Proplyds

Modern Research Oktober 20, 2006

Yorick van Boheemen

Program

- Introduction
- Observed proplyds
- Evolution
- Conclusion
- A pretty picture

Introduction: Proplyds

• Protoplanetary disks

Orion Nebula (M42)

- Shows over 700 stars in evolution
- HST: ~150 proplyds

NGC 3603

Discovered proplyds in NGC 3603

- Sizes: 6.000 x
 20.000 AU
- Lifetimes: 10^5 yr

Evolution: Fases

- Nebula
- Disk forming
- Conditions for planetforming

Nebula

- Star forms core: Nebula around it
- Nebula collapses to a disk

Nebula

- Star forms core: Nebula around it
- Nebula collapses to a disk

 $\omega^2 R^4$

GM

R_{CENTR}

Nebula

- Disk spreads outward because of conservation of angular momentum R_{CENTR}

Angular Momentum

Because of turbulent viscosity

$$v = \alpha c_S H$$

- Magnetorotational instability
- Thermal convection
- Instabilities

Angular Momentum

- Gravitational Instability
- Density waves

When do planets form?

- Gravitational (in)stability
- Condition
- Two theories:
 - Coagulation
 - Dynamical instability

Toomre Q

• Stability quantized:

$$Q = \frac{kc_s}{\pi G\Sigma}$$

- Q > 1 stable
- Q <= 1 unstable

Physical conditions

Model for global and local cases

$$t_{cool} = \frac{4}{9\gamma(\gamma - 1)} \frac{1}{\alpha \omega} \qquad t = \frac{\beta}{\omega}$$

• Disk will fragment for

$$t_{cool} \leq \frac{3}{\omega} \quad \text{wM} = 0.1 \text{M}_{star}$$

 $t_{cool} \leq \frac{5}{\omega} \quad \text{wM} = 0.25 \text{M}_{star}$

Physical causes

- Coagulation
 - Large dust grains
 - Coagulate into larger grains
 - Settle into layer and make it gravitationally instable

- Dynamical instability
 - A part of the disk suddenly collapses
 - Rapid forming of Jupiter sized planets

Conclusion

- Proplyds well researched
- Many are discovered

 Some physical processes poorly understood

