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Abstract. I reconsider my study (Icke 1981) of the hydrodynamic mech-
anism that is responsible for the shape of the Red Rectangle. The density
of this nebula is so high, and the central star(s) so cool, that momentum
driven outflow is almost guaranteed. Focusing of a spherically symmet-
ric stellar wind through an inner shock creates a biconical pattern that
may be responsible for the characteristic X-shape of the outer nebula. I
compute the evolution of periodic biconical outflow. Observations made
available to me by Van Winckel can thus be modeled in great detail. Fea-
tures that I initially thought to be problematic for my interpretation, such
as the occurrence of intersecting shocks on the symmetry axis, turned out
to be present on closer inspection of the Hα image.

1. Bipolar nebulae

In previous investigations of bipolar nebulae, I have concentrated on disk-wind
interactions that are ‘energy driven’. A central star blows a spherical wind into
a toroidal nebula; the wind has such a low density and high speed that the
surrounding (inner) shock generates a very hot, pressure dominated layer that
then drives the outer shock. Because flow in the high pressure region is very
subsonic, inhomogeneities in this layer are mostly smoothed out, so that the
outer shock and the nebular shape are well rounded.

Fig.1 Typical bipolar model in the case γ = 1.1. Red indicates the gas
density, green the pressure, and blue the absolute velocity. The symmetry
axis runs horizontally, the disk plane is the central vertical. Notice the
instabilities that develop in the momentum driven layer, and the formation
of a ‘FLIER’ in the polar caps.

1



2 Vincent Icke

This flow pattern, obtained if the Poisson exponent for adiabatic flow is γ =
5/3, can easily explain the appearance and behaviour of a large class of bipolar
nebulae (Balick 1987; Balick, Icke & Preston 1987). In fact, the shape r(θ, t) of
the outer shock can be found analytically from the equation
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(Icke 1988). Here P is the pressure behind and ρ the gas density ahead of the
shock. If the density distribution can be written as a product of a function K(θ)
of the polar angle θ and the inverse square of the radial distance r, which is
plausible for constant-velocity stellar winds, the solution of this equation is

ρ(r, θ) = r−2K(θ) ; log r = Et−
∫ √

E2K(θ)− 1 dθ + g(E) (2)

with separation constant E. This form allows the easy generation of predicted
shock shapes for a great variety of confining density distributions.

If the flow is strongly compressible, a thick high-pressure smoothing shell
does not develop. This regime is often called ‘momentum driven’. In such
flows the gas still has considerable momentum after passage through the inner
shock, and thereby shapes the outer nebula by direct impact rather than by
a mediating pressure. Strong cooling can provide the requisite compressibility,
and instabilities will certainly occur. In order to allow dimensionless scaling of
the simulations, I have for the moment opted to mimic the high compressibility
by picking a small value of the Poisson constant (usually γ = 1.1). A typical
result is shown in Fig.1. All computations reported here were obtained with my
FCT/LCD hydrocode (Icke 1991) on a rectangular-cylindrical mesh.

2. Shape of the inner shock

In my work on the shaping of bipolar nebulae I noted that the inner (reverse)
shock surrounding disk-constrained outflow sources can take a large variety of
shapes, and that this might lead to focusing effects (Icke 1988). Remarkable
deviations from simple convex shapes can occur, due to the following instability,
which is most clearly seen in movies of the evolving flow. First, the shock takes
the form of a prolate ellipsoid, due to the obstruction of the disk. The oblique
shock conditions produce a faster postshock speed at intermediate latitudes.
This creates an incipient biconical flow. These faster postshock streams produce
inward curving shocks that intersect on the symmetry axis. This, in turn, creates
a high pressure pocket that dints the inner shock at the poles. This deforms
the shock even more, eventually producing a series of secondary shocks that
collide on the axis and make the pressure pocket almost stagnant. Around this
self-created obstruction, the biconical flow streams outward (Fig.2).

3. Biconical flow

In previous work, I studied the possibility that biconical flow is driven by a ring
of high surface brightness in an accretion disk (Icke 1981). While this mechanism
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might work in some sources, new observations (Van Winckel 2002) rule it out in
the case of the Red Rectangle. In these images, it is clearly seen that the RR
flow is intermittent, which is difficult to produce in a steady accretion disk.

Fig.2 Snapshot from a spherically symmetric outflow that impinges on a
thin hyperboloidal disk. Red indicates the gas density, green the pressure,
and blue the absolute velocity. Symmetry axis is the central vertical, the
equatorial plane is at the bottom. The dark blue intermittent plumes that
extend beyond the strongly aspherical shock front form a cone that remains
supersonic, due to the Hugoniot jump across an extremely oblique shock.
The green triangular structure pointing downward is a stagnation pocket
caused by shocks colliding on the axis.

Accordingly, I tried to see what happens as a consequence of focusing by the in-
ner shock. In many simulations this inner shape is seen to vary in a quasi-regular
way, thereby modulating the biconical outflow. Because my current hydro meth-
ods do not allow me to resolve the inner and the outer regions simultaneously, I
assumed periodic biconical inflow as an inner boundary condition, and studied
its consequences for the evolution of the outer nebula.

4. The Red Rectangle

The density of the Red Rectangle is so high, and the central star(s) so cool,
that radiative losses will be considerable, and highly compressible (momentum
driven) outflow is almost guaranteed. Focusing of the primary gas through
the inner shock may create a biconical outflow pattern that can produce the
characteristic X-shape of the outer nebula.

Observations made available to me by Van Winckel can thus be modeled in
great detail. Computational experiments show that a specific set of features is
common to a wide range of compressible biconical flows. Key features are (Fig.3):
(1) cup-shaped density ridges close to the central source, which become ragged
rings at higher altitude; (2) the recurving bow shocks ahead of the gaseous rings
that are shot upwards from the centre; (3) intersecting shocks on the symmetry
axis, forming Mach stems (‘X-shocks’); (4) the gradual widening of the effective
cone opening angle at higher altitudes, due to the outward pressure behind
these shocks. One feature that I initially thought to be problematic for my



4 Vincent Icke

interpretation, namely the occurrence of X-shocks on the axis, turned out to be
present on closer inspection of an Hα image sent by Van Winckel.

Fig.3 Logarithmic snapshot from a typical Red Rectangle model. Red in-
dicates the gas density, green the pressure, and blue the absolute velocity.
The symmetry axis is horizontal, the disk plane is the central vertical. Grid
size is 300 × 500. Poisson index γ = 1.1. Disk: initial density 5, pressure
1. Conical outflow: opening angle 25◦, density 30, pressure 1, Mach number
35, duration on-state 0.02, off-state 0.02. Atmosphere: density 1, pressure
1 (dimensionless units).

I have constructed a sequence of projections of the density and of velocity
channel maps for comparison with observations, but lack of space prevents their
presentation here. Full colour-coded versions of the flow patterns will be kept
as long as disk space permits on www.strw.LeidenUniv.nl/~icke/, from which
they can be downloaded. QuickTime movies of some of my simulations can be
obtained on request from icke@strw.LeidenUniv.nl .
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