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ABSTRACT

Aims. Approximately 20% of all spiral galaxies display starburst activity in nuclear rings of a few hundred parsecs in diameter. It
is our main aim to investigate how the starburst ignites and propagates within the ring, leading to the formation of massive stellar
clusters.
Methods. We observed the ring galaxy NGC 7552 with the mid-infrared (MIR) instrument VISIR at an angular resolution of 0.′′3–0.′′4
and with the near-infrared (NIR) integral-field spectrograph SINFONI on the VLT, and complement these observations with data
from ISO and Spitzer.
Results. The starburst ring is clearly detected at MIR wavelengths at the location of the dust-extincted, dark ring seen in HST obser-
vations. This “ring”, however, is a rather complex annular region of more than 100 parsec width. We find a large fraction of diffuse
[Ne ii] and PAH emission in the central region that is not associated with the MIR peaks on spatial scales of ∼30 pc. We do not
detect MIR emission from the nucleus of NGC 7552, which is very prominent at optical and NIR continuum wavelengths. However,
we have identified nine unresolved MIR peaks within the ring. The average extinction of these peaks is AV = 7.4 and their total
infrared luminosity is LIR = 2.1 × 1010 L�. The properties of these peaks are typical for MIR-selected massive clusters found in other
galaxies. The ages of the MIR-selected clusters are in the range of 5.9 ± 0.3 Myr. The age spread among the clusters of 0.8 Myr is
small compared to the travel time of ∼5.6 Myr for half an orbit within the starburst ring. We find no strong evidence for a scenario
where the continuous inflow of gas leads to the ongoing formation of massive clusters at the contact points between galactic bar and
starburst ring. Instead, it appears more likely that the gas density build up more gradually over larger ring segments, and that the local
physical conditions govern cluster formation. We note that the fundamental limitation on the accurate derivation of cluster age, mass
and initial mass function slope is the lack of higher angular resolution. Resolving the highly embedded, massive clusters requires
milli-arcsecond resolution at infrared wavelengths, which will be provided by the next generation of instruments on extremely large
telescopes (ELTs).

Key words. ISM: kinematics and dynamics – HII regions – galaxies: nuclei – galaxies: starburst – galaxies: star clusters: general –
infrared: ISM

1. Introduction

Massive star formation in galaxies occurs in various appearances
and modes, from localised H II regions and blue compact dwarf
galaxies to luminous starbursts in ultra-luminous infrared galax-
ies (ULIRGs) and sub-millimeter galaxies. One particularly in-
teresting starburst mode shows a ring-like morphology around
the galactic nucleus (e.g., Sarzi et al. 2007; Böker et al. 2008;
Mazzuca et al. 2008). These systems are not uncommon – in
approximately 20% of all spiral galaxies star-formation occurs
primarily in these rings of typically a few hundred parsecs
in diameter (Knapen 2005). These large structures of intense
star formation are primarily found in barred spiral galaxies of
types Sa-Sbc. In fact, bars are expected to account for about
3.5 times more triggered central star formation than galaxy inter-
actions (Ellison et al. 2011). Strong magnetic fields (105 μG in

� SINFONI data cubes are only available at the CDS via anonymous
ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A61

the ring of NGC 7552, Beck 2011) are likely to create magnetic
stress that causes inflow of gas toward the center.

The key question is under what conditions the large amounts
of gas and dust, necessary to form the massive young star
clusters, accumulate and concentrate in these ring-like struc-
tures. Unfortunately, the situation is not clear, partially due to the
lack of high resolution observations at longer wavelengths and
partially due to the complexity of the dynamics of gas and dust,
and hence several scenarios have been discussed in the literature.

According to Shlosman et al. (1990), the torque from the
large-scale bar weakens near its centre where the influence of
the bulge begins to dominate the disk potential. The gas con-
centrates in ring-like resonances where the gas is free of grav-
itational torques. In contrast, Kenney et al. (1993) explain the
rings as a consequence of a previous nuclear starburst which has
used up the gas in the centre, leaving the nuclear ring as a rem-
nant. Recently, Väisänen et al. (2012) reported on an outward
propagating ring of star formation in NGC 1614 resulting from
a relatively major merger event.
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Fig. 1. Colour composite of NGC 7552 made from images provided
by the SINGS team (Kennicutt et al. 2003) in H-α (blue), and the B
and I bands (green and red, respectively), taken on the CTIO 1.5 m
telescope. North is up and east to the left. A scale bar indicating angular
and absolute distances is also shown.

Arguably the most common explanation is that the gas ac-
cumulates during the inflow around the radii at which the stel-
lar orbits experience dynamical resonances with the rotating bar
potential (e.g., Binney & Tremaine 2008). In the central region
this typically happens at the so-called inner Lindblad resonance
(ILR), arising from the interplay between the bar and the stellar
orbits (e.g., Telesco et al. 1993; Buta & Combes 1996; Böker
et al. 2008). The gas is trapped between an inner ILR and an
outer ILR. If the potential allows only one ILR, the gas will
concentrate directly at the ILR, if the system has two ILRs, the
gas will accumulate at the inner ILR – (see review by Buta &
Combes 1996, for more details).

However, more recently Regan & Teuben (2003) claimed
that the common assumption that nuclear rings are related to
an ILR is incorrect, and showed in simulations that there is no
resonance at the inner Lindblad resonance in barred galaxies.
They argue that confusion has developed between the orbit fam-
ily transition that occurs at these radii in weak bars and a true
resonance. Furthermore, Regan & Teuben (2003) found that the
radius of nuclear rings decreases with time, either because the
rings accumulate lower specific angular momentum gas or be-
cause of dissipation at the contact point of the bar dust lane and
the nuclear ring.

Obviously, observations may be able to provide further in-
sights. A very good example of a starburst ring galaxy is
NGC 7552, a nearly face-on, barred spiral galaxy at an in-
clination of ∼28◦ (Feinstein et al. 1990). Originally classi-
fied as amorphous (Sérsic & Pastoriza 1965) it appears in the
RC3 catalogue (de Vaucouleurs et al. 1991) as morphological
type SB(s)ab and in the RSA catalogue (Sandage & Tammann
1981) as type SBbc(s). Both designations indicate a barred spi-
ral (SB) galaxy with spiral arms that spring from the ends of a
bar (s), and an outer ring (R’). Figure 1 shows a 3-color image
of NGC 7552 to illustrate the global morphology and the relevant
scales. Throughout this paper we assume a distance of 19.5 Mpc
(Tully & Fisher 1988); at this distance, 1′′ corresponds to 95 pc.

NGC 7552 has been previously classified as a LINER galaxy,
based on the [O I]λ6300 line (Durret & Bergeron 1988). Neither
X-ray (Liu & Bregman 2005) nor NIR observations (Forbes et al.
1994a) did reveal significant activity from a galactic nucleus. In
fact, models of gas flow in barred galaxies (Piner et al. 1995)

have shown that the gas flow, necessary to fuel an active galactic
nucleus, can be interrupted by a nuclear ring. The global spec-
tral energy distribution (SED), from UV to radio, is well char-
acterised (e.g., Dale et al. 2007). From the IRAS colours of the
entire galaxy, Sanders et al. (2003) estimated a total infrared lu-
minosity of 8.5 × 1010 L� (adjusted for the assumed distance).

Several previous studies (e.g., Feinstein et al. 1990; Forbes
et al. 1994b; Schinnerer et al. 1997; Siebenmorgen et al. 2004;
van der Werf et al. 2006) provided strong evidence for a starburst
ring in the centre of NGC 7552 (Sect. 3.1). While the macro-
scopic picture of how these rings form seems well established,
the morphology of the central region and the microscopic pic-
ture of how, when and where the starburst ignites and propagates
are rather uncertain and require more and better observational
constraints. It is the main aim of this paper to investigate these
details.

MIR observations provide excellent diagnostics to detect
embedded clusters1 (e.g. Gorjian et al. 2001; Beck et al. 2002;
Vacca et al. 2002) and quantify massive star formation (e.g.
Genzel & Cesarsky 2000; Peeters et al. 2004). Previous stud-
ies of NGC 7552 at MIR wavelengths have been severly lim-
ited in spatial resolution, with angular resolutions of 0.8′′−1′′
(Schinnerer et al. 1997; Siebenmorgen et al. 2004) and ∼4′′
(Dale et al. 2007). The availability of the VLT Spectrometer and
Imager for the Mid-Infrared (VISIR) at the ESO VLT, makes it
possible to study galaxies in the N band (8–13 μm) at an angular
resolution of 0.′′3 under excellent seeing conditions2.

In this paper we complement our mid-IR data with
NIR images at similar angular resolution. The latter data were
taken with SINFONI, a NIR integral-field spectrograph at the
ESO VLT. Combining near- and mid-IR photometry will provide
essential information on both, the stellar sources that provide
most of the energy output, and their dusty, re-radiating environ-
ment. The observations presented here, with their unprecedented
high angular resolution, will allow us to study the morphology
of the starburst ring, the distribution and properties of its star
clusters, and their formation history.

This paper is structured as follows. Section 2 describes the
observations and data reduction. Section 3 presents the photo-
metric and spectroscopic results, and Sect. 4 provides a detailed
discussion of our results. Finally, Sect. 5 summarises our main
conclusions.

2. Observations and data reduction

2.1. VISIR

2.1.1. Imaging

The imaging data were acquired with the VLT Imager and
Spectrograph for the mid-IR (VISIR, Lagage et al. 2004; Pantin
et al. 2005), mounted at the Cassegrain focus of the VLT Unit
Telescope 3, Melipal. The data were obtained in period of March
2005 to January 2006 in nine different filters. Table 1 lists the
relevant filters, their central wavelengths and spectral widths.
A cross-comparison with the spectro-photometry (Sect. 2.1.2)
shows overall very good agreement in eight narrow and broad-
band filters, but with the exception of the SIV_1 filter, in which
the measured flux density appears to be about 60% too high (see
Fig. 4). However, the 9.73–9.91 μm SIV_1 filter has intrinsically

1 Throughout this paper we use the physical term “cluster” and the
observable “MIR peak” as synonyms. Whether or not this is correct
will be discussed in Sect. 4.6.
2 A seeing of 0.′′3 at 10 μm corresponds to 0.′′55 optical seeing. 0.′′3 is
also the diffraction-limited resolution of an 8 m telescope at 10 μm.
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Table 1. Spectral properties and the measured flux densities in units of mJy through the nine used VISIR filters.

Filter SIC PAH1 ArIII SIV_1 SIV SIV_2 NeII_1 NeII NeII_2
λc [μm] 11.85 8.59 8.99 9.82 10.49 10.77 12.27 12.80 13.03
Δλ [μm] 2.34 0.49 0.14 0.18 0.16 0.19 0.18 0.21 0.22
M1 116 ± 13 67 ± 10 80 ± 11 119 ± 14 72 ± 13 119 ± 14 184 ± 14 282 ± 18 200 ± 15
M2 90 ± 12 51 ± 9 41 ± 9 54 ± 12 22 ± 10 66 ± 12 111 ± 11 198 ± 15 132 ± 12
M3 41 ± 10 <50 <59 <78 <78 <76 49 ± 9 111 ± 12 62 ± 9
M4 44 ± 10 <50 <59 <78 <78 <76 47 ± 8 115 ± 13 53 ± 9
M5 <61 <50 <59 <78 <78 <76 <44 54 ± 10 31 ± 7
M6 <61 <50 <59 <78 <78 <76 40 ± 8 63 ± 10 34 ± 8
M7 70 ± 11 83 ± 11 42 ± 9 <78 <78 <76 90 ± 11 141 ± 14 110 ± 11
M8 <61 <50 <59 <78 <78 <76 28 ± 7 60 ± 10 38 ± 8
M9 41 ± 10 <50 <59 <78 <78 <76 41 ± 8 78 ± 11 48 ± 8
ΣMi 402 ± 66 201 ± 30 163 ± 29 173 ± 26 94 ± 23 185 ± 26 590 ± 76 1102 ± 113 708 ± 87
Ring 2023 ± 81 1336 ± 65 583 ± 59 1114 ± 79 a 1262 ± 80 2326 ± 76 3700 ± 94 2435 ± 76
σ 37 30 27 47 47 46 27 35 27

Notes. In addition to the individual MIR peaks M1 through M9 we list their summed contribution (ΣMi), the integrated fluxes within an annulus
of 1.′′5≤ r ≤ 4′′, and the image background noise (σ in units of mJy arcsec−2). Upper limits are defined as three times the image noise within a
circle of 0.′′7 in diameter. (a) It was not possible to perform aperture photometry because of insufficient signal-to-noise.

very low transmission, resulting in a four times lower nominal
sensitivity with respect to comparable VISIR filters3, and was
thus not included in the analysis.

The data were acquired in service mode queued observa-
tions under stable weather conditions with an optical seeing
of ≤0.′′8 and an air mass ≤1.5. We selected the pixel scale of
0.′′127 pixel−1, which provides a total FOV of 32.′′3 × 32.′′3. The
observations were performed using the standard chopping and
nodding technique, which removes the time-variable sky back-
ground, telescope thermal emission and most of the so-called
1/ f noise. We used a chopper throw of 30′′. All observations
were bracketed by photometric standard star observations. We
note that the chopping/nodding technique, while effectively re-
ducing the background, may also eliminate any large-scale dif-
fuse nebular emission from the region. VISIR imaging, how-
ever, recovers nearly 50% of the total [Ne ii] line flux measured
by Spitzer (Table 3) and hence we do not consider chop-
ping/nodding to introduce a significant source of systematic
photometric errors.

The final images are the result of shifting and combining
the individual chopping cycles and were obtained using the
VISIR pipeline (version 1.3.7). Practically all of the final im-
ages showed some stripes due to high-gain pixels. We removed
these stripes using the reduction routine destripe (Snijders, pri-
vate communication), which is written in IDL. The conversion
from counts to physical flux units was derived from the photo-
metric standards HD 216032 and HD 218670. The angular reso-
lution varies between 0.′′3 and 0.′′4, very close to the diffraction
limit of VLT at 10 μm.

Figure 2 illustrates the image quality of the resulting maps in
the continuum subtracted [Ne ii][12.8 μm] line, the 8.6 μm fea-
ture of polycyclic aromatic hydrocarbons (PAHs) and the MIR
continuum. Although the PAH map suffers from fixed pattern
noise, the [Ne ii] and continuum maps illustrate the significant
improvement in comparison to previous mid-IR observations
(e.g., Schinnerer et al. 1997, Fig. 4).

The starburst ring and several individual knots are clearly
visible in the 12.8 μm filter image in Fig. 3a. We have identified
nine unresolved peaks, which we label M1 to M9. The positions
of these peaks are listed in Table 2. For each VISIR filter, the

3 http://www.eso.org/sci/facilities/paranal/
instruments/visir/inst/

Fig. 2. Left: continuum subtracted [Ne ii][12.8 μm] line image. Center:
8.6 μm PAH image Right: 12 μm continuum images taken in the SiC
filter. The PAH image suffers from fixed pattern noise, but shows one
bright peak, M7. All three images are displayed in linear intensity scal-
ing; north is up and east is to the left. The bar indicates a scale of 2′′
or 190 pc.

Table 2. Absolute and relative coordinates of the MIR peaks with re-
spect to the radio nucleus (Nuc) from Forbes et al. (1994b).

Source α (J2000) δ (J2000) Δα(′′) Δδ(′′)
Nuc 23h16m10.s71 −42 deg 35′04.′′4 +0.0 +0.0
M1 23h16m10.s74 −42 deg 35′01.′′6 +0.3 +2.8
M2 23h16m10.s67 −42 deg 35′01.′′8 −0.4 +2.6
M3 23h16m10.s57 −42 deg 35′02.′′6 −1.6 +1.8
M4 23h16m10.s56 −42 deg 35′01.′′8 −1.7 +2.6
M5 23h16m10.s48 −42 deg 35′02.′′3 −2.6 +2.1
M6 23h16m10.s49 −42 deg 35′06.′′1 −2.5 −1.7
M7 23h16m10.s85 −42 deg 35′06.′′7 +1.6 −2.3
M8 23h16m10.s94 −42 deg 35′04.′′8 +2.5 −0.4
M9 23h16m10.s84 −42 deg 35′03.′′4 +1.5 +1.0

fluxes of each knot were measured performing aperture photom-
etry within circular apertures with a diameter of 0.′′7, about twice
the resolution limit. The photometric fluxes are all tabulated in
Table 1. M1 and M2 are the brightest knots, clearly detected
in all the VISIR filters. The quoted uncertainties are those de-
rived from the aperture photometry. The summed contribution of
all the individual knots (ΣMi) and the total photometry obtained
within an 3′′–8′′ annulus that covers the starburst ring (Sect. 3.1)
are also listed.

The [Ne ii] 12.8 μm line emission of the individual clus-
ters has been estimated from the “NeII_1”, “NeII” and “NeII_2”
narrow-band filters. We interpolated the continuum level at the
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Fig. 3. a) Upper left: VISIR image taken in the 12.8 μm filter. The 1 − σ RMS is approximately 0.57 mJy pixel−1. The plus signs indicate the
locations of the MIR peaks M1 through M9, discussed in this paper. b) Upper right: K-band continuum image of NGC 7552, composed from the
reconstructed SINFONI data cube. c) Lower left: reconstructed and continuum subtracted SINFONI Pa-β image. d) Lower right: reconstructed
and continuum subtracted SINFONI Br-γ image. All four figures indicate the image scale in arcseconds (1′′ corresponds to 95 pc) with respect to
the radio continuum center (see Table 2 and Sect. 2.4).

central wavelength of the “NeII” filter (12.8 μm) from the
“NeII_1” and “NeII_2” filters. The resulting [Ne ii] line fluxes
are listed in Table 3.

Similarly, we have obtained approximate measurements of
the 8.6 μm emission feature of PAHs. The three most luminous
peaks in the “PAH_1” filter are the mid-IR sources M1, M2
and M7. Here we have only used the “ArIII” filter to measure
the continuum level and assumed a flat continuum in Fν. The re-
sults are listed in Table 5. With only one data point to constrain
the baseline image the fluxes are more uncertain and should be
compared to spectroscopic measurements, where available.

2.1.2. Spectroscopy

A low-resolution spectrum at N-band was obtained of the bright-
est peak M1 on June 16th, 2005. The slit with a width of 0.′′75
was centred on M1 and oriented along PA =−10◦. The spectral
resolution is R ≈ 185−390. Four spectral settings (λcentre = 8.8,
9.8, 11.4, and 12.4 μm), overlapping by at least by 15%, were
used to cover the full N-band. The total on-source integration
time was 30 min for each spectroscopic setting. Since the images
show no large-scale diffuse emission, chopping and nodding
on-slit were applied with a 12′′ chopper throw. The early-type
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Table 3. Physical properties of the clusters M1–M9 derived from 0.′′7 apertures centered on the mid-IR peaks.

Source Paβ Brγ (Brγ)corr EW(Brγ) [Ne ii] 12 μm cont. AV NLyc NO7V LIR Age
(10−23 W cm−2) (Å) (10−21 W cm−2) (mJy) (mag) (1051 s−1) (×103) (109 L�) (Myr)

M1 27.1 ± 4.1 12.4 ± 1.9 23.5 ± 4.9 65.5 ± 3.3 25 ± 9 184 ± 14 8.1 7.8 ± 1.6 1.4 ± 0.3 6.0 5.6
M2 22.1 ± 3.3 9.6 ± 1.4 17.6 ± 3.7 45.8 ± 2.3 21 ± 7 111 ± 11 7.6 5.8 ± 1.2 1.0 ± 0.2 4.0 5.8
M3 15.1 ± 2.3 7.7 ± 1.2 15.4 ± 3.2 42.0 ± 2.1 15 ± 5 49 ± 9 9.0 5.1 ± 1.1 0.9 ± 0.2 1.9 5.9
M4 22.4 ± 3.4 9.8 ± 1.5 17.9 ± 3.8 74.5 ± 3.7 18 ± 5 47 ± 8 7.7 5.9 ± 1.2 1.1 ± 0.2 1.6 5.5
M5 10.3 ± 1.5 4.4 ± 0.7 7.9 ± 1.7 43.9 ± 2.2 7 ± 4 < 44 7.5 2.6 ± 0.5 0.5 ± 0.1 0.9 5.8
M6 11.3 ± 1.7 4.6 ± 0.7 8.2 ± 1.7 15.4 ± 0.8 8 ± 5 40 ± 8 7.1 2.7 ± 0.6 0.5 ± 0.1 1.0 6.3
M7 17.7 ± 2.7 7.9 ± 1.2 14.7 ± 3.1 20.4 ± 1.0 11 ± 6 90 ± 11 7.9 4.9 ± 1.0 0.9 ± 0.2 3.3 6.2
M8 13.3 ± 2.0 4.5 ± 0.7 7.0 ± 1.5 15.5 ± 0.8 7 ± 5 28 ± 7 5.6 2.3 ± 0.5 0.4 ± 0.1 1.1 6.3
M9 12.1 ± 1.8 3.9 ± 0.6 5.8 ± 1.2 16.8 ± 0.8 9 ± 5 41 ± 8 5.2 1.9 ± 0.4 0.3 ± 0.1 1.4 6.3
ΣMi 151.4 ± 22.7 64.8 ± 9.7 118.0 ± 24.8 121 ± 17 590 ± 76 7.4 39.1 ± 8.2 7.0 ± 1.5 21.3 5.9 ± 0.3
Ring 2020.8 ± 303.1 654.8 ± 98.2 1002.0 ± 210.4 382 ± 20 2326 ± 76 5.3

Notes. Are given: Paβ, Brγ (both measured and extinction corrected), equivalent widths of Brγ, and the [Ne ii] line, and 12 μm continuum
(NeII_1 filter) fluxes. The derived values of extinction AV , number of Lyman-continuum photons NLyc, the equivalent number of O7V stars, the
total infrared luminosity, and the approximate cluster ages are also listed. For a discussion of the quoted uncertainties see Sect. 2.

Fig. 4. Left: the mid-IR SED of the total integrated flux within the 1.′′5 ≤ r ≤ 4′′ ring (black solid line) and the sum of our nine peaks ΣMi (black
dashed line). The integrated flux of the entire galaxy as measured through the SiC filter (Table 1) is indicated by the diamond. The filled circles
show the IRAC photometry using a 12.′′2 aperture. The filled square is the 12 μm IRAS flux taken from Gil de Paz et al. (2007). The spectra
from ISOPHOT (blue line) and Spitzer-IRS (red line) were taken through apertures of size 24′′ × 24′′ and 27′′ × 43′′, respectively. Right: the
VISIR low-resolution N band spectrum of peak M1 (black line) in comparison to the Spitzer-IRS spectrum (red line). The latter covers the central
27′′ × 43′′ of NGC 7552 and was normalised to the former at 10 μm (scaled down by a factor of 13). In both spectra, the [Ne ii] fine-structure
line at 12.8 μm is clearly present but the strength of the PAH 11.3 μm band differs significantly. In addition, the blue crosses indicate the VISIR
narrowband photometry of M1 and the black diamond corresponds to the broadband SiC filter measurement.

A0 stars HIP 109268 and HIP 113963 were observed before
and after each target observation for spectro-photometric flux
calibration.

We reduced the data with the VISIR pipeline, which includes
subtracting the chopped/nodded pairs, correcting for optical dis-
tortion, wavelength calibration and extracting the spectra from
a 1.′′27 aperture in the spatial direction. Absolute flux calibra-
tion was obtained by integrating the standard star spectra over
the VISIR filter bands and normalising their fluxes to the ones of
the photometric standards. The accuracy of the flux calibration is
approximately 20%. The resulting spectrum is shown in Fig. 4.

2.2. SINFONI

2.2.1. Data analysis

Observations of NGC 7552 were also taken with the
Spectrograph for INtegral Field Observations in the Near
Infrared (SINFONI) at the VLT. SINFONI provides spatial and
spectral data in the form of a data cube covering the J, H,

and K bands. The SINFONI instrument is mounted at the
Cassegrain focus of the VLT Unit Telescope 4, Yepun (e.g.
Bonnet et al. 2004; Gillessen et al. 2005). The observations were
made in the J, H, and K bands using a spatial resolution setting
of 0.′′25 pixel−1, corresponding to a field of view of 8′′ × 8′′, and
were obtained on August 27th, 2005 without adaptive optics cor-
rection. The average air mass at the time of observation was 1.23
and the DIMM seeing between 1′′ and 1.′′3. Each galaxy had an
integration time of 300 seconds per band and a spectral reso-
lution R of 2000, 3000, and 4000, for the J, H, and K bands
respectively.

The reduction of the data was performed with the SINFONI
pipeline (Modigliani et al. 2007), version 1.7.1. This included
the removal of detector signatures (geometric distortions, bad
pixels, pixel gain variations, etc.), the sky emission correction,
the wavelength calibration and the image reconstruction from
the image slices. Flux calibration and removal of the contamina-
tion from telluric lines was performed using observations of the
standard star HIP 025007. In Figs. 3c,d we show the continuum
subtracted Pa-β and Br-γ line maps and representative sections
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Fig. 5. Segments of the spatially integrated spectra at J (top) and K band
(bottom) to illustrate the signal-to-noise. The strongest emission lines
([Fe ii], Pa-β, H2 and Br-γ are labelled.

of the J and K spectra to indicate the signal-to-noise. Although
the H band was included in our observations, it is suffering heav-
ily from OH atmospheric line contamination and not relevant for
the following analysis.

We have also constucted the K band continuum image from
integrating the SINFONI spectra across the K band without in-
cluding the emission from strong lines. The result is shown in
Fig. 3b and discussed in Sect. 3.1.

Table 3 lists the derived Paβ and Br-γ line fluxes, and
the equivalent widths (EWs) of Br-γ, averaged over circu-
lar apertures of 0.′′7 centred on each mid-IR peak. The inte-
grated line fluxes within the 3′′–8′′ annulus are also given in
Table 3. We emphasize that our measured Br-γ line flux of
6.55 × 10−21 W cm−2, integrated over the central region, is in
excellent agreement with the corresponding values from previ-
ous studies by different authors: 6.5×10−21 W cm−2 (Moorwood
& Oliva 1990), 6.4 × 10−21 W cm−2 (Forbes et al. 1994a), and
5.7 × 10−21 W cm−2 (Schinnerer et al. 1997).

2.2.2. Uncertainties

We estimate the uncertainty in the measured Pa-β and Br-γ line
fluxes to be 15% (Table 3). This uncertainty is a combination
of the typically 10% absolute uncertainty on the SINFONI line
fluxes – based on the residual slope in the standard star spectra
after the division by the appropriate black body – and the sys-
tematic uncertainty in the peak position (estimated from shifting
the extraction apertures by ±1 spaxel).

The uncertainty of the EW of Br-γ is only 5% for two rea-
sons. First, because an EW is a ratio of two measurements at
similar wavelenths, the absolute photometric errors cancel out.
Second, because the EW changes (with respect to the line flux)
less rapidly with distance from the position of the IR peaks the
EW is less sensitive to the positioning of the extraction aperture.
The EW of Br-γ is mainly of importance for the derivation of
the cluster ages. We note that all of the measurement uncertain-
ties are small in comparison to the systematic errors given by the
model assumptions (see Sects. 3.5 and 4.3).

2.3. Spitzer-IRAC

We have also analysed archival IRAC/Spitzer images of
NGC 7552 from the SINGS Legacy Science Program (e.g. Dale
et al. 2005). The images are shown in Fig. 6. Due to the smaller

telescope aperture the angular resolution is much lower, approxi-
mately ∼2.′′4. Nevertheless, two distinct, bright peaks in the ring
are clearly visible. We have also performed aperture photom-
etry using the standard IRAC 10 pixel (12.′′2) aperture radius
with a sky annulus of 10–20 pixels. According to the IRAC Data
Handbook (version 3.0) the photometric errors are dominated
by the absolute calibration uncertainty of 10% resulting from
the IRAC filter bandpass responses in sub-array mode (Quijada
et al. 2004; Reach et al. 2005). The derived photometric fluxes
are 198 mJy, 185 mJy, 624 mJy and 1809 mJy for IRAC bands 1
through 4, respectively. These flux densities are also indicated in
Fig. 4.

2.4. Relative astrometry

Our analysis is based on multi-wavelength data, and the co-
alignment and relative astrometry of the various maps is of ut-
most importance, as illustrated in Fig. 7. Our starting point is
the radio map of Forbes et al. (1994b) with source B (radio nu-
cleus, Table 2) as reference point. The absolute astrometry of
the VISIR images was then derived from shifting the [Ne ii] im-
age to best match the radio map. Next, we compared the mor-
phology of the Br-γ emission (Fig. 3d) with the [Ne ii] map
(Fig. 3a) and found an excellent agreement concerning the clus-
ter peak positions. We then shifted the SINFONI maps by a
small amount (within the VLT pointing uncertainties) to match
the Br-γ and [Ne ii] maps.

The adjusted K band continuum image (Fig. 3b) shows
the K band nucleus at RA = 23h16m10.s69; δ = −42 deg 35′04.′′8,
which is about 0.′′5 to the south from the radio nucleus. We em-
phasize that the offset between apparent K-band nucleus and ra-
dio center (see also Fig. 3) is bootstrapped from the Br-γ image,
which is part of the IFU data from which the K-band continuum
was reconstructed.

The HST images shown in Fig. 7 were combined on the basis
of the HST reconstructed pointing, and the [Ne ii]12.8 μm con-
tours have been adjusted to the radio map (as described above)
and then overplotted onto the HST coordinate frame. Like the
K-band continuum, the HST images show the nucleus slightly
offset to the south with respect to the active starburst ring.
However, even if this offset would indicate the uncertainty in
the absolute astrometric registration, the scientifically more rele-
vant uncertainty here is the relative astrometry between emission
peaks, which is approximately two VISIR pixels or 0.′′25.

3. Analysis

3.1. Appearance of the ring at different wavelengths

As mentioned in the Introduction, the morphology of the in-
ner region of NGC 7552 is quite complex. Based on imaging at
BVI bands, Feinstein et al. (1990) found a nuclear region of low
extinction within 4.′′9 in diameter, surrounded by a massive gas
and dust ring, which is responsible for most of the far infrared
flux. Subsequently, Forbes et al. (1994b) analysed 3 and 6 cm
radio maps, combined with H-α images and found a starburst
ring of diameter 9′′ × 7′′ (0.86 kpc × 0.67 kpc). For comparison,
the sample of 22 nuclear rings of Mazzuca et al. (2008) shows
diameters ranging from 0.4 kpc × 0.4 kpc to 3.4 kpc × 2.0 kpc.
The ring in NGC 7552 looks almost circular in projection, due
to its inclination of only ∼28◦ (Feinstein et al. 1990), and has
a width of 3′′−4′′. It contains about 60% of the 6 cm radio
flux. Forbes et al. (1994b) state that this ring cannot be seen in
single colour optical images largely because of dust extinction.
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Fig. 6. Spitzer-IRAC images of NGC 7552 in the 3.6, 4.5, 5.8 and 8.0 μm bands. The plus signs indicate the positions of the VISIR MIR sources.

Fig. 7. Colour composite of the nuclear region of NGC 7552 made from
archival HST/WFPC2 images in the F658N (H-α, blue) F336W (green),
and F439W (red) filter. The yellow contours outline the [Ne ii]12.8 μm
emission as detected with VISIR (Fig. 3a), the scale bar indicates 2′′ or
190 pc. North is up and east to the left.

High resolution NIR images taken with the SHARP 1 camera
(Schinnerer et al. 1997) showed an inner ring-like structure with
a diameter of 7′′−8.′′5, and similar structures have been seen at
MIR wavelengths (Schinnerer et al. 1997; Siebenmorgen et al.
2004; van der Werf et al. 2006).

In order to assess the correspondence between the morphol-
ogy seen in our MIR observations and other wavelengths at high-
est angular resolution, we have created a false colour image from
archival HST/WFPC2 data in the F336W and F439W broadband
filters and the H-α (F658N) narrowband filter. Figure 7 shows
the central region, together with the contours of the VISIR [Ne ii]
12.8 μm emission. We find an excellent correspondence between
the heavily dust extincted “dark ring” and the [Ne ii] emission.
The HST images also confirm the early results of Feinstein et al.
(1990) of a central (≤4.′′9) region of low extinction surrounded
by a massive ring of gas and dust. However we emphasize two
findings:

– First, the optically dark ring is the origin of most of the
MIR emission (Fig. 3), and hence, the most recent population
of massive stars in the center of NGC 7552 is still hidden at

optical wavelengths. We also note that this happens on large
scales of hundreds of parsecs, not just locally for an individ-
ual cluster. Furthermore, the Br-γ map (Fig. 3d) resembles
the MIR [Ne ii] map (Fig. 3a) very well.

– Second, the reconstructed K band continuum map (Fig. 3b),
which is very similar to the broadband image of Schinnerer
et al. (1997, Fig. 2), does not resemble the Br-γ map at all,
but looks smilar to the broadband optical colours seen by
HST (Fig. 7). The northern K band continuum peaks (which
must not be confused with the MIR peaks M1 and M3, which
are at larger radii from the nucleus) coincide with the bright
regions in the HST image. Most of the K band continuum
emission comes from within the inner 3′′.

As far as the structure within the ring is concerned we also ob-
serve significant changes with wavelength. The IRAC images
(Fig. 6) show two peaks, the northern one, which is close to
our peaks M1 and M2, and the southern one, which coincides
with the position of M7. The two peaks have similar brightness
at 8 μm, while the southern one becomes the dominant peak at
shorter wavelengths. Our strongest 12 μm source, M1, does not
show significant emission in the K band continuum, whereas the
nucleus appears as the brightest peak in the K band continuum
image but is not detected at MIR wavelengths. A very interest-
ing peak is M7 to the southeast, which is further discussed in
Sect. 4.4.

3.2. SEDs of clusters and ring

Figure 4 displays the various mid-IR spectra and photomet-
ric measurements to construct the spectral energy distribution
(SED) of the starburst ring of NGC 7552. Here we compare
our VISIR measurements with the literature data from Spitzer
(IRAC, IRS) and ISO (SWS, PHOT). The ISOPHOT spectrum
(Siebenmorgen et al. 2004) was obtained through a 24′′ aper-
ture, and the Spitzer-IRS spectrum from the SINGS Fifth Data
Release (Kennicutt et al. 2003) integrated over a 27′′ × 43′′
wide spectral map. In addition, ISO-SWS observations (Verma
et al. 2003, not shown in Fig. 4) revealed, within an aperture of
14′′ × 20′′, [Ar iii] and [S iv] line fluxes of 25 × 10−21 W cm−2

and 3 × 10−21 W cm−2, respectively.
Within the given uncertainties, the agreement between the

measured fluxes from different instruments and observing modes
is very good. This may be surprising since the ISO and
Spitzer measurements also include the nucleus of NGC 7552
whereas the ground-based measurements focus on the ring only.
However, the contribution of the nucleus to the total emission
from the central region becomes increasingly less toward longer
wavelengths (cf. Figs. 3b and 6) and is negligible at mid-IR
wavelengths. Furthermore, the fact that the Spitzer-IRAC
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Table 4. MIR emission from clusters versus total emission in the ring.

Clusters / ring Clusters / total Ring / total
[Ne ii] 0.32a 0.15b 0.48b

12 μm cont. 0.25a 0.22b 0.86b

8.6 PAH 0.05a 0.03c 0.65c

Notes. (a) This work only; (b) incl. SINGS 5th data release; (c) incl. data
from Siebenmorgen et al. (2004).

photometry agrees so well with the ISOPHOT measurements,
and even the IRAS 12 μm flux density (Fig. 4), suggests that
essentially all of the mid-IR emission comes from the central
12′′ region. For the total infrared luminosities of the individual
clusters we refer to Sect. 4.2.

3.3. Clusters versus extended emission

Comparing the emission from the nine brightest mid-IR peaks to
the total flux integrated over the ring, however, we find a signifi-
cant mismatch. The large ratios between compact to total (com-
pact plus diffuse) emission, quantified in Table 4, indicate that
there must be substantial diffuse emission within the ring and
outside the mid-IR peaks (ΣMi). The [Ne ii] and 12 μm contin-
uum flux densities emitted by all identified clusters are only 32%
and 25%, respectively, of the emission integrated over the ring
area. The contribution of the clusters to the total emission in
the 8.6 μm PAH band is even less, only 5%. Moreover, most of
these 5% has its origin in the mid-IR source M7 (with less than
1% contribution from the most luminous peak M1). A substan-
tial contribution of diffuse emission of [Ne ii] has also been ob-
served in the dwarf starburst galaxy NGC 5253, where ∼80% of
the [Ne ii] line flux is diffuse and not directly associated with the
central super star cluster (SSC) (Martín-Hernández et al. 2005;
Beirão et al. 2006).

We emphasise that ground-based observations in the mid-IR
generally possess a much reduced sensitivity to low surface
brightness. Here we use the measured [Ne ii] line fluxes for
comparison: Siebenmorgen et al. (2004) derived (490 ± 56) ×
10−21 W cm−2 from TIMMI 2 observations, Verma et al. (2003)
measured 680 × 10−21 W cm−2 from ISO-SWS data, and we de-
rived (800± 50)× 10−21 W cm−2 for Spitzer-IRS from the 5th
data release of the SINGS Legacy Team. While the [Ne ii] line
fluxes from VISIR (Table 3) and TIMMI 2 agree reasonably
well, the space-based measurements are typically about a factor
of two higher. In other words, the ground-based measurements
underestimate the emission from resolved low surface brightness
regions. This technical shortcoming may be even more relevant
for the derived PAH ratios. Hence, the above mentioned ratios
from the first data column in Table 4 should only be considered
an upper limit.

In summary, a large fraction of the [Ne ii] and PAH band
emission is not directly associated with massive, young star clus-
ters. In principle, the diffuse component may be due to an older
population of stars (e.g., an aged generation of previous super
star clusters), a more distributed mode of star formation (e.g.,
stars not localised in super star clusters), or a large fraction of
radiation from the identified mid-IR peaks leaking out far into
the surrounding interstellar medium. In any case, the localised
emission diagnostics do not exclusively trace the most recent
sites of star formation and need to be interpreted with care (see
Sects. 4.1, 4.3).

Table 5. Continuum subtracted 8.6 and 11.3 μm PAH band fluxes in
units of 10−21 W cm−2.

Source 8.6 PAH 11.3 PAH Aperture
M1 ∼0 18a 0.′′7
M2 ∼0 – 0.′′7
M7 61 – 0.′′7
ΣMi ∼60 – 0.′′7
Ring 1130 – 3′′–8′′

TIMMI2 – 330 3′′
ISOPHOT 1740 1620 24′′
IRS/Spitzer – 2570 27′′ × 43′′

Notes. (a) Measurement obtained from the VISIR spectrum of M1.

3.4. PAH emission

The spectra in Fig. 4 are dominated by strong PAH emission
features at 6.2, 7.7, 8.6, 11.3 and 12.7 μm. PAHs are considered
the most efficient species for stochastic, photoelectric heating by
UV photons in PDRs (Bakes & Tielens 1994). They are com-
monly found in star forming galaxies (e.g., Genzel & Cesarsky
2000; Smith et al. 2007). However, intense UV fields can also
lead to the gradual destruction of PAH molecules (e.g., Geballe
et al. 1989; Cesarsky et al. 1996; Beirão et al. 2006). PAHs
may be considered as overall good tracers of starburst activ-
ity in a statistical sense (e.g. Brandl et al. 2006, and references
therein).

The low-resolution VISIR N band spectrum of peak M1 ob-
tained is shown in Fig. 4. It is characterised by a rising contin-
uum, typical for thermal emission by dust, a strong [Ne ii] line,
and a weak 11.3 μm PAH. We emphasise that the spectral flux
density agrees very well with the photometric fluxes obtained
through the VISIR filters, which agree well with the flux levels of
the ISO and Spitzer spectra. Hence, we have good confidence in
the absolute flux calibration of the VISIR spectra. Nevertheless,
the weakness of the PAH emission feature in the spectrum is
striking (see Sect. 4.1).

Using PAHs as quantitative tracers of star formation is
known to have some shortcomings. First, at high angular reso-
lution, the correspondence between observed PAH strength and
the luminosity of the young clusters may break down, for rea-
sons discussed in Sect. 4.1. Secondly, PAHs may also be excited
in less UV-rich environments and can thus trace other sources
besides massive young stars, such as planetary nebulae and re-
flection nebulae (e.g. Uchida et al. 1998; Li & Draine 2002),
and B stars (Peeters et al. 2004). Since these sources dominate
the galactic stellar budget, i.e. are also much more numerous in
the volume that comprises the starburst ring in projection, we
expect significant emission from these sources, in particular if
the starburst has already been going on for while and we do not
observe the first generation of super star clusters any more.

Table 5 lists the continuum subtracted PAH band fluxes
for some mid-IR peaks and the integrated emission from the
starburst ring. For comparison, measurements from TIMMI 2,
ISOPHOT and Spitzer-IRS are also included.

3.5. Atomic hydrogen lines and stellar ages

The information provided by the atomic hydrogen lines listed in
Table 3 can be used in various ways. The intensity of the ex-
tinction corrected Br-γ line (Sect. 3.6) can be used to calculate
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(see e.g., Ho et al. 1990) the number of hydrogen-ionising
Lyman-continuum photons per second:

NLyc = 8.7 × 1045

(
D

kpc

)2 (
S Brγ

10−12 erg cm−2 s−1

)
s−1. (1)

From NLyc we can estimate an equivalent number of O7V stars
(NO7V). We use the calibration of O star parameters provided by
Martins et al. (2005, Table 4) for the observational Teff scale and
a number of log(NO7V) = 48.75 Lyman continuum photons per
O7V star. Both NLyc and NO7V are listed in Table 3.

The equivalent widths of the hydrogen recombination lines
Hα and Br-γ are commonly used as age estimators of young stel-
lar populations. These lines are predominantly produced by the
most massive stars, which are short-lived. Hence, the strength of
the line-to-continuum ratio is a strong function of cluster age as
the most massive stars evolve.

The evolution of the Br-γ EW with time has been modelled
in detail, e.g. by Leitherer et al. (1999, Starbust99). However,
the relatively large distance to NGC 7552, the low EW of Br-γ,
and the dense ISM in the starburst ring suggest that modelling
the MIR peaks as isolated young clusters may be insufficient.
We have therefore included another step based on the combi-
nation of Starburst99 with the photo-ionisation code Mappings
(e.g. Dopita et al. 2000), which includes the radiation trans-
fer in an evolving H ii-region. Groves et al. (2008a) have pub-
lished a set of comprehensive, panchromatic starburst models,
from where we took the equivalent width of Br-γ as a function
of the cluster age. We assume an instantaneous star forma-
tion, a thermal pressure log(P/k) = 5, and a so-called com-
pactness logC = 5. This compactness parameter describes the
time evolution of the H ii-region, and is defined as logC ≡
3
5 log

(
Mcluster

M�

)
+ 2

5 log
(

P/k
cm−3K

)
(see Groves et al. 2008a for details).

To derive the cluster ages we compared the extinction cor-
rected EWs of Br-γ (Table 3) with the ages from the model. The
resulting cluster ages are given in in the last column of Table 3.

A couple of items are noteworthy considering our age es-
timates. First, our approach is similar to the computed model
tracks by Snijders et al. (2007, Fig. 14). Second, in compar-
ison to “pure” Starburst99 estimates, we derive cluster ages
that are systematically younger but only by 0.1–0.3 Myr. Third,
the EW of Br-γ is only accurate for young ages. Beyond 6.5 Myr,
EW(Br-γ) becomes very small, observational and model uncer-
tainties begin to dominate, and for clusters older than 8 Myr
Br-γ is even observed in absorption and may reduce the emission
features of nearby, younger clusters. Finally, the relative differ-
ences among our derived cluster ages, however, can be consid-
ered quite accurate: the difference between a cluster age of 5.5
and 5.8 Myr corresponds to a difference in EWs of 18 Å and
8 Å, respectively, which is much larger than the spectrophoto-
metric errors. We shy away from quantifying formal errors on
the individual age estimates because we believe that the largest
uncertainty may be given by the assumption that each photomet-
ric aperture includes only one, coeval stellar population.

3.6. Extinction

The N band includes the characteristic Si=O stretching reso-
nance of silicate-based dust, centred at 9.7 μm. However, since
it is usually surrounded by strong PAH emission features to both
sides (see Fig. 4, left) its utilization as a quantitative measure
of extinction in moderately dust enshrouded systems is very
uncertain. On the other hand, the Br-γ/Paβ line ratio from the
SINFONI IFU data allows us to create an extinction map by

Fig. 8. Extinction map computed from the Pa-β and Br-γ line emission
maps. The mid-IR peaks from Fig. 3a are indicated by red crosses.

comparison with the case B theoretical ratio of 5.87 (assum-
ing Te = 104 K and ne = 100 cm−3, Hummer & Storey 1987).
Assuming a near-IR extinction law Aλ ∝ λ−1.8 (Martin & Whittet
1990) and RV = 3.1 (Mathis 1990) we calculated AV and list the
values for the mid-IR peaks in Table 3. The average extinction
of the nine peaks is AV = 7.4 and reaches from 5.2 to values as
high as 9.0 for source M3. Integrated over the entire ring area,
the average extinction reaches “only” AV = 5.3.

With this information we constructed an extinction map,
pixel-by-pixel for the central region of NGC 7552, which is
shown in Fig. 8. These spatially resolved maps can be used
to correct the observed Br-γ line fluxes for extinction. The ex-
tinction corrected Br-γ line fluxes are listed in the third data
column of Table 3. We note that there is, generally, a very
good correspondence between the extinction peaks and our
cluster positions.

4. Results and discussion

Generally speaking, there are four main reasons why MIR im-
ages of starburst regions may reveal a different morphology than
those taken at visible or near-IR wavelengths. All these effects
should be kept in mind when discussing the properties of the
“MIR clusters” to characterise the starburst ring.

The first one is simply angular resolution which is propor-
tional to ∝ λ/D. Since the wavelength λ is typically 5–10 times
longer and the telescope diameter D is often smaller, at least for
space telescopes, the resulting angular resolution of the MIR im-
ages is much reduced. However, this effect does not play a role
in this analysis – with the exception of the IRAC images pre-
sented in Fig. 6 – based on MIR images of 0.′′3–0.′′4 resolution.
The second one is simply the generally much lower sensitivity
of ground-based MIR instruments. This effect will introduce a
selection bias toward the most luminous clusters and overlook
less luminous and older, more evolved clusters. The third one is
dependency of the dust extinction on wavelength, which may re-
veal heavily embedded clusters at MIR wavelengths while they
are invisible at shorter wavelengths. The fourth effect is the fun-
damental difference in the physical emission mechanism. While
visible and NIR images mainly reveal the starlight of the cluster
stars, the MIR emission is generally re-radiated light from the
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dust around the cluster. Fluctuations in the surrounding dust dis-
tribution may thus affect the location of the MIR peak, and sub-
structures of smaller clusters, surrounded by dust lanes may ap-
pear as one large complex. In the following discussion we need
to keep these issues in mind.

4.1. Resolving the H II region structure

In the most simplistic picture, the massive stars in a young clus-
ter provide a sufficient number of photons with Eγ ≥ 13.6 eV
to ionise the surrounding hydrogen. The energetic radiation
creates a so-called H ii region from where most of the emis-
sion from the ionic states with higher excitation potential orig-
inates: [Ne iii] (40.96 eV), [Ne ii] (21.56 eV), [S iv] (34.97 eV),
[S iii] (23.34 eV), and [Ar iii] (27.63 eV). The H ii region is sur-
rounded by molecular gas which is “only” exposed to far-UV ra-
diation (6–13.6 eV), which strongly influences its chemical and
thermal structure (Tielens & Hollenbach 1985), and which is
responsible for most of the PAH emission. Beyond this photo-
dissociation region (PDR) we expect the diffuse and partially
neutral interstellar medium (ISM). In the most simplistic pic-
ture, the size of the H ii region is given by the Strömgren radius

RS =
(

3
4π

NLyc

n2βB

)1/3 ·
If we assume a density of 103 cm−3, a recombination coef-

ficient βB = 2.6 × 10−13 cm3/s, and a Lyman continuum photon
flux of NLyc = 5 × 1051 s−1 (Table 3) we get RS = 5.4 pc or a
region of about 10.8 pc in diameter in projection.

In reality, however, the structure of giant PDR/H ii regions
is significantly more complex as illustrated by the closer exam-
ples of 30 Doradus in the LMC (e.g., Indebetouw et al. 2009,
Fig. 1) and NGC 604 in M 33 (e.g., Hunter et al. 1996, Figs. 2
and 3). The main differences between the Strömgren picture and
these giant H ii regions are many-fold: they are not powered by
a single, point-like cluster, but by several, distributed clusters;
dust competes with the gas for ionising photons and will shrink
the size of the H ii region; the radiation will not radiate per-
fectly isotropic and the interfaces between H ii region, and PDR
are also shaped by the stellar winds, outflows and supernovae.
Hence, the above estimated RS may only provide a rough esti-
mate. In reality, the luminous PDRs are likely at larger distance
from the centre of the H ii region. We would thus expect that
spectra of the central cluster, taken at high angular resolution,
will miss large contributions from the PDR.

At the given distance to NGC 7552 of 19.5 Mpc and a slit
width of 0.′′75, the VISIR spectra cover a region of approxi-
mately 70 pc in size. Indeed, the discrepancy in the strength of
the 11.3 μm PAH feature between the high resolution VISIR
spectrum (black line in Fig. 4) and the spatially integrated
(and rescaled) Spitzer spectrum (red line in Fig. 4) is striking.
Similarly, the ratios in Table 4 are based on photometric aperture
sizes of 65 pc. While, within the same aperture size, the clus-
ters contain 32% of the [Ne ii] emission of the ring, they contain
only 5% of the PAH emission. In other words, zooming in on ra-
dial distances of 33 pc around the clusters reduces the observed
PAH strength by a factor of six. This is a clear indication that we
are resolving the H ii/PDR complex.

This may not come as a big surprise. The strong dependency
of mid-IR spectral diagnostics on the aperture size has already
been pointed out by Martín-Hernández et al. (2006), and a simi-
lar effect was noted for the young super star clusters in the over-
lap region of the Antennae galaxies by Snijders et al. (2007);
Brandl et al. (2009). However, we want to emphasise two find-
ings: first, a significant fraction of the [Ne ii] emission escapes

from the cluster regions. Second, at high angular resolution, the
mid-IR spectra of the central clusters include only partial contri-
butions from the PDR.

Both findings have important general implications: on one
hand, the physical properties of the young stellar populations
(such as age or initial mass function, IMF) derived from lines
fluxes integrated over the entire galaxy are very uncertain, as a
large fraction of the line flux may not be associated with those
populations. On the other hand, comparing spectral features that
originate from physically and spatially different regions (such
as ionic lines from H ii regions and PAHs from PDRs) only for
small apertures may lead to similar systematic errors.

4.2. Cluster luminosities and star formation rates

An important quantity to characterise starbursts is their bolomet-
ric luminosity. In very dusty environments (AV � 1) we assume
that the bolometric luminosity Lbol is approximately given by
the total (8–1000 μm) infrared luminosity LIR. The latter is com-
monly derived (e.g., Sanders et al. 2003) from the four IRAS
bands using the equation LIR = 562 860 × D2 × (13.48S 12 μm +
5.16S 25 μm + 2.58S 60 μm + S 100 μm), where S λ is in Jy and D in
Mpc. From the spatially integrated IRAS fluxes of NGC 7552
in we get LIR = 8.5 × 1010 L�. Considering only the starburst
ring, Schinnerer et al. (1997) quote a bolometric luminosity of
Lbol = 2.8 × 1010 L�.

Of particular interest are the infrared luminosities of the indi-
vidual clusters. However, observations that cover the FIR regime
do not possess the required spatial resolution, and the VISIR ob-
servations only cover 8–13 μm. Hence, we bootstrap the VISIR
fluxe densities measured through the “NeII_2” filter (Table 1) to
LIR estimates of clusters from the literature. The “NeII_2” fil-
ter has been chosen as the longest wavelength filter of our data
set, which does not not include significant emission or absorp-
tion features. Brandl et al. (2009, Table 9) have provided SEDs
and total infrared luminosities for six massive clusters in the
Antennae galaxies. We have computed the ratios between the
“NeII_2” filter band averaged F12 μm and LIR for these six clus-
ters. Adjusted for the distance of NGC 7552 we get the empirical
relation

LIR = (30.1 ± 7.9) × F12 μm, (2)

where the 12 μm flux density is given in mJy and LIR in units
of 106 L�. The quoted uncertainty is the standard deviation of
the six derived ratios.

The estimated infrared luminosities are listed in Table 3.
More than half of the total luminosity is provided by the clus-
ters M1, M2 and M7. Summing up the total luminosity of all
MIR peak yields Lall

IR = 2.1 × 1010 L�. This is 75% of the bolo-
metric luminosity of the starburst ring derived by Schinnerer
et al. (1997). The good agreement of these two estimates, de-
rived by completely different methods, supports our “bootstrap-
ping” approach.

Kennicutt (1998) has shown that the star formation rate
(SFR) can be derived from LIR via: SFR [M� yr−1] = 4.5 ×
10−44 LIR [erg s−1]. We note that this conversion strictly applies
only to the continuous star formation approximation with ages of
order 10100 Myr. Since our clusters are younger, the IR luminos-
ity per unit mass of stars formed will be somewhat lower, and the
Kennicutt (1998) relation will overestimate the true SFRs. (This
limitation would also apply to the common method of directly
estimating the SFR from the IRAS fluxes.) With the above con-
version Lall

IR ≈ 2.1×1010 L� corresponds to a SFR of 3.7 M� yr−1
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within only the main clusters in the starburst ring. For compar-
ison, Schinnerer et al. (1997) derived from the radio luminosity
of the radio knots a star formation rate of 1 M� yr−1 in the ring of
NGC 7552, and Calzetti et al. (2010) derived from Spitzer pho-
tometry taken by the SINGS team 10.3 M� yr−1 for the entire
galaxy. The sample of 22 nuclear ring galaxies of Mazzuca et al.
(2008) covered SFRs from 0.1 M� yr−1 to 9.9 M� yr−1, with a
median value of 2.2 M� yr−1. Our value of 3.7 M� yr−1 fits very
well within these numbers.

4.3. Cluster ages

The ages of clusters M1–M9 are listed in the last column of
Table 3 and lie between 5.5 and 6.3 Myr with a mean age
of 5.9±0.3 Myr. Although they have been derived under the sim-
plifying assumption of instantaneous star formation we can draw
two important conclusions: First, there are no luminous young
clusters associated with the mid-IR peaks that indicate very re-
cent (
5 Myr) star formation. Second, the age spread between
the clusters associated with the mid-IR peaks is relatively small.

To investigate whether high extinction may hide the
youngest clusters even at K band, we also use independent di-
agnostics at MIR wavelengths. A commonly used age diagnos-
tic is the ratio of the two neon fine structure lines, [Ne iii] and
[Ne ii], because it is largely independent of density and extinc-
tion effects. With excitation potentials of 40.96 eV and 21.56 eV,
respectively, the ratio of [Ne iii] / [Ne ii] measures, to first degree,
the hardness of the radiation field, which is mainly dominated by
the massive O stars and thus a strong function of age and initial
stellar mass function (IMF) of an instantaneous starburst. (We
note that factors other than age may also play a role in affecting
the observed line ratios, such as high metallicity (via stellar evo-
lution and line blanketing), high electron density (Snijders et al.
2007), and variations of the upper IMF). Unfortunately, we have
no measure of the [Ne iii]15.56 μm line, which lies outside the
atmospheric transmission window, but we can still estimate the
MIR fine structure line ratios in two different ways:

First, [Ne iii] has been measured from space. Both ISO-SWS
and Spitzer-IRS found rather low [Ne iii] / [Ne ii]≈ 0.08 through
large apertures that covered the central region. The large dis-
crepancy between compact and extended emission, as discussed
in Sect. 3.3, complicates the interpretation of the line ratios.
However, if we assume that most of the [Ne iii] is only pro-
duced by the massive O stars in the clusters – which is not
an unrealistic assumption given the high excitation potential
of [Ne iii] – we can compute the ratio between the [Ne iii]
flux given by Thornley et al. (2000) and the sum of [Ne ii]
from all clusters (Table 3). Under this assumption, we derive
[Ne iii] / [Ne ii] ≈ 0.41. Starburst models (e.g. Snijders et al.
2007) indicate that a ratio of 0.4 is in good agreement with an
age of approximately 5 Myr.

Second, for the brightest MIR peak M1 we obtained a VISIR
spectrum that covers also the [S iv]10.51 μm line. Unfortunately,
the [S iv] line was not detected in the VISIR spectrum of M1,
so we need to follow a different route. [S iv] has an excitation
potential of 34.97 eV, which is close to the 40.96 eV of [Ne iii],
and may thus serve as a substitute. Groves et al. (2008b) provide
an empirical calibration of [S iv] / [Ne ii] against [Ne iii] / [Ne ii],
parametrised as:

log

(
[Ne iii]
[Ne ii]

)
= α log

(
[S iv]
[Ne ii]

)
+ β. (3)

From fits to a large sample of 97 extragalactic H ii regions and
56 starburst galaxies Groves et al. (2008b) derived the param-
eters α = 0.82 (0.65) and β = 0.36 (0.32) for extragalactic
H ii regions (starburst galaxies). From the [Ne ii] flux listed in
Table 3, the above correlation(s), and [Ne iii] / [Ne ii] ≈ 0.41,
we would expect a [S iv] line flux from peak M1 of FH ii

[S iv] =

3.1×10−21 W cm−2 (FSBs
[S iv] = 2.1×10−21 W cm−2). In both cases,

the line is too weak to be detected in our VISIR observations. Of
course, this estimate assumes that the properties of M1 are sim-
ilar to those of the other clusters in the starburst ring.

Independently, we can derive an upper limit on the [S iv] line
flux from the noise in the 10.4–10.6 μm range. This yields a 3σ
upper limit of FUL

[S iv] = 2.3× 10−20 W cm−2. Hence, we derive an
upper limit on the ratio of FUL

[S iv]/F[Ne ii] ≤ 0.12. Comparing this
ratio with the models of Snijders et al. (2007, Fig. 9) yields a
lower limit of 4 Myr on the age of peak M1, consistent with the
Br-γ age estimate.

4.4. The intriguing peak M7

A rather unusual and thus very interesting source is peak M7,
located to the southeast of the center. A qualitative comparison
between the three prominent peaks, M1, M7, and the nucleus,
is given below, where “+” means bright and “–” means faint or
undetected:

Kcont 8.6 μm PAH [Ne ii]
Nucleus + – –
M1 – – +
M7 + + +

M7 is equally prominent in Br-γ, [Ne ii], and the K band con-
tinuum. What is most remarkable, however, is its strong 8.6 μm
PAH emission. Figure 2 (center) shows that M7 is the brightest
8.6 μm PAH emitter in the center of NGC 7552. Furthermore,
M7 is a peculiar source in two more regards.

First, the velocity field of the nuclear region (see Sect. 4.8),
while overall relatively symmetric, reveals a distinct “nose” in
the contour line of +50 km s−1, approximately 3′′ to the south-
west, where M7 is located. Apparently, the velocity field in the
region of M7 is slightly disturbed.

Second, Rosenberg et al. (2012) have recently investigated
the relationship between the [Fe ii]1.26 μm luminosity and the
supernova rate in a sample of 11 nearby starburst galaxies,
including NGC 7552. They derived the supernova rate from
Starburst99 modelling of the Br-γ emission on a pixel-by-pixel
basis and found a very good correlation across all 11 galaxies be-
tween the derived supernova rates and the measured [Fe ii] line
luminosities – with one exception, namely M7 in NGC 7552.
According to Rosenberg et al. (2012, their Fig. 7), the supernova
rate derived from the Br-γ emission exceeds by far the corre-
sponding [Fe ii] intensity.

We note that the derived age of M7, its dust extinction,
Br-γ equivalent width, and total luminosity are well within the
range of parameters of the other peaks (Table 3). Nevertheless,
peak M7 is not likely a simple, single massive cluster (see
Sect. 4.6 for a discussion of possible causes.)

4.5. Comparison with other massive clusters

The main question here is: are the MIR selected clusters in
NGC 7552 in any way special, or similar to massive young clus-
ters in other starburst galaxies? This can be best addressed by
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Table 6. Data of selected luminous clusters from the literature for comparison.

Galactic Starburst NGC 3603c NGC 5253d NGC 1365e NGC 4038/39 f Arp 143g M 82h

H ii regionsa galaxiesb C2 M 5 M 6 peak 1 peak 5 knot E knot F region 2 region 3
LIR [109 L�] 50 0.01 1.0 0.8 11.4 3.9
M [106 M�] ≈1 38 25 3 25 6
AV [mag] 4.3 ≤1 17 3.2 8.5 4.5 10.5 1.2 1.3 ≈15 ≈25
Age [Myr] ∼1 <6 7 7 2.5 4.5 3.5 2.5 5.5 5.5
[Ne iii] / [Ne ii] 0.8 0.29i 3.13 8.4 0.63 0.69 0.52 0.67 0.13 0.19

Notes. (a) Giveon et al. (2002); (b) Thornley et al. (2000); Brandl et al. (2006); (c) Lebouteiller et al. (2008); (d) Martín-Hernández et al. (2005);
(e) Galliano et al. (2008); ( f ) Brandl et al. (2009); (g) Beirão et al. (2009); (h) Beirão et al. (2008); (i) mean of 20 starburst galaxies, excluding the
dwarfs II Zw 40 and NGC 5253.

comparing the cluster properties in Table 3 with several “refer-
ence clusters” from the literature (Table 6).

While the globally integrated ratio of [Ne iii] / [Ne ii]≈ 0.08
is significantly below the mean value of 20 starburst galaxies,
the “corrected” value of 0.41 (Sect. 4.3) places NGC 7552 well
within the range of starbursts and only a factor of two below
the mean radiation hardness of Galactic H ii regions. The real
outlier in this regard in Table 6 is NGC 3603, a very young
Galactic H ii region, dominated by a single compact cluster, and
NGC 5253. For the latter it was shown that the bulk of the high-
excitation [S iv] and [Ne iii] fine structure line emission is also
associated with the single compact cluster C2, whereas the dif-
fuse component – showing [Ar ii], [S iii], and [Ne ii] emission –
is much more extended (Martín-Hernández et al. 2005; Beirão
et al. 2006). In terms of Lyman continuum photons NLyc, our
peak M1 is only a factor three below the radio super-nebula
NGC 5223 C2 (2 × 1052 s−1; Martín-Hernández et al. 2005).
However, in terms of the ratio between ionising photons and
the surrounding PDR mass, the peaks in NGC 7552 resemble
the massive clusters in more luminous starburst galaxies, while
NGC 3603 and NGC 5253 may be better compared to blue com-
pact dwarf galaxies.

The total infrared luminosities of the peaks M1 through
M9 are, on average, somewhat fainter than the most lumi-
nous Antennae cluster, but agree well with e.g., NGC 5223 C2,
NGC 1365 M6 and NGC 4038/39 peak 5, which display simi-
larly high extinction.

Since we have no good direct tracer of stellar mass (e.g.
dynamical masses) we refrain from providing cluster mass es-
timates here. However, a comparison with the reference clusters
of similar ages, LIR and NLyc in Table 6 suggests that our clusters
have typical masses of a few million solar masses, which is not
extraordinarily large. Significantly more massive young clusters,
up to 3×107 M�, have been found e.g. in NGC 1365 by Galliano
et al. (2008).

The ages of the clusters in NGC 7552 are also well within the
range of the MIR luminous clusters in Table 6. It is evident that
most of the massive clusters listed here managed to retain a sub-
stantial amount of extinction after 5–7 Myr. An exception here
is Arp 143. We note, however, that the starburst ring in Arp 143
results from a shock wave triggered by the recent head-on colli-
sion between the two galaxies, NGC 2444 and NGC 2445 (e.g.,
Beirão et al. 2009, and references therein). This scenario is phys-
ically different from dynamical instabilities in a quasi-stable nu-
clear region, and this difference will be reflected in the density of
the ISM and its gas supplies (see also Sect. 4.7). In summary, we
conclude that the clusters in the ring of NGC 7552 appear like
typical unit cells of starbursts.

4.6. “Clusters” and “Peaks” may be misleading terms

So far we have, in a very simplistic way, equated a MIR “peak”
with a super star cluster. Both species are closely related in star-
bursts, but there may not necessarily be a direct correspondence.
In particular, one MIR peak may consist of several smaller clus-
ters. We remind the reader that our angular resolution at near-
and mid-IR wavelengths corresponds to about 30 pc, which is
about one to two orders of magnitude larger than the typical core
radius of a massive cluster (e.g., R136, Brandl et al. 1996). On
one hand, it is likely that the hierarchical cloud fragmentation in
a dense and turbulent ISM will lead to a conglomerate of smaller
clusters (e.g., Bonnell et al. 2003). On the other hand, once a
massive cluster has formed in a dense environment it may trig-
ger the formation of other clusters in its vicinity (e.g., Deharveng
et al. 2005). While both scenarios impact dynamical mass esti-
mates and cluster evolution, the latter scenario has the most se-
vere effect as the peak cannot be any longer considered a coeval
population, formed in an instantaneous event.

Observationally, there is strong evidence for a more com-
plex scenario. For instance, Bastian et al. (2009) found that the
youngest clusters in the Antennae are not isolated but part of
an extended hierarchy of star-forming regions. In those “nu-
clei” of star formation, one cluster is often surrounded by other
clusters, which cannot be resolved with the current combina-
tion of telescopes and wavelengths. In the overlap region of the
Antennae galaxies, Snijders et al. (2007) found on scales below
the resolution limit a complex structure, which contains several
young stellar clusters embedded in clumpy gas. Similarly, in
a statistical analysis of Antennae clusters Mengel et al. (2005)
found that the 10 Myr old clusters with high extinction are pref-
erentially located near younger clusters. This suggests that in
environments where the gas is not rapidly removed, ongoing –
maybe even triggered – cluster formation is likely to happen.

These aspects are very relevant to the derived cluster proper-
ties as an unresolved complex of (sub-)clusters with significant
age gradient will appear differently. While the high excitation
lines (e.g. [Ne iii]) will be dominated by the young cluster, the
lower excitation lines (e.g. [Ne ii]) will primarily originate in
the older components, lowering the combined neon line ratio.
In addition, the IMF – when normalised to the most luminous
stars – will appear steeper (bottom heavy). Furthermore, dynam-
ical mass estimates yield incorrect results since all components
of the cluster complex will contribute to the diagnostic line but
are not in virial equilibrium. And finally, significant patches of
dust may be trapped in lanes between sub-clusters and remain
associated with the observed peak for a longer time, as discussed
in the next section.
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4.7. Cluster evolution and extinction

Table 3 shows that the clusters of NGC 7552 have an average
extinction of 7.4 mag (at an average age of 5.9 Myr). The large
amount of gas and dust, still associated with our MIR peaks af-
ter relatively long time, indicates that the gas and dust disper-
sion has been rather inefficient during the first six million years.
However, selecting clusters from MIR data introduces a selec-
tion bias toward the most heavily extincted clusters. This can be
best illustrated for the Antennae galaxies:

The optically selected clusters within the Antennae have ex-
tinctions of ≤4 mag (with a mean of 2.6 mag in the age range
0–4 Myr (Whitmore & Zhang 2002). In a study of K band
selected clusters in the Antennae (Mengel et al. 2005) found
strongly variable extinction with an average value of AV =
1.3 mag. However, the MIR-selected clusters in the dusty over-
lap region of the Antennae have extinctions of AV > 4 up to
AV ∼ 10 mag (Brandl et al. 2009). Although the latter may
not dominanate by numbers, they are no exotic species either:
Whitmore et al. (2010) found that 16% ± 6% of the IR-bright
clusters in the Antennae are still heavily obscured with values
of AV > 3 mag. Mengel et al. (2005) found a clear trend of
lower AV with increasing age. Several studies (e.g. Mengel et al.
2005; Whitmore et al. 2010) suggest that the typical time scale
for massive clusters to emerge from their natal dust cocoons is
less than 10 Myr.

However, the local environment and the location of the clus-
ters within the galaxy is likely to play an important role in the ef-
ficiency of the dust removal. It is conceivable that the expansion
of the H ii region goes faster in lower density environments (e.g.,
in dwarf galaxies or the outer spiral arms) than in higher density
regions of galactic nuclei where the gas and dust are trapped in
a potential and even get continuously replenished. Mengel et al.
(2005) argue that an older cluster which suffers high extinction
may no longer be directly surrounded and obscured by its own
dust cocoon, but just happens to be located in a denser region of
more recent star formation with higher dust content.

While this picture is likely to apply to clusters in star-
burst regions in general, and to clusters in the starburst ring of
NGC 7552 in particular, we would like to reemphasize the “spe-
cial” and distinct nature of MIR-selected “peaks”. Several stud-
ies (e.g., Whitmore & Zhang 2002; Whitmore et al. 2010) have
found that, by number, the vast majority of hundreds of clusters
in the Antennae is optically visible and can be well studied with
the HST. On the other hand, the few highly reddened MIR peaks
in the overlap region, although almost insignificant by number
counts in comparison, account for approximately half of the to-
tal luminosity – and thus of the total star formation – of the
Antennae (Brandl et al. 2009). It is likely that the latter species
does not exist in galactic disks and can only be found in the dens-
est environments. However, the study of clusters in starburst nu-
clei, ulta-luminous and sub-millimeter galaxies requires infrared
observations at high angular resolution (cf. Fig. 7).

4.8. Star formation history in the ring

In the Introduction (Sect. 1) we have summarised the contro-
versy around the physical origin and location of starburst rings.
To complicate matters, the starburst ring does not appear to be an
narrow ring with a series of young clusters lined up on a circle.
Instead, we observe (e.g., Fig. 3) an annular region of ∼200 pc
width with increased and non-uniform star formation activity.

Here we take the existence of a ring for granted and want to
investigate how and where the clusters form within that ring. We

assume that the gas gets efficiently transported from the outer
regions to the centre via the nuclear bar (Schwarz 1981; Ellison
et al. 2011). The gas moves radially inward along the bar dust
lanes and accumulates at the so-called contact points, the in-
tersections between the dust lanes and the ring. These contact
points are expected to be approximately perpendicular to the po-
sition angle of the bar major axis (Regan & Teuben 2003). Since
the orientation of the major axis of the bar is roughly east-west
while the contact points are to the north and south (Schinnerer
et al. 1997), the observations support the theory. However, the
details of where, how, and when the gas gets turned into stellar
clusters are still uncertain and could possibly be explained with
one of the following two scenarios.

In the first scenario, gas accumulates gradually in the nuclear
region along the ring. Once a critical density is reached locally,
the gas becomes unstable to gravitational collapse, and shocks
may trigger the formation of a massive star cluster (Elmegreen
1994) or lead to further cloud fragmentation due to supersonic
turbulence (e.g., Klessen 2001; Bonnell et al. 2003), resulting in
an ensemble of clusters at that location. Since these instabilities
occur randomly with respect to the galactic structure, no system-
atic age gradients or patterns within the ring would exist.

In the second scenario, most of the gas enters the ring at the
intersection between the bar and the ring. Shocks play an im-
portant role here to get rid of the angular momentum, which is
essential to move the gas into the central ring (see e.g., Mazzuca
et al. 2008, and references therein). The pile-up of gas at these
two contact points can be expected to ignite star formation in
short-lived bursts. The clusters formed here will orbit along the
ring, and age as they travel along the ring. In the meantime, new
starburst events near the contact points may produce new gener-
ations of young star clusters. Hence, observationally, one would
expect to find the youngest clusters of the ring near the contact
points and increasingly older clusters in the direction of rotation.

Some evidence for the latter scenario was provided by Böker
et al. (2008) for several galaxies, and in particular for NGC 613.
In a more comprehensive study of 22 barred galaxies, Mazzuca
et al. (2008) found that 10 out of 22 ring galaxies showed ran-
dom variations in their H ii region properties with no apparent
age gradient. However, 9 (out of 22) of their rings showed par-
tial gradients along 25%–30% of their rings. Only three galaxies
(NGC 1343, NGC 1530 and NGC 4321) showed a clear bipolar
age gradient along the ring. Mazzuca et al. (2008) could not re-
late the presence or absence of age gradients with the morphol-
ogy of the rings or their host galaxies.

In order to investigate a possible age gradient across the
clusters in NGC 7552 we constructed a velocity map from
the SINFONI Br-γ data (Fig. 9). The line offsets were con-
verted into rotational velocities for a recessional velocity of
NGC 7552 of (1640 ± 12) km s−1 (Mould et al. 2000, including
“Virgo+GA+Shaply” ). With this velocity offset the kinematic
centre position appears to lie close to the nucleus of NGC 7552
as traced by the K band continuum peak, and the velocity field
appears rather symmetric to both sides of the centre. The zero
velocity line of the Br-γ image is at the position angle of ∼9◦
with the kinematic major axis at ∼99◦. The physical velocity of
a ring element is then related to the observed, Doppler-shifted
velocity via:

vring =
vobs

sin(i) cos(θ)
, (4)

where i is the inclination of 28◦ (Feinstein et al. 1990) and θ
is the angle in the plane of the ring measured from the posi-
tion angle. From Fig. 9 we derive a mean vring ≈ 150 km s−1,
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Fig. 9. Velocity field in [km s−1] of the nuclear region of NGC 7552
derived from the 2.166 μm Br-γ line shifts.

which is in perfect agreement with the typical rotation velocity
of vrot = 150 km s−1 Mazzuca et al. (2008) found for their sample
of nuclear rings.

We can now estimate the travel time of a cluster at r = 275 pc
along a quarter (90◦) segment of the ring via:

ttravel =
lsegment

vring
=

π
2 × 275 pc

150 km s−1
≈ 2.8 Myr. (5)

Figure 10 shows a simplified representation of the scenario for
NGC 7552 with both cluster locations and ages, and the travel
timescales indicated. The youngest knots M1 and M4 appear in-
deed to be located at or near the northern contact point, and the
oldest knots M6, M8 and M9 are located more than 90◦ away
from the contact points. This signature provides evidence that
the cluster age distribution is not completely random but some-
how connected to the contact points of the ring. Our finding also
agrees with the result of Mazzuca et al. (2008) that in two-thirds
of their 22 barred galaxies the location of the youngest H ii region
is within 20◦ of the contact points.

Despite the limited number of MIR peaks, we find some
weak evidence for an age gradient in the direction of the ring
rotation. However, the gradual age difference of the clusters is
much smaller than the estimated cluster travel time. The pres-
ence of older clusters and the lack of very young clusters close
to the contact points raise some doubts in this simple (second)
scenario. Our observations clearly do not support the hypothe-
sis that the high gas mass inflow rate will immediately trigger
gravitational collapse and ignite massive cluster formation.

However, since the cluster ages are relatively large, they are
likely to have travelled a significant distance from their birth-
place to their observed location. It is intriguing that the age of
peak M1, now located near the northern contact point, is exactly
the travel time from the southern contact point to its current lo-
cation (half a ring orbit). It appears therefore possible that a dra-
matic episode of gas inflow at the contact points about 5.6 Myr
ago has triggered massive cluster formation at those locations.
However, while this scenario would explain the location of at
least some of the MIR peaks, it would also create a new prob-
lem: why should the gas inflow have stopped 5.6 Myr ago, at
least to a level where no more massive young clusters are being

Fig. 10. Schematic outline of the cluster age distribution with respect
to the location of the contact points in NGC 7552. The green circles
indicate the positions of the MIR peaks and the inscribed numbers their
ages in million years. The direction and time scale of rotation are also
indicated.

formed? Since we have no additional evidence for such a sce-
nario we don’t consider it very likely.

In summary, the central cluster formation in NGC 7552 is
not dominated by a simple bar/ring geometry, but it is not com-
pletely decoupled from the ring motion either. Either some neg-
ative feedback effects are at play (Dale et al. 2005) or the gas
density will be built up more gradually over a larger ring seg-
ment, and the local physical conditions become dominant.

5. Summary

We have observed the starburst ring galaxy NGC 7552 with two
instruments on ESO’s VLT, namely the Imager and Spectrograph
for the mid-IR (VISIR) in both imaging and spectroscopy mode,
and the Spectrograph for INtegral Field Observations in the Near
Infrared (SINFONI) at the VLT. The angular resolution of the
VISIR observations is 0.′′3–0.′′4, very close to the diffraction limit
of VLT at 10 μm. We compared these data to ISO and Spitzer
observations. Within the given uncertainties, the agreement be-
tween the measured fluxes from the different instruments and
observing modes is very good. Our main findings can be sum-
marized as follows:

– The starburst ring is clearly identifiable at MIR wavelengths.
The [Ne ii]12.8 μm line emission correlates well with the
NIR Br-γ emssion.

– We find an excellent correspondence between the [Ne ii]
emission regions and the highly dust extincted dark ring in
optical HST observations. The latter look very similar to
the K band continuum.

– We have identified nine peaks of unresolved MIR emission.
Our strongest 12 μm source does not show significant emis-
sion in the K band continuum.
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– We do not detect MIR emission from the nucleus of
NGC 7552, which is very prominent at optical and NIR con-
tinuum wavelengths.

– The multi-wavelength data indicate that the commonly used
term “starburst ring” is insufficient to properly characterize a
rather complex picture of cluster formation within an annular
region of more than 100 parsec width.

– A large fraction of the [Ne ii] and PAH band emission is not
directly associated with the location of the massive, young
star clusters. At the cluster positions we measured about 32%
of the total [Ne ii] emission of the ring but only 5% of the
PAH emission.

– A comparison of the strength of the 11.3 μm PAH feature
between VISIR and Spitzer spectra indicates that zooming
in on the clusters on scales of 33 pc reduces the observed
PAH strength by a factor of six. This can be explained by
spatially resolving the H ii region from the PDR complex.

– The individual cluster properties, in terms of infrared lumi-
nosities, ages, Lyman continuum photons, and extinction, are
in good agreement with the properties of other MIR-selected
massive clusters in other galaxies.

– From the ratio of Br-γ/Paβ we computed an extinction map.
The average extinction of the nine peaks is AV = 7.4 and
reaches from 5.2 to 9.0. While the average extinction of our
MIR-selected clusters is more than five times higher than that
of K band selected clusters in the Antennae, it is similar to
MIR-selected clusters in other dense starburst environments.
Apparently, the mechanism of gas and dust removal is less
efficent in these extreme environments.

– The total luminosity of the nine MIR peak is LIR = 2.1 ×
1010 L�, which is about 75% of the bolometric luminosity of
the starburst ring. In the continuous star formation approxi-
mation this would correspond to a SFR of 3.7 M� yr−1.

– We determined the cluster ages from the equivalent width
of the Br-γ line. They lie within the range of 5.9 ± 0.3 Myr.
Independently, we estimated a ratio of [Ne iii] / [Ne ii]≈ 0.41,
which is in good agreement with an age of approximately
5 Myr.

– The youngest massive clusters are located near the north-
ern contact point of the ring while the oldeer peaks are ob-
served further away from the contact points. However, the
age spread among the clusters of 0.8 Myr is small compared
to the travel time of∼5.6 Myr for half an orbit within the star-
burst ring. We cannot rule out that the clusters were formed
near the contact points more than 5 Myr ago, but we find no
strong evidence for the scenario where the continuous in-
flow of gas leads to the ongoing formation of massive clus-
ters near the contact points. It appears more likely that the
gas density build up more gradually over larger ring seg-
ments, and that the local physical conditions then determine
the cluster formation.

– Even at the resolution of VISIR on an eight-meter VLT, we
cannot rule out that an unresolved MIR peak is not a sin-
gle super star cluster but may consist of several sub-clusters,
possibly with some age spread. If so, this would affect the de-
rived ages, the slope of the IMF, and dynamical cluster mass
estimates. This issue can only be solved with milli-arcsecond
resolution at MIR wavelengths as will be provided by the
next generation of extremely large telescopes (ELTs).
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