Cepheids and their historical importance

Outline

- what are Cepheids?
- pulsation mechanism
- period-luminosity relation
- history
- importance of Cepheids
 - recognition of other galaxies
 - usage in distance ladder
 - determining the Hubble constant

What are cepheids?

- post-main sequence variable stars
 - Type I: Delta Cepheids
 - Metal rich
 - Type II: W Virginids
 - Metal poor
- P = 0.8-135 days
- F-G-K Spectral type (3500-7500K)
- 0,5-30 M⊙

Cepheid lightcurves

Figure 14.5 Observed pulsation properties of δ Cephei.

Hoffmeister et. al., 1985, Variable Stars, chapter 2

Pulsation mechanism

- pulsating stars (Eddington)
 - gravity <-> pressure
 - small imbalance -> star grows
 - growing star lowers pressure
 - gravity acts as restoring force
- opacity drives dampened pulsation (k-mechanism)
 - heat makes He+ below surface He++ (opaque)
 - He++ blocks heat -> pressure increase -> expands
 - He++ -> He+ (transparent) -> pressure decrease

Period-Luminosity relation

P-L relation of Type I & II are well defined

RR Lyrae have a 0.6 mean magnitude

History

- John Goodricke (1782-1784): Algol, Delta Cep
- Edward Pickering (1895): cluster-Cepheids (RR Lyrae)

Henrietta Leavitt (1912)

Period-Luminosity relation of Cepheids in SMC

Harlow Shapley (1917)

PL relation applied to all Cepheids

Other galaxies

- Great Debate: spiral nebulae, local?
- Hubble (1923): M31 = another galaxy
- Baade (1944): Type I & II 1.5 magnitudes apart

Jason Ware

Usage on distance ladder

- low scatter of magnitudes in infrared (±0.1m)
- sawlike lightcurve are characteristic
- Cepheids are bright and numerous

Error in distances

- calibration of zero-point
- interstellar reddening (±1%)
- fundamental and overtone pulsators (0.73 P)
- metallicity (±4%)

Determining Hubble constant

- radial velocities & distances
- Cepheids visible over long range

Summary

- stars hit instability strip -> harmonic oscillators
- gravity and pressure are restoring forces
- opacity drives the oscillation
- P-L relation gives distance accurately
- broad range on ladder useful
- solved problems in large scale structures

Articles, books & links

- Turner, JAAVSO Volume 26, 1998
- Freedman et al., 2001, Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant
- ASPCS, volume 83, Astrophysical applications of stellar pulsation
- Proceedings of the IAU coll. 82, B. Madore, Cepheids: Theory and observations
- http://josephhall.org/ho/
- http://www.institute-of-brilliant-failures.com/
- http://www.aavso.org/vstar/vsots/0900.shtml