
Wolf Rayet Stars

Modern Research November 10th, 2006

Yorick van Boheemen

Picture made by Hubble Space Telescope, of Wolf Rayet Star WR 124

Overview

- Introductory
- Spectral lines
- Stellar winds
- Summary

Introductory

- Mass 10-25 M_Θ
- Origin: 40 M_o O-type stars
- Limit for solar metallicity 25 M_{\odot}
- Findings
 - ~150 in Milky Way
 - ~100 in Large Magellanic Cloud
 - 12 in Small Magellanic Cloud

Subtypes

- WN type
 - He and N lines
- WC type
 - He and C lines and some O
- WO type
 Rare

 - Much like WC

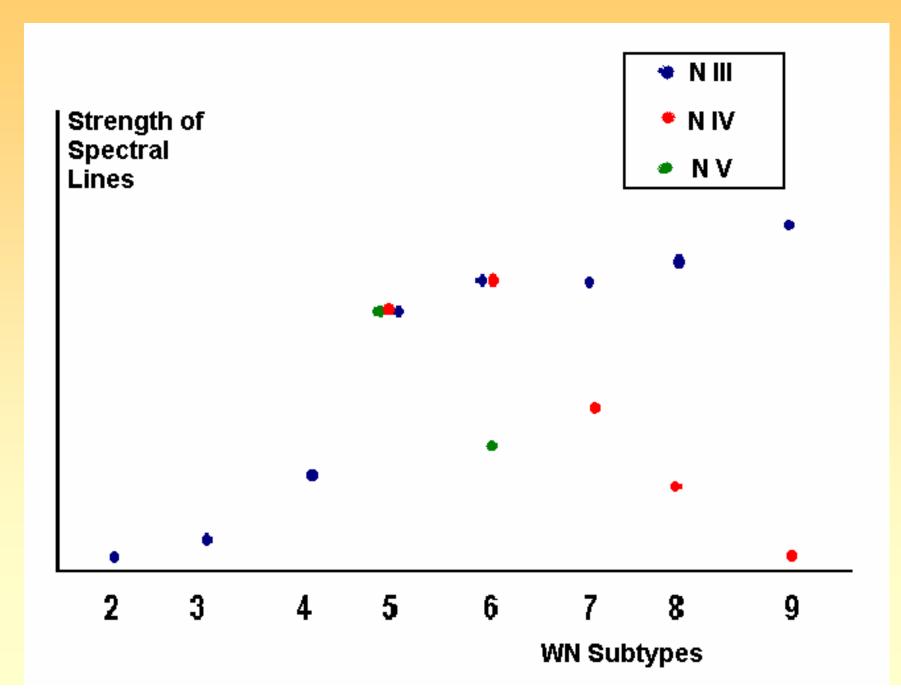
Evolution

- M > 75 M_Θ
 - $O \rightarrow WN(H-rich) \rightarrow LBV \rightarrow WN(H-poor) \rightarrow WC$ $\rightarrow SN$
- $M = 40 75 M_{\Theta}$
 - $\ O \rightarrow LBV \rightarrow WN \rightarrow WC \rightarrow SN$
- $M = 25 40 M_{\odot}$

 $- \ O \rightarrow LBV/RSG \rightarrow WN \rightarrow SN$

Spectral lines: subtypes

- Subtypes based on spectral lines – (WN, WC)
- Subtypes can be divided

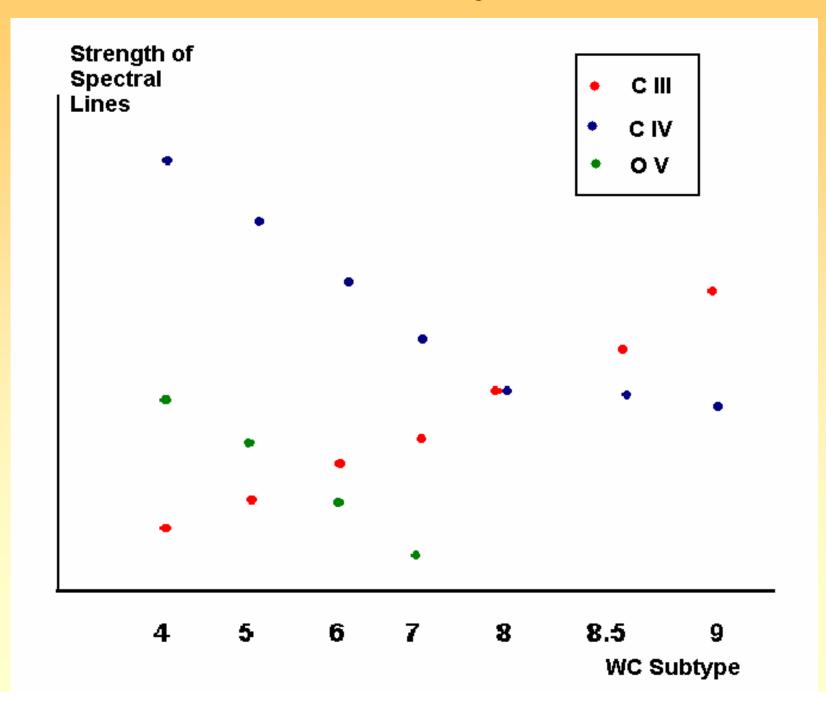

WN Subtype

• WN

– He and N lines

- WN 2 to WN 5 : early WN stars
- WN 7 to WN 9: late WN stars
- WN 6: early or late

WN Subtype


WC Subtypes

• WC

– He, C and some O

- WC 4 to WC 6 : early
- WC 7 to WC 9 : late

WC Subtypes

Elements in WN Stars

- Late WN : some H (~15%)
- Early WN : H depleted
- Catalysts in the CNO cycle
 - N ~1%
 - C ~0.05%
 - O probably the same

WN / WC Stars

- Transitional stage
- C ~ 5 %
- N ~ 1 %

⁴He+ ⁴He \leftrightarrow ⁸Be ⁸Be + ⁴He \leftrightarrow ¹²C + γ

WC Stars

- He burning continues
- N lines are absent
- Heavier elements form
 e.g. Fe, Ne, Mg

Radiation driven winds

- Outflow of material
- Line driving
- Force of many spectral lines
- $v_{\infty} > v_{esc}$
- v_∞ ~ 1500 km s⁻¹
- dM/dt ~ 6 · 10⁻⁶ M_Θ yr⁻¹

Radiation driven winds

 Castor, Abott & Klein (1975)

$$\mathbf{v}(\mathbf{r}) = \mathbf{v}_{\infty} \left(1 - \frac{\mathbf{R}^*}{\mathbf{r}} \right)^{\beta}$$

 Metallicity dependent winds

> $log(\dot{M}/M_{\Theta}yr^{-1}) =$ -11.00+1.29logL/L_{Θ}+1.74logY+0.47logZ

Summary

- Late stage of star evolution
- Origined from heavy stars
- Typical spectral lines
 WN, WC
- Material swept out by radiation driven winds