 4.7. When we compare Figures
4.5 and 4.7, we confirm that the growth close to the drift barrier is slower when using
the full compaction recipe. For the largest particles, the growth timescale is increased by
more than 2 orders of magnitude. In addition, including Newton drag has broadened the
drift barrier somewhat. Nonetheless, the growth is still fast enough to prevent particles
from drifting significant distances.

Evolution of internal densities

It is interesting to compare the evolution of the internal densities of the particles for the
models with and without non-collisional compaction. In Figure 4.8, the peak filling fac-
tor is plotted versus the peak mass for the simulations described so far. The symbols
correspond to important points in the evolution of the aggregates: open circles are related
to the stopping time of the aggregates, and closed symbols indicate the onset of various
compaction mechanisms6.

Initially, aggregates grow through hit-and-stick collisions, and evolve along a line of
constant fractal dimension close to 2. In the collisional-compaction-only scenario, par-
ticles reach a filling factor of ∼10−5 during hit and stick growth, before collisional com-

6The particle actually undergoing this compaction can have a mass and porosity that differ slightly from mp
and φp.
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Figure 4.6: Like Figure 4.4, but with compaction through gas and self-gravity and Newton drag for
particles with Rep > 1.
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Figure 4.7: Evolution of the growth- and radial drift timescale of the peak mass for the perfect
sticking model at 5 AU with α = 10−3. The dotted line indicates (tdrift/30). Compaction from gas
and self-gravity, and Newton drag have been taken into account.
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Figure 4.8: Evolution of the internal structure of the mass-dominating particles, for the perfect
sticking models at 5 AU, for the models with and without non-collisional compaction mechanisms.
Aggregates start out as monomers in the top left corner, and grow towards larger sizes and porosities.
Lines show individual simulations. Open symbols correspond to points where the mass dominating
particles reach a = λmfp (◦); ts = tη (^); Ωts = α (O); and Ωts = 1 (�). Filled symbols show peak
mass and filling factor at the times of first: collisional compaction (?); gas-pressure compaction
(�); and self-gravity compaction (•).

paction kicks in, after which φ stays almost constant. When Ωts(mp) > 1, the internal den-
sity drops even further. The general picture, as well as the location of the various turnover
points, is consistent with the top panel of Figure 10 of Okuzumi et al. (2012). When
non-collisional compaction is included, the filling factor, in general, is much higher at
later times, and follows the boundaries that have been described by Kataoka et al. (2013a)
(e.g., their Figure 3). For this particular combination of turbulence, rolling energy, and
monomer size, compacting by gas ram pressure actually occurs before the first collisional
compaction event takes place7. Significant settling occurs when Ωts > α, which corre-
sponds to m ∼ 10−3 g for compact particles (see Figure 4.1). From Figure 4.8 however, we
see that porous particles only begin to settle when their masses reach ∼104−105 g. Lastly,
aggregates with masses above ∼1010 g are compacted by self-gravity, causing the filling
factor for the largest bodies to be several orders of magnitude higher. In the remainder of
this work, we include both collisional and non-collisional compaction mechanisms, and
Epstein, Stokes, and Newton drag self-consistently.

7In fact, the gas compaction starts when the aggregates are still in the Epstein drag regime. Eq. 4.15 is
determined by static compression of porous aggregates, and Eq. 4.16 assumes the external pressure can be
treated as continuous. However, if the collision frequency of gas molecules with individual monomers of the
aggregate is low compared to the frequency at which monomer-monomer contacts oscillate and dissipate energy,
this approach might not be accurate. Future work is encouraged to investigate the effect of collisions between
the aggregate and gas molecules in this regime.
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Figure 4.9: Evolution of the normalized particle mass distribution at 5 AU with α = 10−3, assuming
veros = 20 m s−1. The full compaction model is used.

4.4.2 Erosion
With this framework in place, the final step is to include the erosion model of Sect. 4.2.3
in the simulations, and calculate the evolution of the particle distribution self-consistently.
Figure 4.9 shows the mass distribution at various times for veros = 20 m s−1. Initially, the
evolution proceeds just like in 4.6, but as the largest aggregates approach Ωts = 1, their
velocity relative to smaller particles is high enough for erosion, and their growth stalls.
As a direct consequence of the erosion, the amount of small particles increases, and after
∼4000 yr a steady-state is reached, with a significant amount of mass residing in particles
smaller than a few grams.

To investigate how erosion halts the growth of the largest bodies, it is instructive to plot
so-called projectile mass distributions (Okuzumi et al. 2009). For a certain particle mass
mt, these distributions show the contribution to the growth of that particle as a function of
projectile mass m ≤ mt. An example of such a plot is shown in Figure 9 of Okuzumi et al.
(2012), where the distribution function is plotted at various times for mt = mp. For our
distribution plots, we make two important changes: First, since we are interested in the
growth of the largest bodies, we plot projectile distributions for mt = mmax, with mmax the
largest mass in the simulation at a given time. Second, to illustrate the effect of erosive
collisions, we calculate the mass loss for every erosive collision, taking into account the
correct erosion efficiency8. As a result, the sign of the distribution function can be both

8A sticking collision, where the mass of the projectile is added to the target, is described by εeros = −1.
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Figure 4.10: Projectile distribution mass functions for simulation E1, constructed for the maximum
masses (mt = •) at various times. Colors and times correspond to Figure 4.9. For each distribution,
the stopping time of the mt-particle is given, and the weights of the total positive and negative area
are plotted. The distributions have been normalized in such a way, that the absolute sum of the
contributions equals 1.

positive and negative. Figure 4.10 shows the distribution for one of the simulations of
Figure 4.9 (colors correspond to the same times). When we examine the right-most pro-
jectile mass distribution, corresponding to a time t = 104 yr, it is immediately clear how
erosion affects the evolution of particles with Ωts ∼ 1. While these aggregates grow by
collisions with similar-sized bodies, they lose mass by colliding with particles that have a
mass below 10−2mt. This could have been predicted by looking at Figure 4.2, from which
it is clear that the highest velocities are attained between particles with mass ratios well
below unity. The importance of this erosion however, depends on the current mass distri-
bution, and can only be tested through dedicated simulations like the ones presented here.
Since the area under the negative part of the projectile distribution outweighs the positive
part, the erosion is so effective that it stops the growth of the largest bodies, resulting in
the behavior seen in Figure 4.9.

We define a parameter ζ using the positive and negative areas under the projectile
mass distributions

ζ =

∑
C+ −

∑
C−∑

C+ +
∑

C−
, (4.34)

with
∑

C+ and
∑

C− the sums of the positive and negative part of the projectile mass
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distribution respectively. The parameter ζ ranges from 1 (no erosion) to -1 (only erosion),
and equals 0 when there is a balance between growth and erosion.

The top panel of Figure 4.11 shows the evolution of ζ for the most massive particle
during one of the simulations of Figure 4.9, plotted as a function of Ωts of the maximum
mass. Early on, there is no erosion present and ζ = 1, but as the largest bodies grow
towards Ωts = 1, erosion increases and ζ drops. When 0 < ζ < 1, the massive particles
still grow faster then they are eroded, but the erosion can be significant in that it results
in the creation of more small particles, thus increasing its destructive effect. When ζ < 0,
erosion dominates over growth and the most massive particles are loosing considerable
mass. This causes the curve in Figure 4.11 to turn around. As bodies shrink, there is less
erosion and ζ increases again. A quasi steady-state is reached with ζ just below unity and
Ωts(mmax) ∼ 0.6. The reason ζ , 0 during the steady state, is that it is not the same particle
that is the most massive at all times. Instead, particles take turn at being the most massive
body. Since the largest particles are stuck at a mass and size for which drift is fastest,
they will move radially towards the central star. For this combination of parameters, we
conclude that growth beyond the drift barrier is impeded by erosion.

The other panels of Figure 4.11 show similar plots but for different erosion threshold
velocities. For veros = 40 m s−1 (middle panel), erosion is less efficient and the largest
bodies grow to Ωts ' 10 before they start to lose mass rapidly. The reason particles can
grow larger is twofold. First, the threshold velocity itself is somewhat higher, causing
erosion to start for higher masses. Second, since the erosion efficiency is proportional to
(vrel/veros), the high-velocity projectile are less efficient in excavating mass from the tar-
gets. Both effects together cause the largest mass in the steady state to be about a factor of
10 larger than in the top panel of Figure 4.11. Finally, the bottom panel shows the results
for veros = 60 m s−1. This is a special case, since now the erosion threshold velocity can
only be reached around Ωts = 1, with radial drift, azimuthal drift, and turbulence con-
tributing (see Figure 4.2). Indeed, erosion is strongest around Ωts = 1, but it is inefficient
and ζ never drops below 0. When Ωts > 20, erosion reappears, as a result of smaller parti-
cles drifting into the larger bodies, but since ζ ∼ 1, bodies can continue to grow relatively
unaffected.

Variation in porosity

One of the biggest advantages of the Monte Carlo method is that aggregate mass and
porosity are treated truly independently. In other words, aggregates of identical mass can
have a very different porosity. However, the collision model used in this work imme-
diately implies that the spread in porosities (for a given particle mass) will be narrow,
when sticking collisions dominate the evolution. For example, the collision model, at
the moment, does not include an impact-parameter dependence in collisions, or a random
component in the relative velocity. As a result, collisions between particles with certain
properties always occur at the same relative velocity, and always result in the same colli-
sion product(s). Moreover, when gas compaction (or self-gravity compaction) limits the
porosity of an aggregate, bodies will evolve along Pc = Pgas (or Pc = Pgrav), according
to Equations 4.15 and 4.16. As a result, mass-porosity relations as shown in Figure 4.8
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Figure 4.11: Evolution of ζ(mmax) for erosive simulations with veros = 20, 40, 60 m s−1 as a function
of Ωts(mmax), showing the impact of erosion on the ability of the largest bodies to grow. In the upper
two panels, the steady-state is indicated by the }-symbol.

accurately represent the internal structure of the majority of aggregates.

This picture changes when erosion starts to play a role. Figure 4.12 shows the evolu-
tion of the properties of each family in one of the E1 simulations. We note that each dot
corresponds to a single family, and that the total masses and number of family members
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Figure 4.12: Masses and filling factors of all unique families at different times, for simulation E1.
One dot corresponds to one family, and does not provide information about the total mass or number
of members in that family.

can vary significantly between families. Nonetheless, Figure 4.12 gives a good indica-
tion of the spread in porosity. For the reasons described above, the spread in porosity is
very small during the first 3000 years of the evolution. After 3400 years, the first erosive
collisions have occurred, and created a population of fragments with a fractal dimension
set by the parent body. At this point, the porosity distribution becomes bimodal, and the
assumption of a single porosity parameter - which only depends on aggregate mass - is
untenable. Later, after ∼6000 years, the original population of aggregates, whose porosity
was set by their growth history, has disappeared. A steady-state is reached in which the
internal structure of the fragments is dominated by the porosity of the particles that act as
targets for erosion, i.e., the large bodies with Ωts ∼ 1.

4.5 Semi-analytical model
The evolution of the mass-dominating particles can be captured in a simple semi-analytical
model. Assuming the entire dust mass is located in particles of identical mass mp, the
growth rate can be written as (Okuzumi et al. 2012)

dmp

dt
=

Σd
√

2πhd
σcolvrel. (4.35)

The collisional cross section depends directly on the particle porosity, and the relative ve-
locity and dust scale height depend on φ through the particle stopping time. As a simple
model for the aggregate’s internal structure, we assume the aggregates initially grow with
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a constant fractal dimension of ∼2, until the kinetic energy in same-sized collisions ex-
ceeds Eroll. After that, the internal structure can be calculated through Eq. 31 of Okuzumi
et al. (2012), but in practice is always dominated by the gas/self-gravity compression of
Kataoka et al. (2013a), see Sect. 4.2.4.

This approach, similar to Kataoka et al. (2014, Sect. 5.3), is valid when particles grow
primarily through collisions with similar-sized particles. This is valid in most regimes, but
not true in the first turbulence regime. Here, relative velocities between identical particles
are suppressed, and aggregates grow by collecting smaller particles. However, it can
be shown that in this regime the growth timescale is approximately constant (Okuzumi
et al. 2009). Hence, we will assume that tgrow is constant in the regime where turbulence
dominates vrel, and ts < tη.

At the same time, the radial drift of the particles is governed by

dR
dt

= −vdrift, (4.36)

with the drift velocity a function of Ωts. Assuming a fixed dust to gas ratio of 10−2

throughout the disk, we can solve Equations 4.35 and 4.36 to obtain the evolution of
the vertically integrated peak mass. Catastrophic fragmentation is taken into account
by setting (dmp/dt) = 0 when vturb > vfrag for two particles of mass mp. Figure 4.13
shows lines along which the dust evolves, starting from m = m0 at various locations in
the disk. The left plot shows the results for compact growth (i.e., φ = 1 at all times),
after 106 yr. (For the compact case, we have temporarily set vfrag = 10 m s−1.) Initially,
growing aggregates are not moving radially, resulting in vertical lines in Figure 4.13. As
the particles’ Stokes numbers increase, collision velocities and drift speeds increase. In
the inner regions of the disk, the maximum size is limited by fragmentation through same-
sized collisions. Particles cannot grow larger than ∼cm, and will inevitably drift inwards.
In the intermediate region, from 20 − 100 AU, the fragmentation velocity is not reached.
Here, the maximum size is set by radial drift. In the outermost disk (beyond 102 AU),
growth is very slow because of the low dust densities, and 106 yr is not enough to reach
the size necessary to start drifting. The general behavior is identical to what is observed
in full compact coagulation models (see Figure 3 in Testi et al. 2014).

The gray lines in the right-hand panel of Figure 4.13 show the results of the semi-
analytical model for porous growth, where φ is set by collisional, gas pressure, and self-
gravity compaction, assuming perfect sticking. Since we are assuming the mp particles
carry the total dust mass, we do not have any information about the mass-distribution of
smaller particles. Nonetheless, we can mimic the effect of effective erosion, by setting
(dmp/dt) = 0 when the relative velocity between the mass dominating particle and small
projectiles (taken to be monomers) exceeds veros. The black solid lines in the right panel
of Figure 4.13 show the results for veros = 40 m s−1, while the red lines indicate results
for the peak mass of the full Monte Carlo models for the same erosion threshold velocity
(although that the maximum mass reached in these models can be a factor of ∼10 larger).
We have also included a full model run at 200 AU, which we evolved for 106 yrs. The
results of the semi-analytical model agree with the simulations of the previous section
remarkably well.

106



4.6. Discussion

101 102

R[AU]

10-12
10-9
10-6
10-3
100
103
106
109
1012
1015

m
[
g
]

Compact growth

MMSN disk
α=10−3

t=106 yr

101 102

R[AU]

10-12
10-9
10-6
10-3
100
103
106
109
1012
1015

m
[
g
]

Porous growth

Inefficient erosion

Efficient erosion

MC Models

Figure 4.13: Evolution of mp(t) and R(t) for dust coagulation as obtained from the semi-analytical
model (Equations 4.35 and 4.36), for an MMSN disk and α = 10−3. Lines indicate different starting
conditions R(t = 0), and are evolved for 106 yrs. Left: Compact growth: φ = 1 at all times,
and vfrag = 10 m s−1. Right: Porous growth: the internal structure of the aggregates is set by hit
and stick growth, followed by collisional compaction or gas and self-gravity compaction. Grey
lines have no erosion, while black lines show the results for veros = 40 m s−1. Colored lines and
}-symbols indicate the evolution and steady state peak mass obtained through local Monte Carlo
simulations (Sect. 4.4.2).

4.6 Discussion

From the maximum sizes fluffy aggregates can reach at a given location, we identify three
zones in the protoplanetary disk:

• 3 − 10 AU: Assuming perfect sticking, the combination of Stokes drag and en-
hanced collisional cross sections allows the porous aggregates in the inner disk to
out-grow the radial drift barrier, and reach planetesimal sizes without experiencing
significant drift. However, when erosion is efficient, mass loss in erosive collisions
stalls the growth around Ωts ∼ 1, preventing the porous aggregates from crossing
the radial drift barrier (Figure 4.11).

• 10 − 100 AU: At intermediate radii growth timescales increase and radial drift takes
over, even before aggregates reach sizes and stopping times that allow erosive col-
lisions to take place.

• >100 AU: In the outer disk, the disk lifetime is not long enough for particles to
grow to sizes where significant drift occurs. In the porous growth scenario, ag-
gregates this far out are in the hit-and-stick regime, and their surface-to-mass ratio
does not change when they gain mass. As a result, hardly any drift is visible. In
the compact case, an increase in mass automatically results in a decrease in the
surface-to-mass ratio, and the onset of radial drift is already visible for very low
particle masses.
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For erosion to start, the collision velocity between target and projectile needs to exceed
veros. In the limit where the projectiles are monomers that couple to the gas extremely
well, this collision velocity equals the relative velocity of the large bodies with respect
to the gas. When the largest particle has Ωts � 1, it moves on a Keplerian orbit, and
vdg ' ηvK , while bodies with Ωts = 1 have a slightly larger velocity with respect to the
gas (Weidenschilling 1977a). For the disk model employed in this work (Sect. 4.2.1), the
quantity ηvK does not depend on R, and thus the maximum drift speed is constant though
out the disk. It is clear then from Eq. 4.33 that growing aggregates in colder disks (lower
cs), or disks with a (locally) shallower gas density profile might suffer less from erosion.

It is clear from Figure 4.11 that the size of veros is an essential parameter: its value,
together with ηvK , determines whether growth beyond Ωts = 1 is possible or not. Unfor-
tunately, the value of veros, or even its relation to vfrag, is not accurately known for the large
and highly-porous icy bodies in question (Sect. 4.2.3). Numerical investigations, showing
conflicting trends for erosion efficiency with mass ratio, often employ monodisperse grain
sizes (e.g., Seizinger et al. 2013; Wada et al. 2013), and the threshold velocities depend
almost linearly on the grain radius (Eq. 4.12), a parameter which itself is not well con-
strained. At the same time, the only available experimental work on erosion for ices used
a distribution of grain sizes (Gundlach & Blum 2015). In addition, both numerical and
experimental studies are restricted to sizes .mm and porosities &10−1, and cover a sober-
ingly small portion of the parameter space encountered in this work (e.g., Figure 4.8).
Future studies, numerical as well as experimental, are encouraged to elucidate these mat-
ters, and constrain the threshold for erosion and its dependence on target/projectile sizes
and porosity. Finally, we assume that material that is eroded locally is removed from the
target. In reality, the fate of the fragments will be determined by the local gas flow and the
velocity with which they are ejected. For very porous targets, the gas flow through and
around the surface of the target might result in these fragments being re-accreted (Wurm
et al. 2004). If efficient, this re-accretion might be a way to alleviate the destructive in-
fluence of erosive collisions. On the other hand, the flow through a body is likely to be
insignificant, unless it is extremely porous (Sekiya & Takeda 2005).

So far we have assumed that while erosion can play an important role, catastrophic
fragmentation does not occur. The maximum velocity between same-sized bodies is
reached for Ωts = 1, and equals ∼(3/2)α1/2cs (Eq. 4.11). Since the sound speed dimin-
ishes for increasing radii, this velocity is highest in the inner disk. For typical turbulence
strengths (α . 10−3) and small icy monomers, this velocity will not exceed the fragmen-
tation threshold velocity (Eq. 4.12), and, especially in the outer disk, fragmentation of
icy bodies through catastrophic fragmentation is very unlikely. However, if all collisions
result in sticking, small particles (.100 µm) are removed from the protoplanetary neb-
ula very rapidly, contradicting observational constraints (Dullemond & Dominik 2005;
Dominik & Dullemond 2008). Drift-induced erosion can alleviate these issues, since the
maximum drift velocity is high throughout the entire disk.

In this work, we have assumed collisions below the fragmentation threshold to result
in perfect sticking, i.e., the mass of the resulting aggregate equals the sum of both col-
liding masses. However, even for collisions below the fragmentation threshold velocity,
a significant amount of mass may be ejected during a collision, especially if the colli-
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sion occurs at a large impact parameter (Paszun & Dominik 2009; Wada et al. 2013). An
advantage of a Monte Carlo model approach like the one presented here, is that it is rela-
tively straightforward to include an additional random number to determine, for example,
the impact parameter. The difficulty lies in obtaining a collision model that describes the
collisional outcome as a function of this parameter. A good start would be the work of
Wada et al. (2013), who show the growth efficiency as a function of impact parameter
(Figure 4). Basically, head-on collisions promote growth, while collisions with a large
impact parameter result in little mass gain. Unfortunately, much less is known about the
porosities of the resulting aggregates.

At the heart of the model of Sect. 4.3 lies the assumption that an aggregate is ade-
quately described by two quantities: its mass and (average) porosity. While this represents
a considerable improvement on the compact coagulation assumption, a single average
porosity does not allow a complex internal structure of the aggregates. For small grains,
the accuracy of this assumption will depend on their collisional history. For example, one
can imagine a porous aggregate with a denser outer shell being formed if the aggregate
is compacted through many collisions with small mass ratios (Meisner et al. 2012). Such
a compact rim will hardly alter the aggregate’s average porosity, but can influence its
sticking and erosion behavior (Schräpler & Blum 2011). Likewise, gas- and self-gravity
compaction need not result in a homogenous internal structure. With instruments such as
CONCERT on board ESA’s Rosetta and Philae capable of probing the internal structure
of large Solar System objects, studies focussing on the internal structure of the larger bod-
ies, as determined by its growth and compaction history would be very interesting. The
Monte Carlo method developed in this paper would be suitable for such studies, since
adding parameters describing the aggregates is relatively straightforward.

4.6.1 Future work and implications

Pebble accretion

A novel idea in the field of planet formation is the process of pebble accretion, where pro-
toplanets grow very efficiently by accreting small pebbles (Ormel & Klahr 2010; Lam-
brechts & Johansen 2012, 2014; Kretke & Levison 2014). These models rely on the
radial influx of particles drifting in from the outer disk. As in the compact case, porous
growth leads to the creation of rapidly drifting bodies in the region between 10 and 102

AU (Figure 4.13). While the Stokes numbers of these particles are similar to the drifting
pebbles in the compact case, their masses, sizes, and porosities can differ by many orders
of magnitude (see also Figure 4.14). In addition, the drag regime that the drifting bod-
ies experience differs from the compact case (Figure 4.1). Future studies are needed to
address the effect of these factors on the efficiency of pebble accretion.

Streaming instability

While – depending on the critical erosion velocity – rapid coagulation into masses as
large as planetesimals might be prevented by erosive collisions, the conditions created
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Figure 4.14: Same as the right-hand plot of Figure 4.13, but with aggregate size on the vertical
axis.

by this process might be favorable for triggering planetesimal formation by streaming
instability (Youdin & Goodman 2005; Johansen et al. 2007; Bai & Stone 2010a,b). To
trigger streaming instability, the majority of mass needs to reside in particles with high
Stokes numbers; the mid plane dust to gas ratio has to be close to unity; and the local
vertically integrated dust-to-gas ratio needs to exceed ∼0.03 (Dra̧żkowska & Dullemond
2014). The first two conditions can be studied with simulations like the ones presented
in this work. For example, for the steady-state distribution reached for veros = 40 m s−1

at 5 AU for α = 10−3, approximately 50% of the dust mass resides in particles with
Ωts > 10−2, and the mid plane dust-to-gas ratio is ∼10−1. For weaker turbulence, the mid
plane dust-to-gas ratio will be increased further, since hd ∼ α

1/2 (Eq. 4.6). Because our
simulations are local, the vertically integrated dust-to-gas ratio stays constant at 10−2. To
fulfill the third condition, the dust-to-gas ratio either has to be larger from the beginning,
or must increase by material drifting in from the outer disk. To study this, a global model
is required, that calculates the evolution of the dust surface density in the presence of
radial drift and erosion. In conclusion, drift-induced erosion appears to be a robust way
of concentrating mass around Ωts ∼ 1, and is expected to create conditions favorable for
streaming instability.

The breakthrough case

For compact silicate bodies in the inner disk, bouncing and fragmentation are very effec-
tive in stopping growth at mm-cm sizes. The breakthrough scenario, in which a small
number of lucky particles still manages to gain mass, might render further growth possi-
ble (Windmark et al. 2012b; Garaud et al. 2013). The total mass fraction of these lucky
particles can be extremely small, making this a challenging process to model for both
differential and Monte Carlo methods (Dra̧żkowska et al. 2014). The distribution method
used in this work, as outlined in Sect. 4.3.3, is capable of resolving the entire mass distri-
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bution, including parts that contribute very little to the total dust mass, and appears to be
suitable for studying the breakthrough case.

Opacities of porous grains

The optical properties of dust distributions resulting from porous growth are very dif-
ferent from populations containing exclusively solid particles. Not only are the mass
distributions themselves different (e.g., Figure 4.13), but also the scattering and absorp-
tion opacities of the individual grains are affected significantly by porosity (Kataoka et al.
2014; Cuzzi et al. 2014). For simple dust mass distributions, the effect of grain porosity
on the appearance of protoplanetary disks has been investigated by Kirchschlager & Wolf
(2014). Combining self-consistent coagulation models - including erosion and fragmen-
tation - with porosity-dependent dust opacities will reveal the full impact porous growth
has on the appearance of protoplanetary disks.

4.7 Conclusions

Porous growth is very different from compact growth (Figure 4.13). For example, porous
particles have larger collisional cross sections than compact particles of the same mass.
More importantly, the aerodynamical properties of porous aggregates can differ greatly
from those of compact particles (Figure 4.1), causing differences in relative velocities
(Figure 4.2), vertical settling, and radial drift.

We have modeled the coagulation of porous icy particles in the outer parts of pro-
toplanetary disks, tracing the evolution of the mass and filling factor of the individual
aggregates in time. We consider compaction through collisions, gas pressure, and self-
gravity (Figure 4.8), and include a physical model for erosive collisions (Sects. 4.2.3 and
4.2.3). The main findings of this work are:

1. Porous icy aggregates can outgrow the radial drift barrier in the inner ∼10 AU, de-
spite increased growth timescales resulting from gas- and self-gravity compaction,
if the perfect sticking assumption holds (Figures 4.7 and 4.13). This is in agreement
with Okuzumi et al. (2012) and Kataoka et al. (2013b).

2. While the maximum collision velocity between similar particles (∼α1/2cs) typically
does not exceed the critical fragmentation threshold velocity for icy bodies, the
velocity between drifting aggregates (with Ωts ≥ 1) and smaller bodies is much
larger (∼ηvK), and can exceed the critical threshold velocity for erosion (Figure
4.2).

3. In these cases, we find that the mass loss through erosive collisions can balance
the growth through same-size collisions, halting the growth of the largest bodies
(Figures 4.10 and 4.11). In our local simulations, this results in a steady-state where
the largest bodies have Ωts ∼ 1, and the porosity of the small fragment distribution
is dominated by the fact that all fragments have at some point been part of these
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large eroded particles (Figures 4.9 and 4.12). Only for the highest erosion threshold
velocity we considered (veros = 60 m s−1) do the aggregates with Ωts ∼ 1 manage
to gain mass and grow through the drift barrier.

4. A simple semi-analytical model (Sect. 4.5) accurately describes the growth and
drift behavior of the mass-dominating bodies. While no information is obtained
about the dust mass distribution, such an approach is very useful for investigating
how the size of the largest bodies depends on disk parameters such as the total disk
mass, turbulence strength, or dust-to-gas ratio; and aggregate properties such as
monomer size and erosion/fragmentation threshold velocities.
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Abstract

The journey from dust particle to planetesimal is a complex one, involving processes acting on
very small scales (the physics governing the sticking and restructuring of porous aggregates) to
the largest scales (the global structure of the turbulent protoplanetary nebula). Considering these
processes simultaneously is essential when studying planetesimal formation. The goal of this work
is to quantify where and when planetesimal formation can occur as the result of porous coagula-
tion of realistic icy grains, and to understand how the process is influenced by the properties of
the protoplanetary disk. We develop a novel, global, semi-analytical model for the evolution of
the mass-dominating dust particles in a turbulent protoplanetary disk, that takes into account the
evolution of the dust surface density, while preserving the essential characteristics of the porous
coagulation process. The method is used to study the conversion of initially microscopic dust into
planetesimals in disks around Sun-like stars. Disk parameters such as mass, size, metallicity, and
temperature are varied to constrain regions where planetesimals can form, either through coagula-
tion, or through inducing streaming instability (SI). For highly-porous ices, unaffected by collisional
fragmentation and erosion, rapid growth to planetesimal sizes is possible in a zone stretching out to
20 AU for massive and dust rich disks. When porous coagulation is limited by erosive collisions,
the formation of planetesimals through direct coagulation is not possible, but the creation of a large
population of aggregates with Stokes numbers close to unity might trigger SI. We find that reaching
conditions necessary for SI is possible in the inner regions of cold disks, or disks with a super-Solar
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metallicity, but only if the turbulence is sufficiently weak. For perfectly sticking ices, planetesimal
formation is a very efficient progress, and, depending on the turbulence strength, a significant frac-
tion of the available dust mass is converted into planetesimals within 106 yrs. If growth is frustrated
by erosive collisions, conditions suitable for SI could be reached for weakly turbulent disks, but the
absence of dust pile-ups in the case of particles coagulating in a smooth nebula limits this possibility
to either dust-rich or very cold disks.

5.1 Introduction

Protoplanetary disks are believed to be the sites of planet formation. In these disks, the
coagulation of microscopic dust particles, already present in the interstellar medium, into
kilometer-size planetesimals constitutes the first - and arguably least understood - step in
the assembly of fully-grown planets (e.g., Testi et al. 2014; Johansen et al. 2014). Ini-
tially, the dust aggregates, held together by surface forces, grow by sticking to each other
in gentle, low-velocity collisions (e.g., Kempf et al. 1999). As a result, aggregates form
very open, porous structures. As the aggregates gain mass and their relative velocities
increase, collisions become more energetic, leading to compaction and ultimately catas-
trophic fragmentation (Dominik & Tielens 1997; Blum & Wurm 2000). A second hurdle
is presented in the form of the radial drift barrier: particles with certain aerodynamic
properties decouple from the gas, and drift radially on short timescales (Whipple 1972;
Weidenschilling 1977a; Brauer et al. 2008b).

In the inner few AU of the protoplanetary disk, dust grains consist mainly of silicates,
and these aggregates bounce of each other in collisions, or even disrupt completely upon
impact, at collision velocities above several m s−1 (Blum & Wurm 2008; Güttler et al.
2010). These collisional processes limit the growth beyond a centimeter or so in the inner
disk (Brauer et al. 2008b; Zsom et al. 2010; Windmark et al. 2012a).

Outside the snow line, located typically at ∼3 AU (Min et al. 2011), water ice becomes
an important constituent of the dust grains. This is beneficial for growth, because aggre-
gates composed of (mostly) ice are capable of sticking at tens of m s−1 (Wada et al. 2009,
2013; Gundlach & Blum 2015). In addition, these icy particles maintain highly-porous
structures (Suyama et al. 2008, 2012), making them less likely to bounce in collisions
(Wada et al. 2011; Seizinger & Kley 2013), and allowing them to out-grow the radial drift
barrier in the inner ∼10 AU of the protoplanetary nebula (Okuzumi et al. 2012; Kataoka
et al. 2013a). However, the growth of these porous aggregates might be frustrated by
high-velocity erosive collisions (Krijt et al. 2015).

Instead of coagulating directly, planetesimals can also be formed through particle con-
centration mechanisms (Johansen et al. 2014, and references thererin). One promising
mechanism is the streaming instability (SI) (Youdin & Goodman 2005; Johansen et al.
2007; Bai & Stone 2010a,b), which can be triggered by creating a dense midplane layer
of (partially) decoupled dust particles. Recently, Dra̧żkowska & Dullemond (2014) have
defined a set of conditions for SI, and compared them to dedicated models of compact
coagulation. They found that in the inner disk, where the growth of silicates is limited by
bouncing/fragmentation, particles can not grow to Stokes number large enough for trig-
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gering SI. Outside the snow-line however, rapidly-growing highly-porous ice aggregates
can grow to large Stokes numbers (Okuzumi et al. 2012), at which point their growth is
possibly limited by erosive collisions (Krijt et al. 2015). The possibility of triggering SI
through rapid porous coagulation has not yet been investigated, but the mass distributions
obtained from erosion-limited porous growth appear very promising (Krijt et al. 2015).

We set out to study the formation of the first generation of planetesimals. Giant planets
have not yet formed, hence the protoplanetary disk is smooth. We neglect possible pres-
ence of pressure bumps, dead zones, etc., and concentrate on the outer regions where ice
dominates the sticking properties. The focus is to understand the evolution of the mass-
dominating particles in disks around Sun-like stars, and understand how their evolution
influences the dust surface density. Ultimately, the goal is to identify regions in both space
and time where the first planetesimals can form, either through direct (porous) coagulation
(e.g., Okuzumi et al. 2012) or through coagulation triggering SI (Dra̧żkowska & Dulle-
mond 2014). In order to answer these questions, we develop a global, semi-analytical,
panoptic model that captures the evolution of the mass-dominating particles as they grow
and drift radially in the protoplanetary disk.

The semi-analytical model is developed in Sect. 5.2. The method allows us to calcu-
late the evolution of global dust surface density together with the masses and porosities of
the growing dust particles, capturing processes such as porous growth, radial drift, bounc-
ing/fragmentation and erosion in a way that is accurate as well as easy to follow. In Sect.
5.3 we use this model to study formation of planetesimals through direct coagulation,
looking at both compact and porous growth. Then, in Sect. 5.4 we study under which
conditions compact and porous growth can lead to conditions suitable for triggering SI.
The results are discussed in Sect. 5.5 and the conclusions are summarized in Sect. 5.6.

5.2 Method

We consider a turbulent disk of gas around a 1M� star, and focus on the region behind
the snow line, where ices are an important part of the solid mass reservoir. The gas disk
model (Sect. 5.2.1) assumes a smooth and static disk, with a mass that we will vary
between 10−3 − 0.2M�. The method we will use for calculating the dust evolution is
based on the semi-analytical model for porous growth of Krijt et al. (2015), which is
combined with a new ‘dust batch approach’ that allows us to probe the evolution of the
mass-dominating particles on a global scale, while preserving the essential characteristic
of all porous growth process.

5.2.1 Nebula model
Following Lynden-Bell & Pringle (1974); Hartmann et al. (1998b), we adopt a truncated
powerlaw for the surface density distribution

Σg = Σ0

(
R
Rc

)−γ
exp

− (
R
Rc

)2−γ . (5.1)
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We will vary the power law exponent between γ = 3/2, appropriate for the Minimum
Mass Solar Nebula (MMSN) (Hayashi 1981); and γ = 1, consistent with observations
(Andrews et al. 2009) and accretion disk theory (e.g. Armitage 2010). Disk masses and
radii will be varied between MD = 10−3M� and 0.2M� and Rc = 30 − 100 AU, consistent
with observational constraints for disks in the Taurus star forming region (Andrews &
Williams 2005; Andrews et al. 2013). We adopt temperature structure appropriate for an
optically thin disk around a solar type star

T = 125
( R
5 AU

)−1/2

K, (5.2)

appropriate for an optically thin disk, and in agreement with observational constraints
(Andrews & Williams 2005). However, to probe the effect of the disk temperature, we
will also consider colder disk models, in which the temperature is reduced by 50% with
respect to Eq. 5.2.

Most other quantities are derived, together with assumptions about the turbulence and
vertical structure, from Eqs. 5.1 and 5.2. The gas sound speed is given by

cs =

√
kBT/mg, (5.3)

with kB the Boltzmann constant and mg = 3.9 × 10−24 g for a mean molecular weight of
2.34. The Kepler frequency equals

Ω =
√

GM�/R3 = 1.8 × 10−8
( R
5 AU

)−3/2

s−1. (5.4)

Assuming an isothermal column, the gas density drops with increasing distance from the
midplane z according to

ρg =
Σg
√

2πhg
exp

−z2

2h2
g

 , (5.5)

with the vertical scale height of the gas hg = cs/Ω. The turbulent viscosity is parametrized
as νturb = αc2

s/Ω following Shakura & Sunyaev (1973).

5.2.2 Dust batch approach
At t = 0, we distribute a number of ‘batches’ of dust at different radii ri in the protoplan-
etary disk. Each batch represents a swarm of dust particles with identical properties and
growth histories. Typically, we will space the batches between 3 and 200 AU. Depending
on the spacing of the batches, and the assumed dust density of the protoplanetary disk, a
batch holds/represents a total dust mass Mi. The individual dust particles represented by a
batch at any given time are assumed to be mono-disperse, and can be described by a par-
ticle mass mi and a particle porosity φi. These four numbers (the total batch mass, batch
location, and dust particle mass and porosity) fully describe the batch at time t. While Mi

is constant in time, the other three properties vary in time. The location of the batch is
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altered by radial drift, while the properties of the dust (so mi and φi) evolve as the result
of coagulation.

Using the locations and total masses of the batches, we define the cumulative dust
mass

MC(R) =
∑

i,ri<R

Mi, (5.6)

which gives the total dust mass within a radius R. Using the cumulative mass, we can
then obtain the dust surface density as

Σd(R) =
1

2πR
dMC(R)

dR
. (5.7)

At t = 0, the ri can be chosen arbitrarily (we will distribute them logarithmically), but
their masses Mi are then fixed through Eqs. 5.6 and 5.7 and the assumed initial dust
distribution. Initially, the dust density is set by the gas density, and Σd/Σg = Z0, with
Z0 ∼ 10−2 the (vertically integrated) ‘metallicity’. The dust is assumed to be in compact
spherical monomers with radii a0 and masses m = m0 = (4/3)πρ0a3

0. Being compact
spheres, monomers have φ = 1. We use ρ0 = 1.4 g cm−3 for icy particles and ρ0 =

2.6 g cm−3 for silicate ones. As the batches evolve in time, dust masses and porosities
change. In the rest of this section, we explain how we obtain ṁi, ṙi and the evolution of
φi.

5.2.3 Radial drift
As batches drift in, the radial density distribution batches changes, triggering a modifica-
tion of the surface density. The radial drift velocity is given by (Weidenschilling 1977a)

ṙi = vdrift = −
2Ωts

1 + (Ωts)2 ηvK, (5.8)

where vK = RΩ is the Keplerian orbital velocity, and η can be written as (Nakagawa et al.
1986)

η ≡ −
1
2

(
cs

vK

)2 ∂ ln(ρgc2
s)

∂ ln R
. (5.9)

The drift timescale is defined as tdrift ≡ (ri/ṙi) and depends on the masses and porosities
of the dust particles through their dimensionless stopping time Ωts (see Appendix 5.A).

To test the treatment of radial drift, we run a model without coagulation. Dust particles
are assumed to be compact micrometer icy spheres, in a disk with α = 10−3. Without
coagulation, ṁi = 0 for all batches, and radial drift alone is responsible for changing the
dust surface density. The results are shown in Fig. 5.1. Since, for a single grain size,
Stokes numbers are largest in the outer part of the disk, particles further out will drift
faster. As a result, the outer disk is slowly depleted of dust and pile-ups are created closer
in. This picture is consistent with Youdin & Chiang (2004) and Birnstiel & Andrews
(2014). The pile-ups are caused by the slowing down of particles as they drift into the
more dense inner disk, and are the result of the assumption of a fixed (maximum) size
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Figure 5.1: Evolution of the dust surface density for the case without coagulation: All dust particles
are assumed to be compact micrometer-size silicate particles at all times. The initial metallicity
equals Z0 = 0.01 throughout the entire disk, and the dotted line shows the surface density of the gas
corresponding to MD = 10−2 M�, γ = 1, and Rc = 30 AU.

of the particles. Below we will see that when grain sizes are limited by aerodynamical
properties, no such pile-ups are created.

5.2.4 Porous coagulation
The model for porous coagulation is based on the semi-analytical model of Krijt et al.
(2015, Sect. 5). Here, we briefly revisited the model, and describe how we take into
account bouncing, fragmentation, and erosive collisions.

Growth timescales and porosity

For a mono-disperse dust population, the growth rate is given by

ṁi =
Σd
√

2πhd
σcolvrel, (5.10)

with hd the dust scale height, σcol the collisional cross section, and vrel the relative velocity
between same-size dust particles. Appendix 5.B describes how the relative velocity is
calculated. The growth timescale is then defined as

tgrow ≡
m
ṁ
. (5.11)

The (relative) dust scale height is given by (Youdin & Lithwick 2007)

hd

hg
=

(
1 +

Ωts

α

1 + 2Ωts

1 + Ωts

)−1/2

. (5.12)
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Figure 5.2: Comparison between semi-analytical model of Sect. 5.2.4 and full Monte Carlo (MC)
model of Krijt et al. (2015) for icy aggregates coagulating locally at 5 AU in an MMSN disk with
α = 10−3. Aggregates start as 0.1-µm monomers, and perfect sticking is assumed. Top: Growth
timescale as a function of particle mass. Bottom: Volumetric filling factor as a function of mass.

The dust scale height depends on the particle Stokes number Ωts, with the stopping time
ts a function of the particle mass and porosity, and the local gas properties. The evolution
of the particle porosity φi is not obtained with a time derivative. Instead, one can think
of the porosity being set by the particle mass: φi = φ(mi). This is particularly true when
the porosity is limited by gas compaction or self-gravity. Earlier in the evolution, the
porosity is influenced predominantly by a dust particle’s collisional history. Appendix
5.C describes the determination of φ(mi) in more detail.

At the heart of the semi-analytical lies the assumption that the local dust population
can be approximated by a mono-disperse grain population, with a single porosity. This
assumption is valid when i) the full mass distribution has a clearly defined peak mass and
porosity; and ii) the growth (and porosity-evolution, if dominated by collisions) of the
peak-mass grains is mainly due to collisions with similar-size particles. These assump-
tions generally hold for populations resulting from porous coagulation (e.g., Ormel et al.
2007; Okuzumi et al. 2012; Krijt et al. 2015). To test assumption ii), we compare the
semi-analytical model the full Monte Carlo model of Krijt et al. (2015). For this compar-
ison, drift is switched off (ṙ = 0), and perfect sticking is assumed. The results are shown
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in Fig. 5.2. The trends in growth rates and internal density evolution obtained in from the
full models are reproduced remarkably well by the semi-analytical model.

Bouncing, fragmentation, and erosion

Bouncing and fragmentation are modeled in the same way: by setting ṁi = 0 whenever
the relative velocity between same-size particles exceeds the fragmentation or bouncing
threshold velocity. Efficient erosion on the other hand, is taken into account by setting
ṁi = 0 when the relative velocity between dissimilar particles exceeds the erosion thresh-
old velocity. Specifically, we calculate the relative velocity between batch particles and
single monomers, and compare that to the erosion threshold velocity.

When further growth is impeded by bouncing, fragmentation, or erosion, we will
assume the dust particle porosity is constant in time as well. In the bouncing case in
particular, this assumption might not be accurate because significant compaction through
bouncing collisions is expected (Güttler et al. 2010; Zsom et al. 2010).

5.2.5 Combining drift and coagulation

Having tested drift and coagulation separately, we can now combine the two. To calcu-
late drift and coagulation self-consistently, one needs to solve Eqs. 5.7, 5.8, and 5.10
simultaneously, while keeping track of the particle porosity in every batch. We do this by
using a global time step ∆t that is determined by the shortest drift- or growth-timescale
present. We make sure ∆t ≤ min(0.5tgrow, 0.05tdrift). In practice, this means one is lim-
ited by the (relatively short) growth timescales in the inner disk, until the dust there has
drifted inside the snow line, cannot coagulate further because of destructive processes
(bouncing/fragmentation or erosion), or has been converted into planetesimals.

Should the particle mass reach mi ≥ mp, we call the particles planetesimals. At this
point, we no longer calculate the evolution of these bodies, but rather treat the planetesi-
mal formation process as finished. In this work, we will use mp = 1016 g, corresponding
to a compact object of ∼ km in size. Once particles become planetesimals, we consider
planetesimal formation to have been successful and set ṁi = ṙi = 0 for that batch. Also,
their masses no longer contribute to Σd, but a separate planetesimal-surface-density Σp

is calculated (a similar way as Σd in Eq. 5.7). Similarly, when a batch drifts inside of
R = Rmin, we stop following it, since we are interested mainly in the region outside of the
snow line. Conservatively, we place Rmin = 1 AU. We use between 102 and 103 batches
per simulation. Using a larger number of batches did not result in significant changes of
the resulting planetesimal populations.

5.3 Planetesimal formation through coagulation

For this section, we focus on the coagulation process and do not take into account effects
of SI. To illustrate the difference between compact and porous growth, we first study the
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5.3. Planetesimal formation through coagulation

coagulation of compact silicates (Sect. 5.3.1), and then discuss porous coagulation of ices
in Sect. 5.3.2.

5.3.1 Compact growth
For compact growth, we start with submicron silicate particles and assume the porosity
of the aggregates is always φ = 1. In addition, we impose a fragmentation threshold
velocity vfrag = 5 m s−1 (Güttler et al. 2010; Wada et al. 2013). We assume a total disk
mass of MD/M� = 10−2, and (initial) metallicity of Z0 = 0.01 throughout the disk1. The
turbulence is constant throughout the disk and parameterized by α = 10−3.

The resulting surface density evolution is shown in the top panel of Fig. 5.3. At t = 0,
the metallicity Z0 = 0.01 throughout the disk, and the dust density follows the gas surface
density (dotted line). After 103 yr not much has changed, as particles have not had enough
time to grow large. After 104 and 105 yr, respectively, dust in the inner ∼10 and ∼30 AU
has grown large enough to drift efficiently, and the inner regions become depleted in dust.
Finally, after 106 yr the entire dust disk is depleted. Since the disk is smooth and cleared
from the ‘inside-out’, no pile-ups are created, contrasting the fixed-size case of Fig. 5.1.

The bottom two panels of 5.3 show the ‘lifelines’ of a selection of dust batches for the
same simulation. Dust particles start as monomers are 0.1 µm, and are evolved for 106

yr, close to the typical lifetime of a protoplanetary disk (Haisch et al. 2001). In Fig. 5.3,
batches move up as their constituent grains gain mass, and to the left as they drift inward.
The background colors show the history of porosities (middle panel) and Stokes number
Ωts (bottom panel). Initially, particles couple well to the gas (Ωts � 10−3) and grow
on relatively short timescales. Growth is faster in the inner disk, because both relative
velocities and dust spatial densities are largest here. In the compact case however, an
increase in particle mass inevitably results in a decrease of the surface-to-mass ratio, and
the Stokes numbers increases. Aggregates with a mass of a few grams have Ωts ∼ 1, and
drift inward rapidly. In addition, the largest particles in the inner ∼20 AU suffer from
fragmentation, which limits their growth. This picture is as expected for compact growth,
and the general trends are in good agreement with full models of compact coagulation
(e.g., Okuzumi et al. 2012; Testi et al. 2014).

An alternative way of looking at the evolution of the dust is presented in Fig. 5.4.
Here, the lifelines of the dust batches are plotted in terms of space and time. Green shaded
regions indicate where 10−3 ≤ Ωts ≤ 1, and the letters denote current locations of Jupiter,
Saturn, Uranus, and Neptune. While the individual lines do not give information about
the masses and porosities of the dust particles making up the batch, it is clear growth is
fastest in the inner disk, since the particles reach Ωts = 10−3 already after 103 yr. In the
outer disk, around 100 AU, growth towards similar Stokes numbers takes almost 106 yr.

5.3.2 Porous growth
Here, we add the porosity evolution as described in Appendix 5.C. Because icy aggregates
have high fragmentation threshold velocities (Dominik & Tielens 1997; Wada et al. 2013),

1A metallicity of Z = 0.01 is referred to as ‘Solar’.
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Figure 5.3: Coagulation of compact silicate particles with a fragmentation velocity of 5 m s−1. The
disk parameters were MD = 10−2 M�, γ = 1, and Rc = 30 AU. Top: Surface density evolution in
time. The dotted line shows the gas surface density (Eq. 5.1), which is assumed to be static in time.
Middle: Evolutionary histories of a selection of dust batches. Particles start out in the bottom of the
plot as submicron-size monomers (m ∼ 10−14 g), and move up as they gain mass, and to the left as
they drift inward. The background color indicates the porosity history of the grains. For compact
coagulation, φ = 1 at all times. Bottom: Similar to the middle panel, but now the colors indicate
particle Stokes number. Bodies with Ωts ∼ 1 drift inward the fastest.

we do not include fragmentation. Recently however, Krijt et al. (2015) argued that erosion
by small particles can be an effective way of halting growth when drift starts to play a
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Figure 5.4: Evolution of dust batches in space and time for the model of Fig. 5.3 (compact growth
with fragmentation at 5 m s−1). Background colors show regions where particle Stokes numbers
10−3 ≤ Ωts ≤ 1.

role. Unfortunately, the threshold velocity above which erosion becomes significant is
not accurately known for the highly-porous ice aggregates in question (see Krijt et al.
2015, Sect. 2.3.2.). Therefore, we will consider both cases: perfect sticking (Sect. 5.3.2),
and effective erosion (Sect. 5.3.2).

Perfect sticking

Initially, we employ the same disk model as in the previous section, but because ice is
added to the available solids, we start from Z0 = 0.02. In Sects. 5.3.2 and 5.3.2, the
effects of various disk parameters (e.g., total mass, size, and temperature) will be studied
as well.

Fig. 5.5 shows the results for porous growth with perfect sticking. The top panel
shows the surface density evolution in the case of porous growth. The solid lines corre-
spond to Σd, and the dashed lines show Σp, the planetesimals. Aggregates in the inner disk
(just outside the snow-line) can grow through the drift barrier, as found by Okuzumi et al.
(2012); Kataoka et al. (2013a); Krijt et al. (2015), causing a pile up of solids around 5 AU,
and a depletion of dust in the region further out. Although Okuzumi et al. (2012) used
a different disk model and did not include gas- and self-gravity-compaction, this general
picture is also obtained in their full global model (Okuzumi et al. 2012, Fig. 6). After 106

years, the entire disk is depleted in dust, and planetesimals have formed in the region just
behind the snow line.

Focussing on the porosity (middle panel), we find that the porosities first decrease
quickly as the result of hit-and-stick growth, and are then roughly constant due to collisional-
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Figure 5.5: Porous growth with perfect sticking, for a disk with MD/M� = 0.01, Z0 = 0.02,
Rc = 30 AU, and γ = 1. Top: the surface densities of the gas (dotted), dust (solid), and planetes-
imals (dashed) are shown. Middle: Aggregates reach filling factors as low as 10−5, before being
compacted by gas ram pressure and collisions. Bottom: In the inner disk, aggregates can out-grow
the radial drift barrier, and form massive, relatively compact, planetesimals with Ωts > 103.

and (mostly) gas-compaction. For bodies with m > 1012 g, self-gravity dominates the
porosity and the filling factor increases to ∼10−1, consistent with Fig. 5.2, Kataoka et al.
(2013a) and Krijt et al. (2015).

The bottom panel of Fig. 5.5 illustrates how aggregates grow through the radial drift
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Figure 5.6: Evolution of dust batches in time for the simulation of Fig. 5.5 (porous growth with
perfect sticking). The •-symbols indicate planetesimal formation through coagulation, and contours
depict the midplane dust-to-gas ratio of particles with high Stokes numbers (see Sect. 5.4). For this
particular disk model, planetesimal can form out to ∼5 AU.

barrier. Initially, aggregates grow through hit-and-stick collisions and their surface-to-
mass ratio hardly changes (cf. Fig. 5.2). As a result, the aggregates’ Stokes number stays
�1 while the mass increases over many orders of magnitude. Only when masses >105 g
do particles start to experience substantial drift. In the inner disk, Ωts = 1 corresponds
to m ∼ 109g (Krijt et al. 2015, Fig. 8). However, we also see particles with masses
107 − 108 drifting to radii <3 AU. These tracks belong to particles that started out in the
outer disk, and spent a lot of time in the early growth phase. By the time they started
to drift and reached the inner disk, the dust surface density was already significantly
decreased, making it difficult for the newly-arrived aggregates to grow since ṁ ∝ Σd (Eq.
5.10). Since planetesimals do not contribute to Σd, they do not influence the evolution of
the drifting dust particles. This assumption is discussed further in Sect. 5.5.

In Fig. 5.6, the results of the porous coagulation model are plotted in a similar way as
Fig. 5.4. The black solid spheres correspond to successful planetesimal formation through
coagulation (i.e., mi ≥ 1016 g). For this particular gas disk model, planetesimals can be
seen to form out to ∼5 AU (cf. Fig. 5.5). In the inner disk, where the aggregates out-grow
the radial drift barrier, the aggregates spend very little time having 10−3 ≤ Ωts ≤ 1. Again,
we see that particles that start out in the outer disk take much longer to start drifting, and
eventually drift through the planetesimal populations after ∼105 yr.
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Total planetesimal mass

By keeping track of the total mass of batches that have been converted into planetesimals,
we obtain the total planetesimal mass as a function of time. Fig. 5.7 plots this mass
Σmpl as a function of time for a grid of models with different disk masses and initial
metallicities. All disks shared α = 10−3 and Rc = 30 AU. Most planetesimals form in the
first 105 yrs, and it is clear that both a higher disk mass, and a higher initial metallicity
lead to a larger total mass of planetesimals. For disk masses between 0.01 and 0.2 M�,
and metallicities between Z0 = 0.01−0.05, between 10 and ∼103M⊕ of planetesimals can
form through porous coagulation. These masses represent a considerable fraction of the
total dust mass that is present in the disk.
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Figure 5.7: Total mass of planetesimals as a function of time for porous growth without erosion.
Different linestyles indicate Z0 = 0.01 (solid); Z0 = 0.02 (dashed); and Z0 = 0.05 (dotted). The
total planetesimal mass increases significantly with disk mass and disk metallicity.

The top panel of Fig. 5.8 shows the same results but normalized to the total available
dust mass Z0MD. All disks considered here convert over 70% of their dust to planetes-
imals within a million years. Dust-rich, massive disks are most efficient, with an effi-
ciency of ∼90% after 106 yrs. The middle and bottom panel of Figure 5.8 show similar
plots for more extended protoplanetary disks (Rc = 100 AU), with α = 10−3 and 10−5,
respectively. An increased physical size of the protoplanetary disk causes a decrease in
the planetesimal-formation efficiency. In addition, a lower turbulence strength leads to
slower growth, and Σmpl/(Z0MD) reaches only 0.2-0.5 within 106 yr, depending on the
disk parameters.
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Figure 5.8: Fraction of total dust mass Z0 MD that has been converted into planetesimals as a func-
tion of time, for different disk models. Top: MMSN-like disk with α = 10−3. Middle: More
extended and shallower disk, also with α = 10−3. Bottom: The same extended disk, but with a
weaker turbulence (α = 10−5). In general, porous growth in combination with perfect sticking is a
very efficient way of turning dust into planetesimals; the efficiency being highest for disks with a
high initial dust content. Weaker turbulence results in slower growth.

Planetesimal formation region

The size of the zone where aggregates can out-grow the radial drift barrier depends on disk
parameters as well. Fig. 5.9 shows how the outer edge of this ‘planetesimal formation
zone’ varies with total disk mass and metallicity for a compact disk (Rc = 30 AU, dotted),
and a more extended disk (Rc = 100 AU, solid).

This dependency on disk mass was also noted by Okuzumi et al. (2012), and results
from both a high dust density, and a lower gas molecule mean free path λmfp; the length of
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the mean free path (together with the aggregate’s size) determines in which drag regime
the aggregates are situated, and has a large impact on the growth timescale (see Sect.
5.A and Okuzumi et al. 2012). An increased metallicity directly results in a larger local
dust density, making it easier for dust particles to outgrow radial drift, also increasing
the size of the planetesimal formation zone. The planetesimal belt is somewhat larger
for compact disks than for extended ones with identical total mass. The reason is that,
for a given total disk mass, a smaller Rc leads to a higher dust surface density at radii
R < Rc, and the higher the local dust surface density, the easier it becomes to outgrow
radial drift. Comparing the distances to the current locations of the planets in our Solar
System, we find that massive disks (MD/M� = 0.2) with a high dust content (Z0 = 0.05)
can form planetesimals as far out as ∼20 AU, or the current location of Uranus. Figure
5.10 shows the impact of varying the slope of the surface density power law γ, and the
disk temperature. An increase in γ has a similar effect as a decrease in Rc: mass becomes
more concentrated in the inner disk, resulting in a smaller planetesimal formation zone.
Cold disks are flatter (smaller hg), and have a lower maximum drift velocity ηvK. The
combined effects of lowering the temperature by a factor 2 with respect to Eq. 5.2 has a
tremendous impact, increasing the outer edge of the planetesimal belt by almost a factor
of 2.

At small radii, the icy particles needed for porous and perfect-sticking growth might
not be present. The snow line, inside of which temperatures are too high to allow for
water ice to be present, typically lies at ∼3 AU, but varies with turbulence strength and
accretion rate (Min et al. 2011). The gray shaded area in Figs. 5.9 and 5.10 indicate the
region within 3 AU. The assumption that dust particles are not destroyed in collisions is
expected to break down in this region. Thus, low-mass disks (MD ∼ 10−3M�) might bot
be able to form planetesimals through direct coagulation. Finally, while we only consider
grain growth by coagulation, growth by water vapor condensation can be an efficient way
of gaining mass close to the snow line (Cuzzi & Zahnle 2004; Ros & Johansen 2013),
locally enhancing the growth rates.

Erosion-limited growth

In the previous section we have assumed perfect sticking for the highly-porous icy ag-
gregates. Now, to mimic the effect of efficient erosion, we set ṁi = 0 whenever the
relative velocity between the dust particles in the batch and monomers exceeds some ero-
sion threshold velocity. The best data on erosion of icy particles comes from Gundlach
& Blum (2015), who measured an erosion threshold velocity of ∼15 m s−1 for aggregates
composed of (sub)micron-size monomers.

Fig. 5.11 shows the results for the same model as Fig. 5.5, but now including an ero-
sion threshold velocity of 20 m s−1. For low Stokes numbers, collision velocities are too
low to cause erosion, and growth proceeds similarly to Fig. 5.5. Then, as aggregates grow
towards Ωts ∼ 1, the collision velocity with small, well-coupled monomers approaches
the maximum drift velocity of ∼ηvK, which is well above 20 m s−1 for this particular disk
model. Erosion, assumed to be efficient, then acts to halt further growth, and prevents
formation of planetesimals through direct coagulation. Since coagulation is fastest in the
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Figure 5.9: Outer edge of planetesimal formation zone as a function of disk mass MD and initial
metallicity Z0, assuming Rc = 100 AU (solid); and Rc = 30 AU (dotted). Letters refer to the
(current) locations of Jupiter, Saturn, Uranus and Neptune. For more massive, and more dust-rich
disks, the planetesimal formation zone extends further out.
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Figure 5.10: The effect of disk temperature and surface density exponent on the size of the plan-
etesimal formation zone, for a fixed metallicity Z0 = 0.02 and Rc = 100 AU. The effect of varying
γ is small compared to the effect of reducing the temperature by 50%.

inner regions of the disk, erosion-limited growth results in an inside-out removal of the
dust (similar to what was found for fragmentation-limited compact growth of Fig. 5.3).
At later times, a sharp drop in Σd can be observed in Fig. 5.11 around R ∼ 5 AU. This
sudden drop in dust surface density is an artifact of the dust batch approach and can occur
when, as a result of drift, the dust population in the dust-depleted region is represented by
a small number of batches (see Sect. 5.5.1).
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Figure 5.11: Porous growth followed by erosion. Dust and disk models are the same as in Fig. 5.5,
but with efficient erosion above drift velocities of 20 m s−1.

5.4 Planetesimal formation through SI

In addition to coagulating directly, planetesimals can also form through streaming insta-
bility (SI) (e.g., Youdin & Goodman 2005; Johansen et al. 2007; Bai & Stone 2010a,b).
In this section, we investigate how coagulation (both compact and porous) can lead to
conditions suitable for triggering SI.
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5.4.1 Conditions for SI
We make use of the work of Dra̧żkowska & Dullemond (2014), who, based on the work of
Johansen et al. (2007, 2009); Bai & Stone (2010a,b) defined three conditions for triggering
SI. For a mono-disperse particle distribution, these conditions are equivalent to:

i) The Stokes number of the mass dominating particles needs to be close to unity;
specifically, 10−2 ≤ Ωts ≤ 1;

ii) The midplane dust-to-gas ratio of these particles needs to exceed, or be close to,
unity;

iii) The vertically integrated metallicity should be a few times Solar;

Lastly, SI needs time to develop and will not be triggered if the growth timescales of the
particles are too short. Thus, we add a final condition:

iv) The growth timescale needs to be longer than the timescale for SI instability to
develop: tgrow > Ω−1.

The first two conditions are related to efficient momentum transfer between dust particles
and the gas. Particles with much higher Stokes numbers do not effectively interact with
the gas, while particles with with much smaller stopping times do not result in strong
clumping. Conditions iii) is related to supressing midplane turbulence. For high metallic-
ities, the strength of this turbulence drops sharply (Bai & Stone 2010a).

We focus on conditions i), ii), and iv), and address iii) in Sect. 5.4.4. Armed with
the semi-analytical model of Sect. 5.2, we can now identify regions in space and time
where these conditions are met. We will look at compact coagulation first, and then turn
to porous coagulation. We define the midplane dust-to-gas ratio of decoupled particles as
(ρ∗d/ρg)z=0, where the asterisk indicates that only particles with 10−2 ≤ Ωts ≤ 1 contribute
to the dust density. For a mono-disperse particle distribution

(ρ∗d/ρg)z=0 =
(Σd/hd)∗

Σg/hg
= Z∗

hg
hd
, (5.13)

where the dust scale height depends on the particle Stokes number through Eq. 5.12.

5.4.2 Compact coagulation
For compact particles, Dra̧żkowska & Dullemond (2014) find that bouncing and fragmen-
tation prevent particles from growing to Ωts > 10−2, making the condition i) of Sect. 5.4.1
hard to fulfill. In our compact model, shown in Fig. 5.4, particles did reach high enough
Stokes numbers; the reason is that we used a (rather optimistic) bouncing/fragmentation
threshold of 5 m s−1, while Dra̧żkowska & Dullemond (2014) used 0.1 m s−1. To test the
influence of the threshold velocity, we ran a model identical to the earlier compact coagu-
lation one, but now assuming a growth barrier for velocities above 1 m s−1; the results are
shown in Fig. 5.12. While there is a large region in the disk where the mass-dominating
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Figure 5.12: Evolution of dust batches assuming compact coagulation with a fragmenta-
tion/bouncing threshold velocity of 1 m s−1. A compact 10−2 M� disk was assumed, with initial
metallicity Z0 = 0.01 and α = 10−3. Compact particles do not reach Ωts > 10−2, and the dust-to-gas
ratio in the midplane never exceeds 10−1.

particles have Ωts > 10−3, the combination of drift and bouncing/fragmentation prevents
particles from growing to Stokes numbers sufficient for SI.

The Stokes number at which particles fragment as a result of turbulence equals (e.g.,
Birnstiel et al. 2009)

(Ωts)max ' α
−1

(
vfrag

cs

)2

, (5.14)

with vfrag the fragmentation velocity. At 5 AU, assuming the temperature structure of Eq.
5.2, this leads to (Ωts)max ∼ 10−3 for vfrag = 1 m s−1 and α = 10−3. For low turbulence
strengths, the relative velocities come from differential drift, resulting in (e.g., Birnstiel
et al. 2012)

(Ωts)max '
vfrag

ηvK
, (5.15)

with ηvK ' 50 m s−1 in an MMSN-disk.

5.4.3 Porous coagulation

For ices, vfrag is much larger, several tens of m s−1 (Dominik & Tielens 1997; Wada et al.
2013), and growth to larger Stokes numbers is possible. Focussing on the perfect sticking
case first, Fig. 5.6 shows that condition i) is fulfilled in a large part of the protoplanetary
disk. In the inner disk however, growth through the drift barrier is so rapid, that aggregates
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5.4. Planetesimal formation through SI

spend very little time having Stokes numbers that are suited for triggering SI (Okuzumi
et al. 2012, Sect. 5.2.2.). As a result, condition iv) is not met in the inner disk.
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Figure 5.13: Dust evolution for porous growth followed by erosion, in a compact 0.01M� disk with
α = 10−3 and Z0 = 0.02 (same model as Fig. 5.11). Times/locations where the mass-dominating
particles have 10−3 ≤ Ωts ≤ 1 have been colored green, and the contours depict (ρ∗d/ρg)z=0 =

{0.1;0.5;1}.
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Figure 5.14: Same as Fig. 5.13, but using α = 10−5 and Z0 = 0.05. The lower turbulence
strength results in slower growth, but allows a higher mass loading in the midplane. Contours
depict (ρ∗d/ρg)z=0 = {0.1;0.5;1}.
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Chapter 5. A panoptic model for planetesimal formation

Porous coagulation followed by drift-induced erosion however, is a robust way of
creating and keeping a large amount of mass in aggregates with Stokes numbers around
unity. This is illustrated in Fig. 5.13. The limiting criterion now becomes condition ii):
a dense midplane layer of solids. From Fig. 5.13 we learn that a turbulence strength of
α = 10−3 at most results in a midplane dust-to-gas ratio of ∼0.1, about a factor of 10
too low. In Fig. 5.14, we have lowered the strength of the turbulence to α = 10−5, and
increased the initial metallicity to Z0 = 0.05. For this extreme case, we see that a region
exists where conditions i), ii), and iv) are all met. The conditions are first met in a region
in the inner disk after a few 103 yr, after which this region moves outward, reaching the
current location of Uranus after 105 yr. In this ‘front’, marked by the red contour, we
would expect SI to occur, and planetesimals to be formed locally.

5.4.4 Midplane turbulence
However, we cannot choose arbitrarily small values for α: the presence of decoupled
particles can lead to Kelvin-Helmholtz instability (KH) and SI, and will give rise to a
turbulence with strength (Takeuchi et al. 2012)

αmp =
[
(C1CeffηZ)−2/3 + (C2Ceffη/Z)−2

]−1
Ωts, (5.16)

where C1 = 1, C2 = 1.6, Ceff = 0.19, η is given by Eq. 5.9, and Ωts < 1 is the Stokes num-
ber of the mass-dominating particles responsible for the instability. For the disk models
used in this work, αKH ' 10−6 and 10−4 in the inner disk for Ωts = 10−2 and 1 respectively
(depending slightly on the metallicity Z), and increases by about a factor of 10 towards
the outer disk. The turbulence strength obtained in Eq. 5.16 can be used as a minimum
value for the turbulence, i.e., α ≥ αmp. Making use of Eq. 5.13, we can then constrain the
maximum midplane dust-to-gas ratio as

Z∗(hg/hd) ∼ Z∗(Ωts/α)1/2 ≤ Z∗(Ωts/αmp)1/2, (5.17)

where we have used that hd/hg ∼ (α/Ωts)1/2 for high Stokes numbers (see Eq. 5.12).
From Eq. 5.16 we find αmp ∝ Ωts, so the dependence on particle Stokes number drops
out of the expression for the maximum midplane mass loading, which is now a function
only of the pressure profile η and metallicity Z∗.

Fig. 5.15 shows the midplane dust-to-gas ratio for different metallicities and disk mod-
els, assuming that the turbulence strength is given by Eq. 5.16 and the mass-dominating
particles have been able to reach 10−2 ≤ Ωts ≤ 1. The figure shows that in order to reach
the required dust-to-gas ratio in the midplane of an MMSN disk (upper panel), despite
the turbulence triggered in the midplane, one needs a local metallicity (of high Stokes-
number particles) of Z∗ = 0.03 in the inner ∼10 AU, and Z∗ = 0.05 in the region out to 80
AU. This indicates that, for a given metallicity, SI is easier to trigger at smaller radii. The
reason can be understood as follows; if αmp is the main source of turbulence, the height
of the dust layer is approximately hg/hd ∼ ηvK/cs ∼ cs/vK ∼ hg/R. In other words, the
relative height of the dust layer scales with the opening angle of the disk. In the MMSN
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disk model, hg/R ∝ R1/4, and disks with γ = 1 are flaring as well. As a result, creating a
dense midplane layer of solids appears easier in the inner disk.

For a more extended disk with a shallower surface density profile (middle panel), the
results are similar, and Z∗ = 0.03 and Z∗ = 0.05 result in (ρ∗d/ρg)z=0 ≤ 1 in the inner
∼20 and 90 AU respectively. Since rapid porous growth followed by erosion results in an
inside-out clearing of the dust in the disk (Fig. 5.11), pile-ups will not occur in the smooth
disks considered in this work, and the only way to reach such high local metallicities
is to start out with a super-Solar Z0. A possible solution might be to lower the disk’s
temperature. The temperature structure used so far (Eq. 5.2) is based on an optically thin
disk. However, (midplane) temperatures in disks might be significantly lower, especially
if the disk is optically thick (e.g., Andrews et al. 2009). In a colder disk η will be smaller,
reducing the strength of the midplane instability, and making it easier to form a dense
midplane layer. The bottom panel of Fig. 5.15 uses Rc = 100 AU, and disk temperature
that is reduced by 50% with respect to Eq. 5.2. In this relatively cold disk, Z∗ = 0.02
could be enough to trigger SI in the inner 10 AU, and Z∗ = 0.03 suffices out to 50 AU
(provided there is no stronger source of turbulence present). However, in colder disks the
maximum drift velocity is lower as well, possibly reducing the efficiency of erosion.

5.5 Discussion

5.5.1 Dust batch approach

The numerical method used in this work (Sect. 5.2.2), in which batches of dust are fol-
lowed as they grow and drift in the protoplanetary nebula, provides an intuitive and flex-
ible way to calculate (local) porous coagulation and the evolution of the global surface
density simultaneously. Growth-limiting collisional processes such as bouncing, erosion
and fragmentation can be incorporated in an straightforward manner. The flexibility and
speed of this approach allow us to calculate a large number of models, and to study the
impact of variations in parameters quickly by exploring a large parameter space while
preserving the essential characteristics of the growth process. The method can readily
be extended to more complicated gas disks. For example, rather than using a static and
smooth Σg(R), the method could be extended to deal with more complex Σg(R, t), based
on simulations of MRI turbulence, zonal flows, and embedded planets (e.g., Raettig et al.
2013; Uribe et al. 2013; Dittrich et al. 2013; Flock et al. 2015).

The method has two main drawbacks. First, it traces only the mass-dominating parti-
cles, and does not provide information about the number distribution for smaller masses.
If the distribution can be assumed to be in growth/fragmentation equilibrium, the com-
plete mass distribution may be reconstructed (e.g., Birnstiel et al. 2011), though this has
not yet been attempted for porous growth, or for a steady state between growth and ero-
sion. Second, in cases where drift is rapid (i.e., high ṙ), the radial distances between
successive batches are increased. Because we use the radial distribution of the batches
to obtain the dust surface density, the determination of Σd(R) becomes less accurate in
regions where few batches are present. A solution could be to simply increase the number
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Figure 5.15: Midplane dust-to-gas ratio assuming the turbulence strength is given by Eq. 5.16, and
the mass-dominating particles have 10−2 ≤ Ωts ≤ 1, for an MMSN-like disk (upper panel), a larger
and shallower disk (middle panel), and a colder disk (bottom panel). Colors correspond to different
metallicities, ranging from 0.5 − 5× Solar. The grey shaded area indicates conditions necessary for
planetesimal formation through SI.

of batches. Alternatively, if one is interested in a particular disk region or epoch, the ini-
tial radial distribution ri could be chosen such to achieve highest numerical resolution in
that region. Because we are mainly interested in the sites where planetesimals can form,
i.e., places where Σd is high, our results are not affected by these issues.

5.5.2 Direct coagulation
In Sect. 5.3, we applied the method to study compact and porous coagulation behind the
snow line. For compact particles, we considered a fragmentation threshold velocity of
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several m s−1, and found that growth beyond a cm in size is always impeded by fragmen-
tation or radial drift (Fig. 5.3). However, there are still possibilities for compact grains
to grow larger. If particles are sufficiently ‘lucky’, and participate only in relatively low-
velocity collisions, they could potentially grow by effectively sweeping up small particles
(Windmark et al. 2012a,b; Garaud et al. 2013; Dra̧żkowska et al. 2014).

For porous icy aggregates however, fragmentation occurs only at very high velocities
(Wada et al. 2013), and these fluffy aggregates can grow through the radial drift barrier.
Rapid growth is harder to achieve in the outer disk, since timescales are longer and dust
and gas spatial densities are lower. As a result, planetesimals form in a zone confined
to the inner ∼10 AU. Figs. 5.9 and 5.10 show how the size of this region depends on
disk mass, temperature, and initial metallicity. Comparing the planetesimal formation
zone to the current locations of the Solar System planets, we find that it is hard to form
planetesimals out to the current location of Neptune. In the Nice model however, the giant
planets of the Solar System were originally located much closer in, roughly between 5 and
17 AU, migrating out at later times (Tsiganis et al. 2005; Morbidelli et al. 2005; Gomes
et al. 2005). At these locations2, direct planetesimal formation through porous growth
can be achieved, albeit only for relatively massive or cold disks. The calculations in Sect.
5.3 indicate the planetesimal surface density is highest near the outer boundary of the
planetesimal zone. One could envision a scenario where enough material accumulates to
trigger the formation of Jupiter early on. At that point, the assumptions in our model break
down and the presence of Jupiter will steer the evolution of the disk and planet formation
therein (e.g., Pollack et al. 1996; Pinilla et al. 2012a; Kobayashi et al. 2012).

The efficiency with which dust is converted into planetesimals can be very high, reach-
ing up to 90% within 106 yr for relatively compact and dust-rich disks (Fig. 5.8). When
the full mass distribution is taken into account, this efficiency will be lowered slightly,
depending on how much mass is present in the low-mass end of the distribution. This pic-
ture of efficient dust-to-planetesimal conversion on a Myr timescale is consistent with the
findings of Najita & Kenyon (2014), who, by comparing masses and locations of detected
exoplanets to measured reservoirs of solids in T Tauri disks, concluded that a large frac-
tion of the available solids has to be either hidden in the inner parts of the protoplanetary
disk, and/or efficiently converted into large objects, avoiding detection.

Lastly, in the semi-analytical model of Sect. 5.2, planetesimals and dust do not interact
with each other: the planetesimals do not contribute to the surface density of Eq. 5.10,
and they do not sweep up drifting dust particles. As a result, aggregates that drift in at
later times can drift through the planetesimal zone unaffected, as observed in Figs. 5.5
and 5.6. These conditions, a belt of planetesimals in the inner disk, and a reservoir of dust
drifting in from the outer disk, are the starting conditions for pebble accretion3 (Ormel &
Klahr 2010; Lambrechts & Johansen 2012, 2014; Kretke & Levison 2014). If efficient,
pebble accretion would result in an even higher planetesimal formation efficiency, since
the mass present in the outer disk (which is substantial for large Rc) will be added to the

2The cores of the terrestrial planets require a different formation mechanism, as their close distances to the
Sun do not allow the presence of sticky ices in their formation zone.

3Although the drifting particles in Fig. 5.6 are much larger and much more porous than the word ‘pebble’
would suggest.
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planetesimals. However, the filtering of dust by planetesimals is not necessary efficient,
depending on the turbulence strength and planetesimal characteristics (Guillot et al. 2014).

5.5.3 Streaming Instability
In Sect. 5.4, we investigated for which disk parameters compact and porous growth might
lead to conditions favorable for triggering SI (Sect. 5.4.1), as defined by Dra̧żkowska &
Dullemond (2014). We found that porous growth followed by erosion (unlike compact
growth followed by bouncing or fragmentation) naturally leads to a population of aggre-
gates with Stokes numbers 10−2 ≤ Ωts ≤ 1 in a large portion of the protoplanetary disk.
The most difficult condition to fulfill is then the creation of a dense midplane layer of
solids. While this is possible for disks with a high metallicity and relatively weak turbu-
lence (Fig. 5.14), the presence of the decoupled dust aggregates will lead to a turbulence
that can be parametrized by Eq. 5.16 (Takeuchi et al. 2012), placing a lower limit on the
local metallicity needed to achieve a dust-to-gas ratio of unity in the midplane. In that
sense, condition iii) of Sect. 5.4.1 is not so much a separate criterion, but can be thought
of as a prerequisite for criterion ii) in the presence of strong midplane turbulence.

For MMSN-like disks, and disks with a shallower profile (Upper and middle panel
of Fig. 5.15), this lower limit is Z∗ ∼ 0.03 in the inner ∼10 AU, and even higher in the
outer disk. Since we only consider smooth disks, and porous growth leads to an inside-
out clearing of the dust, pile-ups (as seen in Fig. 5.1) are not created and the only way to
achieve these desired metallicities is to start from a high initial metallicity Z0. For colder
disks, a metallicity of Z∗ = 0.02 might suffice to create a dense midplane layer inside
of 10 AU. However, in colder disks the maximum drift velocity ηvK is reduced as well,
making the process of erosion less efficient. Without strong erosion, particles readily
grow to larger Stokes numbers in the inner disk, not fulfilling condition iv) of Sect. 5.4.1.

We have employed a vertically isothermal disk, described by a simple temperature
power-law. In reality, the midplane will be colder than the disk upper layers, and its tem-
perature sensitive to the dust opacities (e.g., Min et al. 2011). To fully appreciate the inter-
play between porous growth, erosion, and SI, future models will have to self-consistently
model the full particle mass- and porosity-distribution as it evolves through coagulation
and erosion, while taking into account the feedback of the particles onto the gas. For
example, small grains will influence the local temperature, and the massive, marginally
decoupled grains can trigger Kelvin-Helmholtz instability or SI. In addition, when clump-
ing through SI occurs, the collision velocities inside the clumps can be lowered (e.g., Bai
& Stone 2010a), possibly altering the dominant collisional outcomes.

Observations show clear evidence for small dust grains in relatively old disks (e.g.,
Birnstiel et al. 2009). Thus, any mechanism that is capable of efficiently converting dust
in to planetesimals (be it rapid porous growth, or SI) must not be too efficient, i.e., a
population of small grains has to has to be sustained for over ∼106 yr. In the outer parts
of weakly turbulent disks, fragmenting collisions between similar-size aggregates are not
expected to occur, though some mass loss may occur even in ‘sticking’ collisions (Wada
et al. 2013, Sect. 4.3). In these regions, erosive collisions (i.e., high-speed collisions
between aggregates with a high mass ratio) might be a way to keep a population of small
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grains around; a population that is removed quickly when all collisions result in perfect
sticking (Dullemond & Dominik 2005). To study these issues, models that resolve the
full mass distribution are necessary.

5.5.4 Planetesimal characteristics and further evolution

Focussing on the growth towards planetesimals, we stopped following the planetesimals
when they reached masses of m ≥ 1016 g, and described the planetesimal populations
only in terms of their total mass, without specifying the properties of the individual plan-
etesimals. An interesting question is how the considered formation mechanisms (direct
coagulation and SI) affect the internal structure and composition of the formed planetesi-
mals.

Focussing on the mechanical properties first, we see from Fig. 5.5 that the coagu-
lated planetesimals are fairly compact, φ ∼ 10−1, despite their highly porous history. This
relatively high internal density is the result of self-gravity compaction, not of collisional
compaction (Kataoka et al. 2013b; Krijt et al. 2015). Skorov & Blum (2012) and Blum
et al. (2014) argue that the tensile strengths of planetesimals formed out of direct coag-
ulation of (sub)micron-size icy monomers are too large to explain the activity of comets
at relatively large separations from the Sun, and conclude that a gravitational collapse of
larger, mm-sized particles is more in line with the observed cometary activity. However,
the porous aggregates capable of triggering SI in Sect. 5.4 are much larger and more
porous than mm-sized pebbles, and it is not clear what the mechanical properties would
be of a planetesimal formed out of their collapse. Nonetheless, studying the internal me-
chanical structure of large bodies will certainly lead to a better understanding of their
formation history.

Second, the composition of the planetesimals might well be different for both forma-
tion mechanisms. Fig. 5.6 shows that the planetesimals, even though they form exclu-
sively inside of 5 AU, contain material that was originally located between ∼3 − 60 AU.
As the disk’s temperature and chemical structure shows significant variations at these
(length-)scales, we can expect information about these variations to be locked up in the
planetesimals. The formation of planetesimals through SI should lead to ‘local’ planetesi-
mals; while the zone where SI-conditions are reached in Fig. 5.14 moves outward in time,
it preferentially contains dust batches that originate from very close by.

5.6 Conclusions

We have developed a novel approach for calculating the evolution of the mass-dominating
dust aggregates as they grow and drift in a protoplanetary disk. The dust population
is described by a collection of dust batches, each one containing a mono-disperse dust
population, which can move through the disk as a result of radial drift. The method allows
the calculation of the global evolution of the dust surface density on Myr timescales, while
preserving the essential characteristic of the porous growth process. The method is fast
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and flexible, and can be readily extended to include more complex or time-dependent gas
disk models.

We have used the method the study the formation of the first generation of planetesi-
mals - the one that is capable of forming out of a smooth gaseous nebula - in disks around
Sun-like stars. When fragmentation and erosion are inefficient, planetesimals can form
through porous coagulation in the inner ∼10 AU (Okuzumi et al. 2012). In these cases:

1. Planetesimals form between ∼103 and 105 yr for α = 10−3, and can include material
that originates from very far out in the disk (Fig. 5.6). In more extended disks
(Rc = 100) and disks with a weaker turbulence, the timescales for planetesimal
formation are increased.

2. Planetesimal formation is very efficient, with a large fraction of the initial dust con-
tent of the disk ending up in planetesimals (Figs. 5.7 and 5.8). Relatively compact
and dust-rich disks have the highest planetesimal formation efficiency, converting
up to 90% of their dust into planetesimals within a million years.

3. The extent of the planetesimal formation zone depends on the total disk mass and
metallicity (Fig. 5.9) and the disk temperature structure (Fig. 5.10). Massive disks
(0.2M�) that are dust-rich (Z0 = 0.05) or relatively cold, can form planetesimals
out to 20 AU.

Alternatively, when erosion balances growth around Ωts ∼ 1 (Krijt et al. 2015), further
coagulation is not possible, but conditions necessary for streaming instability (SI) might
be reached. While for compact growth, terminated by bouncing/fragmentation at a colli-
sion velocity of ∼m s−1, maximum Stokes numbers lie below Ωts ∼ 10−2 (Fig. 5.12 and
Dra̧żkowska & Dullemond 2014), we find that:

4. Porous growth limited by drift-induced erosion is an effective way of creating ag-
gregates with 10−2 ≤ Ωts ≤ 1 in a large region of the disk (Figs. 5.13, 5.14 and
Krijt et al. 2015).

5. In a smooth gas disk, the most stringent condition for triggering SI is creating and
maintaining a dense midplane layer of solids. We find both a high initial metallicity
(Z0 = 0.05) and low turbulence strength (α = 10−5) are needed to create such a
layer. In such cases, a dense midplane layer (with a dust-to-gas ratio ≥1) will first
form in the inner disk after several kyr, and then move out in time (Fig. 5.14).

6. When KH and SI give rise to a midplane turbulence given by Eq. 5.16, we can
calculate the local metallicity that is needed to reach a mass loading of unity in the
midplane (Fig. 5.15). We find that for typical disks, a super-Solar metallicity is
needed (Z∗ ≥ 0.03), with the highest midplane density being reached at small radii.
For example, for Z∗ = 0.03, the region where (ρ∗d/ρg)z=0 ≥ 1 extends out to 10 AU.
For colder disks, Z∗ = 0.02 suffices in the inner 10 AU.

7. For a smooth disk profile, rapid porous growth followed by erosion leads to an
inside-out clearing of the dust disk (Fig. 5.11). In such a scenario, no pile-ups are
created, and the only way to reach high metallicities is to start out with them.
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5.A Particle stopping time

The particle stopping time is a function of an aggregate’s mass m and size a, and the
properties of the local gas. Depending on the aggregate size in relation to a gas molecule
mean free path λmap, the stopping time is given by the Epstein or Stokes drag regime
through

ts =


t(Ep)
s =

3m
4ρgvthA

for a <
9
4
λmfp,

t(St)
s =

4a
9λmfp

t(Ep)
s for a >

9
4
λmfp,

(5.18)

with vth =
√

8/πcs the mean thermal velocity of the gas molecules. The mean free
path depends on the gas density and is given by λmfp = mg/(σmolρg), with σmol =

2 × 10−15 cm2 the molecular cross section. For porous aggregates, the cross section A
equals the orientation-averaged projected cross-section Okuzumi et al. (2009).

Eq. 5.18 is valid when the particle Reynolds number Rep = 4avdg/(vthλmfp) < 1,
with vdg the relative velocity between the gas and the dust particle. For the largest bodies
however, this condition is often not met. In these cases, it is useful to write the stopping
time as

ts =
2m

CDρgvdgA
, (5.19)

with CD the drag coefficient. Following Weidenschilling (1977a), we use

CD =


24(Rep)−1 for Rep < 1,

24(Rep)−3/5 for 1 < Rep < 800,

0.44 for 800 < Rep.

(5.20)

For large Reynolds numbers, the stopping time depends the velocity relative to the gas,
and one has to iterate to obtain ts.

5.B Particle relative velocity

The relative velocity between particle 1 and particle 2 is obtained by adding various veloc-
ity sources quadratically. We take into account relative velocities arising from Brownian
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motion, turbulence, radial drift, and azimuthal drift. The Brownian motion relative veloc-
ity is given by

∆vBM =

√
8kBT (m1 + m2)

πm1m2
, (5.21)

and depends only on the particle masses.
The turbulence-induced relative velocity between two particles with stopping times

ts,1 and ts,2 ≤ ts,1 has three regimes (Ormel & Cuzzi 2007)

∆vturb ' δvg ×


Ret

1/4 Ω(ts,1 − ts,2) for ts,1 � tη,

1.4 . . . 1.7
(
Ωts,1

)1/2 for tη � ts,1 � Ω−1,(
1

1 + Ωts,1
+

1
1 + Ωts,2

)1/2

for ts,1 � Ω−1,

(5.22)

where δvg = α1/2cs is the mean random velocity of the largest turbulent eddies, and
tη = Ret

1/2tL is the turn-over time of the smallest eddies. The turbulence Reynolds number
Ret = αc2

s/(Ωνmol), with the molecular viscosity νmol = vthλmfp/2.
The relative velocity from radial drift just equals ∆vr = |vdrift(Ωts,1)− vdrift(Ωts,2)|, with

the drift velocity given by Eq. 5.8. The azimuthal relative velocity is obtained in a similar
way, as ∆vφ = |vφ(Ωts,1) − vφ(Ωts,2)| with

vφ = −
ηvK

1 + (Ωts)2 . (5.23)

Finally, the total relative velocity is given by

vrel =

√
(∆vBM)2 + (∆vturb)2 + (∆vr)2 + (∆vφ)2. (5.24)

The particle stopping times and relative velocities are calculated in the midplane of the
gas disk, as this is where most of the coagulation occurs.

5.C Particle porosity evolution
Initially, particles grow through low-energy hit-and-stick collisions. During this growth
phase, the fractal dimension D f ' 2, and the porosity is given by

φ ' (m/m0)1/2. (5.25)

The fractal growth regime ends when collisions become energetic enough for compaction,
or when gas ram pressure compaction becomes effective. Collisional compaction occurs
when the kinetic energy in a (same-size) collision exceeds the critical rolling energy Eroll
(Dominik & Tielens 1997). Based on experimental investigations (Heim et al. 1999;
Gundlach et al. 2011) and theoretical work (Krijt et al. 2014) we use

Eroll =

(
a0

1 µm

)5/3

×


1.8 × 10−7 erg for ice particles,

8.5 × 10−9 erg for silicate particles.
(5.26)
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If the collisional energy EK exceeds the critical energy for rolling, we make use of Eq.
31 of Okuzumi et al. (2012), which, depending on the turbulent velocity regime, predicts
how the internal density (which is proportional to φ) scales with increasing particle mass.
In practice, collisional compaction results in the porosity staying roughly constant in the
regime where EK > Eroll (Okuzumi et al. 2012).

For low internal densities, Kataoka et al. (2013b) found that the external pressure a
dust aggregate can just withstand equals

Pc =
Eroll

a3
0

φ3. (5.27)

This pressure can then be compared to the pressure arising form the surrounding gas and
from self-gravity (Kataoka et al. 2013a)

Pgas =
vdgm
πa2ts

, Pgrav =
Gm2

πa4 , (5.28)

with G the gravitational constant.
In our semi-analytical model, we start by assuming fractal growth according to Eq.

5.25. At every increase in mass, we check i) if the energy in same-size collisions ex-
ceeds the critical energy for rolling, and ii) whether gas- or self-gravity compaction are
expected. This involves calculating the stopping time, and relative collision velocity as
a function of the current location in the gas disk. If collisional compaction is expected
we make use of Eq. 31 of Okuzumi et al. (2012), and calculate the new porosity from
the previous one. If gas- or self-gravity compaction are important we calculate φ(m) by
setting Eq. 5.27 equal to Eq. 5.28.
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Abstract

A prescription for the fragment size distribution resulting from dust grain collisions is essential
when modelling a range of astrophysical systems, such as debris disks and planetary rings. While
the slope of the fragment size distribution and the size of the largest fragment are well known, the
behaviour of the distribution at the small size end is theoretically and experimentally poorly un-
derstood. This leads debris disk codes to generally assume a limit equal to, or below, the radiation
blow-out size. We use energy conservation to analytically derive a lower boundary of the fragment
size distribution for a range of collider mass ratios. Focussing on collisions between equal-sized
bodies, we apply the method to debris disks. For a given collider mass, the size of the smallest
fragments is found to depend on collision velocity, material parameters, and the size of the largest
fragment. We provide a physically motivated recipe for the calculation of the smallest fragment,
which can be easily implemented in codes for modelling collisional systems. For plausible pa-
rameters, our results are consistent with the observed predominance of grains much larger than the
blow-out size in Fomalhaut’s main belt and in the Herschel cold debris disks.
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6.1 Introduction

Fragmenting collisions are important in a range of astrophysical systems. While the slope
of the fragment size distribution and the size of the largest fragment are well characterized
and can be used confidently in models, the smallest fragment size is less well understood
and is usually assumed to be constant for all collisions. We provide a framework for self-
consistently calculating the smallest fragment size as a function of material and collision
parameters (Sect. 6.2), and discuss its implications for modelling debris disks (Sect. 6.3).

Numerous experimental studies have looked at the fragment size distribution of de-
structive collisions, focussing on the slope of the power law(s), and on the size of the
largest fragment (Davis & Ryan 1990; Ryan et al. 1991; Nakamura & Fujiwara 1991;
Ryan 2000). The smaller end of the size distribution has received considerably less at-
tention; the smallest fragments are hard to count experimentally, and require a very high
resolution to be captured in numerical simulations. Fragment distributions are therefore
incomplete below sizes of 100 µm, or masses below 10−3 g (Fujiwara et al. 1977; Takagi
et al. 1984). Molecular dynamics (e.g., Dominik & Tielens 1997) or smooth particle hy-
drodynamics (Geretshauser et al. 2010) simulations have limited resolution and tend to
focus on the fragmentation threshold velocity rather than the smallest fragments.

6.2 Minimum fragment size in a single collision

We consider collisions below the hypervelocity regime, i.e., the relative velocity of the
colliders is much smaller than their internal sound speed, generally implying vrel . 1 km/s.
Based on experiments, we adopt the standard fragment size distribution

n(s) = C · s−α, (6.1)

with 3 < α < 4, and C a coefficient we express below. While the mass is dominated
by the largest particles, the surface area and thus the surface energy is dominated by
the smallest fragments. As the creation of infinitely small fragments would require an
infinite amount of energy, while the amount of kinetic energy available in a collision is
finite, the power law must stop or flatten at some small fragment size. To the best of
our knowledge, however, the regime of fragment sizes relevant for the analysis below
has not yet been probed by available experimental data nor described theoretically in an
astrophysical context.

Assuming spherical fragments with sizes between smin and smax(� smin), the total
fragment mass and surface area are

Mfrag =
4πρC

3(4 − α)
s4−α

max, Afrag =
4πC
α − 3

s3−α
min . (6.2)

For a collision between two bodies of size s0 and mass M0 = (4π/3)ρs3
0, mass conserva-

tion implies Mfrag = 2M0, and thus
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6.2. Minimum fragment size in a single collision

C = 2(4 − α)s3
0sα−4

max. (6.3)

The pre-collision kinetic energy is simply UK = (1/2)µv2
rel, where µ = M0/2 denotes

the reduced mass. The difference in surface energy before and after the collision equals
∆US = γ(Afrag − 8πs2

0), where γ equals the surface energy per unit surface of the material.
Assuming that only a fraction η of the kinetic energy is used for creating new surface, we
can combine Eqs. 6.2 and 6.3 to obtain a lower limit for the smallest fragment size. For
the specific case of α = 3.5, this reduces to

smin =

 24γs0

ηρs0v
2
rel + 24γ

2

s−1
max, (6.4)

and gives the size of the smallest fragments created in a collision at vrel, assuming α = 3.5
and smax � smin.

Instead of forming a fragment distribution, we imagine the limiting case in which the
kinetic energy just suffices to split both colliders in half1, i.e., ηUK = 2πs2

0γ. Solving for
s0, we obtain

ssplit
0 =

3γ
ηρv2

rel

, (6.5)

which is the smallest particle that can be split in half. The smallest fragment is slightly
smaller, but does not have a rigorously defined radius because we assume spherical parti-
cles. Equation 6.5 is similar to the result of Biermann & Harwit (1980) if η = 1.

The same limit can be explored using Eq. 6.4, by forcing smin ∼ smax ∼ 2−1/3s0. This
results in

smin '
5γ
ηρv2

rel

, (6.6)

which is very similar to Eq. 6.5. To summarise, in an energetic collision in which many
fragments are created, the size of the smallest fragment is given by Eq. 6.4. When the
relative velocity is decreased, the fragment distribution becomes more and more discrete,
until we reach the limit described by Eq. 6.6, in which particles can only just be split into
two.

Figure 6.1 shows the minimum size from Eq. 6.4 as a function of collider size, as-
suming vrel = 20 m/s, η = 10−2, and a maximum fragment that carries half of the initial
collider mass. Gravity is important for bodies larger than 100 m (see below). Smaller
bodies are weaker, and can produce fragments down to the smin indicated by the solid
curve. For example, SiO2 fragments smaller than a micron can, at this velocity, only be
formed by collisions of bodies larger than a few centimeters. The shaded region, top left,
is forbidden, as there Mfrag > 2M0 and mass is not conserved. Close to smin ∼ s0, the solid
curves are non-linear as the pre- and post-collision surface areas become comparable.

1One could imagine splitting only one of the colliders, or indeed chipping off only small parts of one of the
collider bodies. Since less surface area is created, this would still be allowed at very low velocities. However,
in that case the largest fragment is of the same size as s0. We refrain from identifying this as fragmentation, and
use the size derived in Eq. 6.5 as the size below which fragmentation becomes inefficient.
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Figure 6.1: Top: Minimum fragment size smin in a 20 m/s collision (Eq. 6.4) for three materials, as
a function of collider size s0. We have assumed η = 10−2 and smax = 2−1/3 s0. The grey shaded areas
are excluded because of mass conservation (left), and self-gravity (right). The dotted lines indicate
the limit of Eq. 6.6. Bottom: Critical energies versus size for equal-sized collisions. The energy
needed to split a particle (e.g., Eq. 6.6) is shown for η = 10−3 (dotted) and η = 1 (dashed). The
solid curves correspond to catastrophic fragmentation of aggregates (Beitz et al. 2011), and ice and
basalt (Benz & Asphaug 1999), showing both the strength-dominated (small sizes) and self-gravity
dominated regimes (large sizes).

It is interesting to compare Eq. 6.6 with the traditional form of the catastrophic frag-
mentation threshold velocity in equal-sized collisions: v2

f = 8Q∗. The critical energy,
Q∗, has units of erg/g, and varies with particle mass. For small bodies, the strength is
dominated by cohesion, and for large ones by gravity (Benz & Asphaug 1999). For solid
bodies, this transition occurs around 100 meters in size. Values of Q∗ ∼ 107 erg/g are
often taken as typical for asteroids, and experimentally obtained values for small grains
(mm to cm sizes) can be several orders of magnitude smaller (Blum & Münch 1993; Beitz
et al. 2011). Figure 6.1 shows the critical energy for splitting predicted by Eq. 6.6 as a
function of size for the materials in Table 6.1 assuming η = 10−3 and η = 1. The solid
lines indicate critical fragmentation energies for basalt and ice (Benz & Asphaug 1999)
and silicate aggregates (Beitz et al. 2011). The critical fragmentation energies exceed the
splitting energy, indicating that substantially more energy is required to destroy – rather
than split – colliders. The values plotted for ice and basalt were obtained at collision
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Material ρ (g cm−3) γ (J m−2)
Silicate 2.6 0.05
Ice 1.0 0.74
Aggregate ∼10−1 ∼10−4 − 10−3

Table 6.1: Material properties for silicate and ice used in this work. The values for the typical
aggregate are explained in Appendix 6.A.

velocities of 3 km/s, substantially higher than the velocities considered here, and Q∗ is
known to depend on velocity (Leinhardt & Stewart 2012). While such a velocity depen-
dence appears absent in the splitting energy, it might be implicitly included in η. In fact,
η is expected to vary with material and impact energy. We adopt a constant value of
η = 10−2.

Appendix 6.B investigates similar limits for colliders with different mass ratios, and
shows that collisions with a mass ratio close to unity are the most effective at creating
small fragments.

6.3 Application to debris disks
Debris disks are leftovers of planet formation, and are usually described by a birth-ring
of km-sized asteroid-like particles orbiting their parent star, together with a population of
smaller bodies formed in a collisional cascade (for a recent review, see Matthews et al.
2014). A steady-state and scale-independent population of bodies will follow a size dis-
tribution given by a power law with α = 3.5 (Dohnanyi 1969). Some variation in α
has been found in different simulations. Pan & Schlichting (2012) find up to α = 4 for
cohesion-dominated collisional particles, and up to α = 3.26 for gravity-dominated ones.

Models of debris disks most often assume a smallest fragment size equal to the blow-
out size, sblow (Wyatt & Dent 2002; Wyatt et al. 2010), or some constant, but arbitrary,
smin < sblow for all collisions (Thébault et al. 2003; Krivov et al. 2008). The blow-out size
corresponds to particles with β = 1/2, where

β = 1.15Qpr

(
L?
L�

) (
M?

M�

)−1 (
ρ

g cm−3

)−1 (
s
µm

)−1

, (6.7)

is the ratio of the radiation and gravitational force. Particles with β > 1/2 are removed
from the system by radiation pressure. Alternatively, Gáspár et al. (2012) calculate a
collision-dependent smin from mass conservation, but do not study the surface energy.

If, however, for any relevant collision Eq. 6.4 predicts smin > sblow, extrapolating
the fragment size distribution down to these sizes is not justified. For example, starting
from Eq. 2 of Krivov et al. (2008), cm-sized bodies have Q∗ ' 5 × 106 erg/g. In the
Krivov et al. framework, a collision between two such bodies at 70 m/s will then result in
fragmentation, as the kinetic energy ('12 J, assuming ρ = 2.35 g/cm3) slightly exceeds
the critical energy (= 2mQ∗ ' 10 J), and fragments will be created from a size comparable
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to the impactor (Eq. 21 of Krivov et al. 2006) down to the blow-out size. For this particular
collision, Eq. 6.4 yields smin � sblow for η = 0.1 and γ = 0.1 J/m2, but smin ' 6 µm for
η = 10−3. Thus, the difference between our results and the fragment sizes of Krivov et al.
may be substantial, depending on the true value of η. We stress that our theory is valid
for 3 > α > 4, and does not apply to models that use shallower power laws, for example
Sect. 4.2 of Krivov et al. (2013).

The importance of the limit given by Eq. 6.4 depends on the parameters, and can vary
per individual collision, depending on the collision velocity and choice for smax. In the
rest of this section, we explore in which cases this limit is most relevant.

In a debris disk, a particle of size s0 is most likely formed in a collision between
only slightly larger particles. In addition, we focus on collisions between equal-sized
particles, as these are most efficient at forming small fragments (Appendix 6.B). There-
fore, we use Eq. 6.6 as an indication for the lower limit of the particle size distribu-
tion. Quantitative comparisons require relative collision velocities, which for the largest
bodies are often written in terms of the Keplerian orbital velocity at the corresponding
distance from the central object. For bodies on orbits with identical semi-major axes,
the relative velocity can then be written in terms of orbital eccentricity and inclination
as f ≡ vrel/vK = (1.25e2 + i2)1/2, with vK = (GM?/a)1/2 the Keplerian orbital velocity
(Wyatt & Dent 2002). In a debris disk, a range of eccentricities and inclinations will be
present. For a rough comparison, we use average quantities 〈e〉 and 〈i〉 to obtain typical
collision velocities. In reality, 〈e〉 and 〈i〉 are poorly constrained. Estimates range from
〈e〉 ∼ 〈i〉 ∼ 10−3 − 10−1, depending on the level of stirring (Matthews et al. 2014).

The ratio between the smallest grain size from Eq. 6.6 and the blow-out size then
becomes

smin

sblow
= 2.4

( a
5AU

) (L?
L�

)−1 (
f

10−2

)−2 (
η

10−2

)−1 (
γ

0.1 J m−2

)
, (6.8)

where both the stellar mass and the material density drop out, and we assumed Qpr = 1.
Figure 6.2 compares this ratio with observations of debris disks at large radii, where we
predict the most pronounced effect. We have used a fixed γ = 0.1 J m−2, f = 10−2,
and η = 10−2, and the arrows indicate the dependence of smin/sblow on various param-
eters. For the main dust belt around Fomalhaut, Min et al. (2010) found the scattering
properties to be consistent with predominantly ∼100 µm silicate grains (sblow = 13 µm
Acke et al. 2012). The relative velocities in Fomalhaut are typically taken a factor of 10
higher (Wyatt & Dent 2002). For HD105, Donaldson et al. (2012) derived smin = 8.9 µm
(sblow = 0.5 µm) at orbital distances above ∼50 AU. Notably, very large grain sizes of
∼100 µm (sblow . 1 µm) are inferred for the recently discovered “Herschel cold de-
bris disks” (Krivov et al. 2013), which are seen around F, G, and K type stars. Krivov
et al. were not able to model these systems with a collisional cascade reaching down to
smin = 3 µm, and proposed that the large grains in these systems are primordial, unstirred
material. Our calculations suggest that they can also be explained as the outcome of a
collisional cascade. However, the model is highly degenerate, as material properties (η
and γ) and belt properties ( f ) are usually poorly known, and all have a large impact on
smin.
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Figure 6.2: Predicted smin/sblow in debris disks, as a function of disk radius. Arrows indicate
how the ratio changes with stellar luminosity, surface energy, f , and η. Coloured regions indicate
observational constraints on smin/sblow for various systems (see text), and the diagonal solid lines
give our calculations for each system. We fix γ = 0.1 J m−2, f = 10−2, and η = 10−2 for this
comparison.

In Figure 6.2, we assume constant and equal relative velocities for all particles. In
reality, radiation pressure will also increase the eccentricities of small particles with β .
0.5. The enhanced eccentricity can be written as eβ = β/(1 − β). The relative velocity of
such a radiation-influenced particle scales with its size as vrel ∝ β ∝ s−1, while Eq. 6.6
predicts the fragmentation velocity scales as vrel ∝ s−1/2

0 . Hence, the relative velocity
between the smallest particles increases faster than the velocity needed for fragmentation.
As a result, particles can reach arbitrarily small sizes in this regime. Particles smaller than
sblow are then removed on a short timescale. For a more detailed estimation, β should be
evaluated for each particular case, considering the optical properties of the material and
the shape of the stellar spectrum.

A dearth of small grains in weakly stirred disks is also predicted by Thébault & Wu
(2008), but the cause is not a limit on smin. In their scenario, smin is fixed and the produc-
tion rate of the smallest grains decreases with weaker stirring, while the destruction rate
is determined by radiation forces and is unaffected by stirring. While the smallest grains
present are always of blow-out size, their abundance is set by the balance between their
creation and destruction (their Figure 7).

While the theory developed in this work predicts that the smallest particles that can
fragment further can be quite large and sizes just below this will be depleted, some smaller
particles will still be created as a result of erosive collisions, collisions between larger
bodies, and collisions that occur above the average collision velocity. Detailed debris disk
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models implementing the surface energy constraint are needed to determine the resulting
size distribution.

6.4 Discussion

Of the fundamental parameters in our model, the largest uncertainty affects η, the fraction
of kinetic energy used for the creation of new surface. While information may be avail-
able about the kinetic and surface energy of the largest fragments, it is hard to quantify
whether the remainder of the available energy went into surface creation, heat generation,
or kinetic energy of the smallest fragments. Experimentally, studying η is challenging,
since it requires sensitive and complete measurements down to very small sizes. Once the
functional form of η is quantified by laboratory and numerical experiments, observations
of smin in a system of interest may constrain f and thus the local relative velocities.

During the preparation of this manuscript, we discovered that a similarly defined smin
to the one we present has been explored in a more abstract framework, and without elab-
orating on applications, by Bashkirov & Vityazev (1996). We note that the lack of data
on the size distribution of small collision fragments, as well as the fraction of kinetic and
internal energy in the fragments already noted by Bashkirov & Vityazev, still prevails and
we encourage further experiments to quantify these important parameters.

Thus far, we have focussed on equal-sized collisions. While collisions with a larger
mass ratio might not lead to catastrophic fragmentation, cratering and erosion may still be
important, and might be able to form small particles (Appendix 6.B). Assuming a fixed
relative velocity, we focus on a particle of size s1. We define a mass loss rate ṁ(s) for
the larger particle, dependent on collider size s. Assuming a collision with a particle
of size s < s1 erodes a mass ∝ s3, and noting the collision timescale is proportional
to the particle density and collision cross-section, we obtain for the total mass loss rate
Ṁ = ṁ(s) ds ∝ s−3.5s3(s + s1)2 ds. If the collisional cross-section is dominated by s1, we
find Ṁ ∝ s2

1s1/2, and thus the mass loss is dominated by the larger bodies. When s ∼ s1,
we obtain Ṁ ∝ s5/2.

We have adopted a constant value of 50% of the collider mass for the largest fragment.
However, experiments show smax can be substantially smaller as a function of material
and impact velocity (e.g., Davis & Ryan 1990; Ryan et al. 1991). Such results can easily
be implemented in Eq. 6.4 (and Eqs. 6.10 and 6.11) as necessary. Since smin ∝ s−1

max,
smaller sizes for the largest remnant will make the production of small particles even
more difficult.

Other collisional systems where the proposed fragment size limit operates include
planetary rings. Our calculations are consistent with the observed dominant grain sizes in
the rings of Saturn, Jupiter, and Uranus. Because of additional relevant physics, such as
tidal and electromagnetic effects, consistency does not directly imply the dominant grain
size in all these rings is fragmentation-dominated.

The full implications of an energy-limited smin on systems such as debris disks and
planetary rings can only be assessed with models tracking the full particle population
with all relevant processes included. For example, if small particles cannot be destroyed
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in collisions, Poynting-Robertson (PR) drag will influence their orbits, and cause particles
to drift towards the star on timescales of Gyrs in the outer parts of disks (Wyatt 2005; van
Lieshout et al. 2014). Such modelling is outside the scope of the present paper.

6.5 Conclusions
We investigated the energetic constraints on the lower size limit in a distribution of col-
lision fragments. A quantification of the lower limit of such size distributions is relevant
for the modelling of debris disks and other astrophysical systems where collisional frag-
mentation is important.

1. Based on surface energy constraints, we derive a parameterised recipe for the small-
est fragment size in individual grain-grain collisions.

2. The smallest size in a distribution of fragments from a two-particle collision, con-
strained by the collision energy, is given by Eq. 6.4, and illustrated in Figure 6.1.
For example, at 20 m/s, submicron silicate particles can only be effectively pro-
duced by centimeter-sized colliders.

3. In the limit where the colliding bodies are split in half, the fragmentation threshold
velocity is given by Eq. 6.6.

4. While dedicated models are needed to reveal the full implications of the fragment
size limit, Figure 6.2 offers an indication of where the size distribution is expected
to be influenced.

5. In systems where the collision velocities are low, our theory may offer a natural
explanation for a paucity of small grains in debris at large orbital distances, such as
observed in Fomalhaut and the Herschel cold debris disks (Figure 6.2).
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6.A Applicability to aggregates
For porous aggregates, the basic principles explored here are expected to hold, but some
material properties have to be altered. First, aggregates have an internal filling factor
φ = ρagg/ρ that is < 1, and might be as low as 10−4 in some extreme cases (Okuzumi et al.
2012; Kataoka et al. 2013a). Second, the ’effective’ surface energy γagg will be smaller,
since there is only limited contact between the aggregate’s constituents to begin with. As-
suming the parent bodies are built up of spherical monomers, the effective surface energy
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can be estimated as γagg ∼ (a/R)2φ2/3γ, where a and R denote the radius of the contact
area shared by monomers, and the radius of the monomers themselves. The fraction (a/R)
depends on the size of the monomers and the material properties, but for 0.1-micron-sized
monomers, (a/R) ∼ 0.1 is reasonable.

For aggregates, N-body simulations have been performed with particles containing up
to 106 monomers, and values of η range from close to unity (Dominik & Tielens 1997;
Wada et al. 2009), to several orders of magnitude less (Ringl et al. 2012), and depend on
the employed contact model (Seizinger et al. 2013).

6.B Collisions with different mass ratios
Here we extend the theory to collisions between ’targets’ and ’projectiles’ of arbitrary
sizes st > sp. Assuming the fragment distribution can be described as before, we can still
use Eq. 6.2, while the pre-collision kinetic energy now equals

UK =
1
2
µv2

rel =
1
2

mpmt

mp + mt
v2

rel. (6.9)

For a given collision velocity, we might then think of two cases, complete fragmentation
when sp ∼ st, and erosion/cratering when st � sp.

6.B.1 Catastrophic fragmentation
Since both particles are destroyed completely we may set Mfrag = mp + mt. For simplicity
we will assume in this section that the change in surface energy is dominated by the
fragments ∆US = γAfrag. Using the same definition for η as before and focussing on the
α = 3.5 case, we obtain

smin =

6γ(s3
p + s3

t )2

ηρv2
rel(spst)3

2

s−1
max. (6.10)

6.B.2 Erosion
When the mass ratio becomes very large, it is no longer realistic to assume the target is
completely disrupted. Rather, such collisions result in erosion, and the eroded mass is
typically of the order of the mass of the projectile (Schräpler & Blum 2011). Thus, we
write Mfrag = κmp, with κ of the order of unity. For large mass ratios µ → mp. Further-
more, assuming that the change in surface energy is dominated by the new fragments,
∆US = γAfrag, we obtain

smin =

 6γκ
ηρv2

rel

2

s−1
max. (6.11)

Consider now a particle with a size s0 close to the smaller end of the size distribution,
colliding with particle of sizes sx, ranging from slightly smaller to much larger than s0.
Figure 6.3 shows the minimum size of the fragments produced as a function of collider
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Figure 6.3: Minimum fragment size resulting from destructive unequal collisions, assuming smin �

smax, and relating the largest fragment size to the heavier collider. The y-axis has been normalized
with the value for smin in equal-mass collisions.

size sx. The y-axis is normalized to the value obtained in equal-sized collisions (i.e.,
between two s0 particles). For mass ratios below unity, s0 acts as the target, and the mass
of the largest fragment is assumed to equal m0/2. For large mass ratios, s0 acts as a
projectile instead, and the largest fragment mass is set to mx/2. Collisions at mass ratios
above 102 are assumed to be erosive (Seizinger et al. 2013), with the largest fragment
equalling m0/2. Since both the excavated mass, and the largest fragment mass, depend on
the projectile, the curves in the erosive regime do not depend on the mass ratio directly.
However, the size of the target does set an upper limit on κ.
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7
Summary and outlook

The first step in the planet-formation process is the growth, through collision after colli-
sion, of microscopic dust grains into kilometer-size planetesimals. The goal of this thesis
has been to achieve a better understanding of the microphysics that govern the collisional
evolution of dust aggregates, and to understand not only how the physical structure of the
growing aggregate is determined by its collisional history, but also how it influences the
particle’s future within the protoplanetary disk, and its chances of eventually growing into
a planetesimal.

Here, I reiterate the main results of this thesis, and describe promising avenues for
future research.

7.1 Collisions
Collisions are an important theme throughout this thesis: they help us understand the
adhesive contact (Chapter 2); are the main drivers of dust evolution in protoplanetary
disks (Chapters 4 and 5); and they are responsible for the production of small grains in
debris disks (Chapter 6).

To understand and predict the behavior of aggregates in collisions, an intimate knowl-
edge of the physical interaction between their microscopic constituents is required (see
Sect. 1.3). By adding viscoelasticity and plastic deformation to the description of the
adhesive contact, and comparing the theory to a collection of available experiments in
the physics and astronomy literature, we have improved our knowledge of the forces
governing head-on collisions (Chapter 2) and rolling motion (Chapter 3) of microscopic
grains. These new force laws can readily be included in molecular dynamics simulations
of macroscopic dust aggregates, themselves composed of large numbers of microspheres,
to improve the collision model for aggregates.
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Apart from silicates, experiments involving astronomically relevant materials (e.g.,
ices, organics, or mixtures of these materials) are scarce, and cover only a small part of the
parameter space (grain size, aggregate porosity, etc.). Future experiments are necessary,
not only to constrain the underlying physical model of Chapters 2 and 3, but also as a test
for the molecular dynamics simulations of macroscopic aggregates.

7.2 Modeling coagulation

Simulating coagulation in protoplanetary disks is a challenging task, mainly because of
the tremendous variety in particle sizes, collision velocities, and timescales that are in-
volved. In this thesis, two very different numerical methods have been used to model the
dust coagulation, each with their own advantages and disadvantages.

In Chapter 4, we employed a Monte Carlo (MC) technique to study coagulation lo-
cally, in a single vertical column of the protoplanetary disk. The MC method that was
used is based on the distribution method of Ormel & Spaans (2008). The power of this
approach is immediately clear from figures like Fig. 4.4: the method captures the com-
plete mass distribution, even though at later times the smaller grains carry an insignificant
amount of mass. This ability to resolve the full mass range is unique amongst Monte
Carlo methods, and offers many possibilities for future research (see Sect. 4.6). The main
disadvantages are that the model is local (though it treats the vertical direction in an inte-
grated way), and that the simulations can slow down significantly when a steady-state is
reached.

In Chapter 5, the semi-analytical model introduced in Sect. 4.5 is developed further
to include the dust surface density evolution on a global scale. While this approach traces
only the mass-dominating particles, it has the advantage of being very fast and flexible,
while still capturing the essential features of the porous growth and radial drift processes.
In principle, the method developed in Chapter 5 can readily be combined with more com-
plex, time-dependent gas disk models, especially when the feedback of the dust onto the
gas is small or dominated by the mass-dominating particles.

Understanding the aerodynamical properties of particles is very important when mod-
eling their evolution. The coupling with the gas determines the collision velocity, but also
the settling and radial drift behavior of the aggregate. In addition, compaction as a result
of gas ram pressure can be an important mechanism to lower aggregate porosity. At the
moment, the gas drag laws in the Epstein and Stokes regime are based on the assumption
that the particles are compact and spherical (Whipple 1972). Future work is needed to
test how accurate these drag laws are for highly-porous and irregular aggregates.

7.3 Growth barriers and planetesimal formation

The goal of this thesis has been to study how the microphysics influence the growth from
grains to planetesimals, focussing in particular on their impact on several growth barriers
(Sect. 1.2.3). It is clear that the microphysics are extremely important. For example, the
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bouncing barrier disappears when aggregates can grow highly porously (Wada et al. 2011;
Seizinger & Kley 2013). At the same time, the difference in adhesive/elastic properties of
ice versus silicate grains results in a factor of ∼10 increase in the fragmentation threshold
velocity (Dominik & Tielens 1997; Wada et al. 2013). With bouncing and catastrophic
fragmentation less relevant for porous ice aggregates, the major hurdle for growth is then
rapid radial drift.

One possibility to circumvent the drift barrier is to grow very rapidly when Stokes
numbers are around unity (Okuzumi et al. 2012). Such rapid growth is possible in a region
behind the snow line (aggregates must be icy to avoid fragmentation) that can extend out to
20 AU for the most massive and dust-rich disks (Chapter 5). This planetesimal formation
mechanism is an efficient process, and converts a large fraction of the available solid mass
into planetesimals.

However, an important result of this thesis is that growth through the drift barrier
can be frustrated by erosion: mass-loss as the result of high-velocity impacts with small
projectiles (Chapter 4). When this occurs, conditions suitable for triggering streaming
instability might be reached in weakly-turbulent and cold disks. The model of Chapter 5
can be used to pinpoint points in time and space where conditions for SI can be reached.
The next step here would be to model the coagulation inside the formed clumps, while
taking into account the feedback of the dust on the gas motions. Such models are needed
to determine the efficiency of planetesimal formation through SI, and the properties (i.e.,
sizes, masses) of the formed bodies.

Chapter 5 shows two clear pathways to planetesimal formation in the region of the disk
where ices are present: rapid growth through direct coagulation, and formation through
streaming instability (SI). The next step would be to model the further evolution of the
planetesimals formed through direct growth or SI, and compare the characteristics of the
planets that form to the observed exoplanet population. To take this step, effects such
as gravitational focussing, stirring by gas density fluctuations and pebble accretion have
to be included (Johansen et al. 2014). The method developed in Chapter 5 can act as
a starting point for such models, as it gives the locations and total mass of the formed
planetesimals, as well as the radial flux and characteristics of material drifting in as a
function of time.

7.4 Realistic disks and opacities of porous grains

The disk models employed throughout this thesis have been fairly simple, with the gas and
temperature structure being described by power laws and the turbulence parametrized by
a single and constant α. Moreover, the properties of the gas disk were assumed to be static
in time, and were not influenced by the dust population. In reality, disks are more complex
environments, and the properties of the turbulence will vary with location, depending on
the mechanism that is driving it (e.g., Turner et al. 2014). Moreover, the strength of the
turbulence can be influenced by the dust particle properties. For example, the abundance
of small grains influences the ionization degree, important for MRI turbulence, while
the presence of a dense midplane layer of decoupled dust particles can trigger Kelvin-
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Helmholtz or streaming instability. The next generation of models will have to combine
these effects in a self-consistent way.

Lastly, in this thesis we have focussed on the mechanical properties of porous grains
and their ability to grow larger, but perhaps equally important is connecting coagulation
models to observations of protoplanetary disks. The majority of current models for mil-
limeter emission from protoplanetary disks assume compact dust particles, and directly
relate the spectral index at these wavelengths to a dominating dust particle size (e.g., Testi
et al. 2014). However, from the simulations in Chapters 4 and 5 it is evident that aggre-
gates do not resemble compact grains anywhere in the disk. Moreover, studies focussing
on optical properties of porous grains (e.g., Cuzzi et al. 2014; Kataoka et al. 2014), find
that absorption and scattering properties at micrometer-millimeter wavelengths are pro-
foundly affected by particle porosity. To fully appreciate the impact grain porosity has
on the appearance of the dust population in protoplanetary disks, self-consistent porous
coagulation models will have to be combined with porosity-dependent dust opacities. The
models developed in this thesis are an important step in that direction.
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Krivov, A. V., Eiroa, C., Löhne, T., et al. 2013, The Astrophysical Journal, 772, 32
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Thébault, P., Augereau, J. C., & Beust, H. 2003, Astronomy and Astrophysics, 408, 775
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Overal Aardklooten

Aan het einde van de 17e eeuw schreef Christiaan Huygens in zijn Cosmotheoros, zich
richtend tot zijn broer Constantijn:

“Welk een wonderbaarlijke, welk een verbazende grootte en heerlijkheid van
de Wereld moet men dan met het verstand bezeffen! Zoo vele Zonnen, zoo
vele Aardklooten, en een yder van haar met zoo vele Kruiden, Boomen, Die-
ren, met zoo vele Zeen en Bergen vercierd! Een verwondering, die nog zal
vergroot worden, indien iemand in overweging neemt het gene wy van den
afstand en de menigte der Vaste Starren gezegt hebben.”

Meer dan 300 jaar later blijkt de visie van Christiaan Huygens bijzonder accuraat. Mis-
sies naar planeten en manen in ons eigen zonnestelsel resulteren in spectaculaire beelden
van Zeen (niet van water, maar toch) en Bergen, sommige vele malen hoger dan de hoog-
ste bergen op Aarde. Planeten buiten ons zonnestelsel (exoplaneten) zijn vanwege hun
afstand moeilijker te zien en te bestuderen, maar door slim gebruik te maken van gea-
vanceerde telescopen zowel op Aarde als in de ruimte kunnen sterrenkundigen ze toch
ontdekken. Bovendien kunnen we steeds meer zeggen over de eigenschappen van deze
werelden. Sinds de ontdekking van de eerste exoplaneet door Mayor & Queloz in 1995,
zijn er nu 1876 exoplaneten bekend en het aantal groeit vrijwel iedere dag1. Planetenstel-
sels blijken de regel, niet de uitzondering: kies een willekeurige ster aan de (nachtelijke)
hemel en je kunt ervan uitgaan dat er meerdere planeten omheen draaien. Bovendien den-
ken we nu dat om één op de vijf zon-achtige sterren een aard-achtige planeet draait; een
planeet die ongeveer even groot is als de Aarde, op een dusdanige afstand van zijn ster
dat de temperatuur er de aanwezigheid van vloeibaar water toestaat. Als leven elders lijkt
op het leven op Aarde, zijn deze planeten goede plaatsen om te zoeken naar Huygens’
Kruiden, Boomen en Dieren.

1De tussenstand wordt bijgehouden op http://exoplanet.eu.
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De ontdekking dat het in de kosmos wemelt van de planeten brengt een aantal pran-
gende vragen met zich mee: Hoe zijn al deze planeten gevormd en welke processen spelen
een rol bij hun geboorte? Wat bepaalt de grootte van de planeet, zijn dichtheid, en de sa-
menstelling van zijn atmosfeer? Vandaag de dag hebben astronomen een globaal beeld
van ster- en planeetvorming. Dit beeld is opgebouwd uit kennis van ons eigen zonnestel-
sel en waarnemingen van sterren en planeten ver daarbuiten, aangevuld met experimenteel
en theoretisch onderzoek.

Ster- en planeetvorming

De ruimte tussen sterren is gevuld met een dun moleculair gas. Op de meeste plekken in
de kosmos is dit gas extreem ijl, met doorgaans maar een paar atomen per kubieke centi-
meter. Op sommige plaatsen, in zogeheten moleculaire wolken, zijn de dichtheden echter
hoger, met soms wel een miljoen atomen per kubieke centimeter. Sommige moleculaire
wolken worden zo zwaar dat ze ineen storten onder hun eigen zwaartekracht. Wanneer dit
gebeurt, vormt zich een nieuwe (proto)ster, met daaromheen een protoplanetaire schijf.
Deze schijf is een noodzakelijk bijproduct van het stervormingsproces en is typisch zo’n
100 AU groot2. De massa van de schijf is ongeveer 100 maal kleiner dan die van de
jonge ster zelf. Figuur 7.1 laat een opname van de Orionnevel zien, met daarin een aantal
pasgeboren sterren omringd door gas en stof. Uit het gas en stof in deze protoplanetaire
schijven ontstaan planeten. In ons eigen zonnestelsel, nu ongeveer 4.567 miljard jaar oud,
is de protoplanetaire gasschijf allang vervlogen, maar we zien er wel tekenen van terug.
Zo liggen de banen van alle planeten nagenoeg in hetzelfde vlak en draaien de planeten
in dezelfde richting rond de zon.

Protoplanetaire schijven bestaan voor 99% uit gas, voornamelijk waterstof, en voor
1% uit stof: kleine microscopische deeltjes van silicaten, koolstof, ijs, en een aantal an-
dere elementen. Uit dit stof worden de kernen van planeten gevormd. De stofkorrels,
aanvankelijk niet groter dan een micrometer, botsen en plakken aan elkaar, en vormen
zo steeds grotere deeltjes. Pas als de deeltjes een aantal kilometer groot zijn begint hun
zwaartekracht een rol te spelen en wordt hun groei versneld. Deze grote deeltjes noemen
we planetesimalen, de bouwstenen van planeten. De planetesimalen botsen en groeien
verder, totdat er planeetkernen zijn gevormd. Deze kernen hebben een sterke zwaarte-
kracht en zijn hierdoor in staat gas uit de protoplanetaire schijf aan zich te binden; ze
vormen een primitieve atmosfeer. Verreweg de meeste gasschijven worden waargenomen
rond zeer jonge, pasgeboren sterren, niet ouder dan een paar miljoen jaar. De kernen van
gasreuzen zoals Jupiter en Saturnus moeten gevormd zijn toen de schijf rijk aan gas was,
wat ons vertelt dat het proces van planeetvorming hooguit een paar miljoen jaar kan du-
ren. Figuur 7.2 laat zien hoe planeetvorming er uit zou kunnen zien in een protoplanetaire
schijf.

Het bestuderen van de groei van een stofkorrel tot planeet is een uitdagende onder-
neming, bemoeilijkt door het feit dat we het proces niet direct kunnen waarnemen. Daar

2Een AU = 149597871 km is ongeveer de afstand tussen de Aarde en de Zon.
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Figuur 7.1: Jonge sterren met protoplanetaire schijven in de Orionnevel. Zulke opnamen vormen
een direct bewijs voor het bestaan van protoplanetaire schijven. Foto: NASA, ESA, M. Robberto
(Space Telescope Science Institute/ESA), the Hubble Space Telescope Orion Treasury Project Team
and L. Ricci (ESO).

waar we rond jonge sterren wel de kleinste stofkorrels kunnen zien (omdat ze het ster-
licht op een efficiënte manier beı̈nvloeden) en de grootste planeten kunnen waarnemen
(bijvoorbeeld omdat ze voor hun ster langs schuiven), zijn de tussenproducten vrijwel
onzichtbaar. Onderzoek naar deze tussenliggende stappen gebeurt daarom vaak met the-
oretische modellen en computersimulaties.

Van stofkorrel tot planetesimaal

De eerste stap in het bouwen van planeten, die van stofkorrel tot planetesimaal, is mis-
schien wel de minst begrepen stap. Computersimulaties en experimenten in laboratoria
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Figuur 7.2: Artistieke weergave van een protoplanetaire schijf. Kleine stofkorrels zijn samenge-
klonterd tot grotere lichamen en er heeft zich een planeet met een ringsysteem gevormd. Figuur:
David A. Hardy/www.astroart.org.

leren ons dat stofdeeltjes, als ze groter zijn dan ongeveer een centimeter, maar moeizaam
aan elkaar blijven plakken. In de protoplanetaire schijf wordt de onderlinge botsingssnel-
heid tussen deze deeltjes bepaald door interactie met het gas. Deze botsingssnelheden
kunnen oplopen tot enkele tientallen meters per seconde. Als deeltjes willen groeien
moeten ze, zelfs met deze hoge botsingssnelheden, aan elkaar zien te plakken. Een bij-
komend probleem is dat deeltjes van ongeveer een meter last hebben van ‘wind tegen’.
Ze vliegen rond met een snelheid die iets groter is dan die van het gas, en raken energie
kwijt aan de tegenwind die ze daardoor ervaren. Als direct gevolg verliezen de deeltjes
energie en vallen ze vrij snel richting de jonge ster. Hierdoor worden grote delen van de
schijf schoongeveegd en stofvrij gemaakt. Geavanceerde computermodellen die de groei
van grote ensembles deeltjes rond jonge sterren simuleren vinden dan ook dat, als gevolg
van deze problemen, stofdeeltjes erg veel moeite hebben om groter te worden dan een
centimeter of een meter.

En toch zien we overal om ons heen planeten. Kennelijk is de natuur in staat om in
vrijwel elke protoplanetaire schijf, en binnen een paar miljoen jaar, meerdere planeten te
vormen. Het lijkt er dus op dat er iets belangrijks ontbreekt in onze modellen.

Een relatief nieuw idee is het kijken naar de porositeit van groeiende stofdeeltjes.
Voor het gemak werd vaak aangenomen dat stofdeeltjes compact en rond zijn, maar dit is
lang niet altijd een nauwkeurige weergave van de werkelijkheid. Figuur 7.3 laat een com-
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A. Seizinger et al.: Erosion of dust aggregates

Fig. 6. Sample aggregates used in this work. Left: PCA aggregate (nc = 2) with 8⇥104 monomers and a diameter of 100 µm. Center: BAM aggregate
consisting of 1.5 ⇥ 105 monomers with nc = 6 and a diameter of 100 µm. Right: fractal aggregate (nc ⇡ 2) consisting of 6 ⇥ 104 monomers and a
maximum diameter of ⇡280 µm.

experiments is not possible at the present time. Thus, we employ
numerical simulation to address this question.

4.1. Sample generation

The target aggregates used in this work have been generated
by a variety of methods. The aggregates generated by particle-
cluster aggregation and random ballistic deposition are spheri-
cal and homogeneous. In contrast, the fractal aggregates have a
non-spherical shape and are highly inhomogeneous. Examples
of all three types are shown in Fig. 6.

Particle-cluster aggregation (PCA) constitutes an easy way
to generate larger aggregates. The aggregate grows by adding
single monomers from random directions. The monomers stick
at the location where the first contact with the existing aggregate
is established. Thus, the resulting aggregate will be rather flu↵y
with a volume filling factor of � ⇡ 0.19 (see left panel of Fig. 6).
This procedure is similar to random ballistic deposition except
that particles are coming from random directions rather than a
specific side.

The second aggregate type is ballistic aggregation and mi-
gration (BAM) which has been suggested by Shen et al. (2008).
As in the case of PCA monomers approaching from random di-
rections are successively added to the aggregate. However, the
final position of a monomer is determined in such a way that
contact to two or three existing monomers is established at the
same time resulting in more compact aggregates. For a more de-
tailed description of the generation process we refer to Seizinger
& Kley (2013, Sect. 3.2). In this work, we use two-times mi-
gration (BAM2), which means that after migrating once to es-
tablish contact with a second monomer, the migration process
is repeated to get in contact with a third monomer. This proce-
dure generates compact aggregates with a coordination number
nc = 6. An example of such an aggregate is shown in the center
of Fig. 6.

The two aggregate types described above both share the
disadvantage that their structure is somewhat artificial. Thus,
we also use aggregates which have been obtained from a
joint project where two di↵erent numerical techniques have
been combined to simulate the growth of dust aggregates
(Seizinger et al., in prep.). Starting with aggregates consisting
of a single monomer, we followed the evolution of a swarm
of representative aggregates using the approach presented by

Zsom & Dullemond (2008). On the microscopic scale, every
collision between two representative aggregates has been sim-
ulated using molecular dynamics. That way, the changes of the
aggregate structure during the growth process could be resolved
in great detail. The growth of sub-mm sized aggregates is pri-
marily driven by Brownian motion which results in very porous
aggregates (e.g. Kempf et al. 1999). An example is depicted in
the right panel of Fig. 6.

As already mentioned in Sect.1 these aggregates have been
chosen as prototypes reflecting di↵erent stages in the evolution
of dust aggregates. When dealing with dust aggregates of dif-
ferent porosities/structure the following equations may serve as
easily implementable recipes to account for erosion.

4.2. Results

Using the sample aggregates described in Sect. 4.1 we determine
the erosion e�ciency in the following way:

First, a given number of single monomers (from now on re-
ferred to as projectiles) is randomly distributed around the tar-
get in such a way, that their trajectories will hit the target with
an impact parameter b between 0 and 1. The impact parame-
ter is chosen such that the number of impacts per cross section
area are constant. To avoid projectiles interfering with each other
we restrict the total number of incoming projectiles to 20. A
lower number of projectiles is used when increasing their size
in Sect. 4.3. The erosion e�ciency is calculated in the same way
as described in Sect. 3.1.

We perform simulations for impact velocities from 1 ms�1 to
15 ms�1. Note that the velocity range has been chosen to com-
pare our results to the calibration experiments. Even in turbulent
disks impact velocities of 15 ms�1 are quite high for mm-sized
aggregates (e.g. Brauer et al. 2008).

For each velocity, we perform 5 simulations with a di↵erent
initial distribution of the projectiles and average over the results.
As the fractal aggregates have a inhomogeneous density, we use
5 di↵erent aggregates of similar size / structure.

The results are shown in Fig. 7. For low velocities the ero-
sion e�ciency approaches a value of �1 which corresponds to
accretion rather than erosion. For both, the compact BAM2 and
the rather porous PCA aggregate, the transition from accretion to
erosion occurs at an impact velocity of v ⇡ 2 ms�1. As one would
expect we observe a lower erosion e�ciency for the “hardened”
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Fig. 6. Sample aggregates used in this work. Left: PCA aggregate (nc = 2) with 8⇥104 monomers and a diameter of 100 µm. Center: BAM aggregate
consisting of 1.5 ⇥ 105 monomers with nc = 6 and a diameter of 100 µm. Right: fractal aggregate (nc ⇡ 2) consisting of 6 ⇥ 104 monomers and a
maximum diameter of ⇡280 µm.

experiments is not possible at the present time. Thus, we employ
numerical simulation to address this question.

4.1. Sample generation

The target aggregates used in this work have been generated
by a variety of methods. The aggregates generated by particle-
cluster aggregation and random ballistic deposition are spheri-
cal and homogeneous. In contrast, the fractal aggregates have a
non-spherical shape and are highly inhomogeneous. Examples
of all three types are shown in Fig. 6.

Particle-cluster aggregation (PCA) constitutes an easy way
to generate larger aggregates. The aggregate grows by adding
single monomers from random directions. The monomers stick
at the location where the first contact with the existing aggregate
is established. Thus, the resulting aggregate will be rather flu↵y
with a volume filling factor of � ⇡ 0.19 (see left panel of Fig. 6).
This procedure is similar to random ballistic deposition except
that particles are coming from random directions rather than a
specific side.

The second aggregate type is ballistic aggregation and mi-
gration (BAM) which has been suggested by Shen et al. (2008).
As in the case of PCA monomers approaching from random di-
rections are successively added to the aggregate. However, the
final position of a monomer is determined in such a way that
contact to two or three existing monomers is established at the
same time resulting in more compact aggregates. For a more de-
tailed description of the generation process we refer to Seizinger
& Kley (2013, Sect. 3.2). In this work, we use two-times mi-
gration (BAM2), which means that after migrating once to es-
tablish contact with a second monomer, the migration process
is repeated to get in contact with a third monomer. This proce-
dure generates compact aggregates with a coordination number
nc = 6. An example of such an aggregate is shown in the center
of Fig. 6.

The two aggregate types described above both share the
disadvantage that their structure is somewhat artificial. Thus,
we also use aggregates which have been obtained from a
joint project where two di↵erent numerical techniques have
been combined to simulate the growth of dust aggregates
(Seizinger et al., in prep.). Starting with aggregates consisting
of a single monomer, we followed the evolution of a swarm
of representative aggregates using the approach presented by

Zsom & Dullemond (2008). On the microscopic scale, every
collision between two representative aggregates has been sim-
ulated using molecular dynamics. That way, the changes of the
aggregate structure during the growth process could be resolved
in great detail. The growth of sub-mm sized aggregates is pri-
marily driven by Brownian motion which results in very porous
aggregates (e.g. Kempf et al. 1999). An example is depicted in
the right panel of Fig. 6.

As already mentioned in Sect.1 these aggregates have been
chosen as prototypes reflecting di↵erent stages in the evolution
of dust aggregates. When dealing with dust aggregates of dif-
ferent porosities/structure the following equations may serve as
easily implementable recipes to account for erosion.

4.2. Results

Using the sample aggregates described in Sect. 4.1 we determine
the erosion e�ciency in the following way:

First, a given number of single monomers (from now on re-
ferred to as projectiles) is randomly distributed around the tar-
get in such a way, that their trajectories will hit the target with
an impact parameter b between 0 and 1. The impact parame-
ter is chosen such that the number of impacts per cross section
area are constant. To avoid projectiles interfering with each other
we restrict the total number of incoming projectiles to 20. A
lower number of projectiles is used when increasing their size
in Sect. 4.3. The erosion e�ciency is calculated in the same way
as described in Sect. 3.1.

We perform simulations for impact velocities from 1 ms�1 to
15 ms�1. Note that the velocity range has been chosen to com-
pare our results to the calibration experiments. Even in turbulent
disks impact velocities of 15 ms�1 are quite high for mm-sized
aggregates (e.g. Brauer et al. 2008).

For each velocity, we perform 5 simulations with a di↵erent
initial distribution of the projectiles and average over the results.
As the fractal aggregates have a inhomogeneous density, we use
5 di↵erent aggregates of similar size / structure.

The results are shown in Fig. 7. For low velocities the ero-
sion e�ciency approaches a value of �1 which corresponds to
accretion rather than erosion. For both, the compact BAM2 and
the rather porous PCA aggregate, the transition from accretion to
erosion occurs at an impact velocity of v ⇡ 2 ms�1. As one would
expect we observe a lower erosion e�ciency for the “hardened”
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Figuur 7.3: Computermodellen van stofdeeltjes van ∼100 µm groot, opgebouwd uit ongeveer hon-
derdduizend balletjes. Verschillen in het groeiproces kunnen leiden tot heel verschillende structu-
ren: het linker aggregaat is compact en sferisch, het rechter is veel poreuzer en heeft een complexere
structuur. Figuren uit Seizinger et al. (2013).

pact en een poreus stofdeeltje zien die zijn gemaakt in verschillende computersimulaties.
Als stofdeeltjes niet compact zijn maar poreus, met een lage interne dichtheid, heeft dit
serieuze gevolgen voor hun toekomst in de protoplanetaire schijf. Neem als voorbeeld
hagel en sneeuw: allebei gemaakt van water en allebei te vinden in de atmosfeer van de
Aarde. De poreuze structuur van sneeuw maakt dat het heel andere eigenschappen heeft
dan een korrel hagel. Ten eerste is sneeuw plakkeriger (probeer maar eens een sneeuwpop
te maken uit hagelstenen). Ten tweede ondervindt een poreus sneeuwdeeltje een andere
wrijving van het gas om zich heen. Zo komen hagelstenen met een veel hogere snel-
heid uit de hemel vallen dan sneeuwvlokken. Dit heeft alles te maken met het verschil
in luchtweerstand die beide deeltjes ondervinden. In een protoplanetaire schijf gebeurt
iets vergelijkbaars: poreuze deeltjes koppelen beter aan het turbulente gas dan compacte
deeltjes. Dit heeft grote gevolgen voor de botsingssnelheden en voor het probleem van de
tegenwind. Deze effecten samen hebben tot gevolg dat stofkorrels met een hoge porositeit
beter lijken te zijn in het uitgroeien tot planetesimalen.

Dit proefschrift

De porositeit van groeiende stofdeeltjes is dus belangrijk voor de eerste stappen richting
de vorming van nieuwe planeten. Maar wat bepaalt hoe poreus een deeltje daadwerkelijk
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is? En hoe beı̈nvloedt de porositeit de toekomst van het deeltje? Dat zijn de kernvragen
van dit proefschrift.

Hoofdstuk 1 geeft een algemene introductie over ster- en planeetvorming. In de hoofd-
stukken 2 en 3 kijken we naar de krachten die een rol spelen in het contact tussen twee bal-
letjes met een grootte van ongeveer een micrometer. Een goed begrip van deze krachten
is erg belangrijk voor het bestuderen van grotere stofkorrels, die kunnen worden beschre-
ven als verzamelingen van vele miljoenen microscopische balletjes (figuur 7.3). Door
een theoretisch model te ontwikkelen en voorspellingen van dit model te vergelijken met
beschikbare experimentele data over stuiterende (hoofdstuk 2) en rollende (hoofdstuk 3)
balletjes hebben we een beter begrip van de onderliggende fysica verkregen. Deze mo-
dellen wordt nu gebruikt om simulaties tussen grotere stofkorrels realistischer te maken.

In de hoofdstukken 4 en 5 gebruiken we de opgedane kennis om stofgroei te simule-
ren in een protoplanetaire schijf. In hoofdstuk 4 richten we ons op een klein, lokaal stukje
van de schijf, waarbinnen we proberen zo veel mogelijk van de aanwezige stofkorrels te
volgen terwijl hun massa en porositeit evolueert door de vele botsingen. We gebruiken
hiervoor een speciale methode (ontwikkeld door Ormel & Spaans 2008), die ons in staat
stelt enorme aantallen deeltjes te volgen terwijl ze groeien van minder dan een micro-
meter tot meerdere kilometers in doorsnede, een massatoename van meer dan 30 ordes
van grootte! We concluderen dat poreuze en ijzige stofdeeltjes inderdaad erg efficiënt
kunnen groeien, maar dat erosie door kleinere deeltjes hierbij een probleem kan vormen.
Toekomstig onderzoek, met name naar de botsingssnelheid die nodig is voor erosie, moet
uitwijzen of dit proces inderdaad een onoverkomelijk obstakel vormt. In hoofdstuk 5 kij-
ken we alleen naar de stofdeeltjes die de massa domineren, en ontwikkelen we een nieuwe
methode om poreuze stofgroei te simuleren in een volledige schijf. Met het nieuwe model
kunnen we laten zien in welke gebieden van de protoplanetaire schijf succesvolle vorming
van planetesimalen mogelijk is. Bovendien is de methode erg flexibel, waardoor de in-
vloed van verschillende eigenschappen van de schijf (zoals temperatuur, massa, etc.) op
een snelle manier kan worden bestudeerd.

Tot slot kijken we in hoofdstuk 6 naar de deeltjesverdeling in zogeheten puinschijven.
Deze schijven, vaak honderden miljoenen jaren oud, zijn de overblijfselen van protop-
lanetaire schijven, en hebben wel iets weg van de asteroı̈de-gordel in ons zonnestelsel.
Het meeste gas is allang vervlogen, en de schijven bestaan voornamelijk uit oude plane-
tesimalen die continu nieuwe kleine stofkorrels aanmaken in destructieve botsingen. Het
bestuderen van deze puinschijven is interessant omdat de oude planetesimalen informatie
bevatten over hun formatie.

In hoofdstuk 7 worden de belangrijkste resultaten van dit proefschrift samengevat en
worden een aantal interessante mogelijkheden voor vervolgonderzoek besproken.
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