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Creation of visibility phase:
Response function times contrast function



Calculation of “resolvability” r



Creation of visibility phase:
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Degradation of visibility phase



Solutions to phase degradation effects
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Approach to estimation of S and a(ν)
(resolved observation)

• Initially assume a(ν) is constant (or simple black body 
spectrum)

• Form weighting function on basis of expected signal 
(using current estimate of S and a(ν)) and detection 
noise level over ν

• Apply weighting in calculating correlation of data with 
resolvability model for all possible S

• Using estimate of S, solve for planet spectrum a(ν)
• Repeat



Planet detection using the 
interferometric Closure Phase φc



How the closure phase cancels atmospheric 
and instrumental dispersion and OPD

Assume that the underlying visibilities are called v12, v23, and 
v31. Then at any instant in time, the observed visibilities are:

V12 = exp(jφ1) exp(-jφ2) v12
V23 = exp(jφ2) exp(-jφ3) v23
V31 = exp(jφ3) exp(-jφ1) v31

Therefore, the product of the three observed visibilities:

V12 V23 V31 = v12v23v31 

Thus we have a coherent estimator (phase is preserved!) 
which is insensitive to all phase shifts induced up to (but not 
including) the beam combiner! -



Closure phase to detect planets
How does closure phase work?

• We take the resolvabilities of the 3 baselines, r12, r23, and r31. Due to the 

geometry, these necessarily satisfy r12 + r23 + r31 = 0
• From these 3 resolvabilities, we can form the closure phase response 

function Rc(ν). This is the ratio of the closure phase generated φc to the 
contrast ratio a(ν).

• We find for Rc(ν):
Rc(ν) = sin(2 π r12) + sin(2 π r23) + sin(2 π r31)

• Therefore the closure phase is related to the departure from sin(x) = x and 
becomes insensitive at small resolvabilities.

• Take r12 as the longest baseline, and call the ratio of one of the others to 

the long baseline k. Then let us examine Rc(r12, k) which is largely a 

function of the resolvability of the longest baseline, r12, but also a function 
of k, especially as it departs from ½.



The closure phase response function Rc(ν) 

Consider the following special case: a triplet of telescopes arranged along a line. 
Now k is the same for all observations, and as the projected baseline changes with 
earth rotation, one of the above curves will describe changes observed in φc



Example of earth rotation synthesis using 
the baseline configuration of the VLTI

A0

I1

J5



Triple 
baseline 

evolution with 
earth 

rotation: the 
general case
It’s hard to 
generalize, but here 
is an example of 
the baselines as 
projected on the 
sky, of the VLTI trio 
A0 – I1 – J5 over 8 
hours (when the 
star is above 38o 

elevation) for a star 
at declination 
40o S.

Fact: whenever any one baseline is perpendicular 
to the separation vector S then Rc(ν) = 0



Calculating the closure phase response 
function Rc(ν) in the general case

The three baselines as projected in the direction of S, have 
lengths b12, b23, and b31, where b12 + b23 + b31= 0. Multiplying 
each by the separation |S| and dividing by the wavelength, 

we can find the resolvabilities: r ij = bij |S| / λ



Response function vs. earth rotation: K band examples using the VLTI

Object at DEC -42o 

over 9 hours, using 
A0 - I1 - J5 
baseline trio. Thick 
plots are for a 
10mas separation. 
Thin plots for 1.65 
mas separation (as 
for HD75289). 
Colors are  for each of 6 
position angles 30o apart

Object at DEC 
+20o with 3 mas 
separation (e.g. 51 
Peg) over 5 hours, 
Thick plots using 
A0 - I1 - J5, thin 
using A0-M0-G1
baseline trio.



“Differential phase” method
Why you don’t use 
phase , but rather 

phase delay.

Restoration procedure:

1) Obtain one delay curve 
from the visibility phase

2) Estimate the position of 

the star, τstar (if possible)

3) In the end, you may 
convert the phase delay 

(after subtracting τstar ) 
back into phase: 
φ = 2πντ and you will 
always get this -
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Differential phase delay method

• Now we form the delay response function Rτ, such that the phase delay 

τ(ν) generated by a planet can be factored as:

τ(ν) = a(ν) Rτ(ν)  +  τarbitrary

• In this case we find that Rτ(ν) is given by the sinc function, scaled by the 

separation delay τsep :

Rτ(ν) = τsep sinc(2r) = τsep sinc(2 ντsep)

• When r << 1, we find the delay produced is approximately:

τ(ν) = a(ν) τsep = τCL(ν) the so-called “center of light.” 

• This is characteristic of an unresolved observation: the star and planet 
blend into one position (for each wavelength). 

• In a resolved observation, the phase delay is closer to the star, and (when 
r>.5) even moves to the other side of the star. It is that change that makes 
the planet detectible.



Differential phase delay method
Further complication:

Result contains an arbitrary amount of dispersion from 
differential atmospheric water vapor transmission

PROBLEM:
• 1 mole/m2 as shown is a typical 

level of differential water vapor 
(D=1) over a typical baseline.

• The process of differential water-
vapor fluctuations  is zero-mean 
but is dominated by low-
frequencies so that the average 
over an observation will not be 
greatly reduced.

• The shown level of phase delay is 
over 1000 times greater than the 
expected signature from a planet!



Differential phase delay method
How does the signature of the planet fare when an 

arbitrary amount of water vapor dispersion is added?

• That depends on the Differential Resolvability ∆r, defined as the change in 
the resolvability r over the frequency limits of the observation.

• For a small ∆r <<1, the signal is almost completely degenerate with the 
added phase delay from dispersion!

• For a large ∆r > 1, the shape of the planet’s differential phase delay, which 
amounts to a complete cycle of the sinc function, cannot be mimicked by 
any amount of water vapor dispersion. No loss of SNR occurs.

• For an intermediate .25 < ∆r < 1, there is a substantial but not 
overwhelming degradation in the detectibility of the planet.

• Even for an under-resolved observation, ∆r <<1, there may be sufficient 
detectibility in the case of a contrast ratio a(ν) which contains prominent 
spectral features. Detectibility now depends on amplitude and total width 
of spectral features. These may be due to the star as well as the planet.

• Observations which are under-resolved in an absolute sense, rmax < .15, 
may determine the position angle of the separation vector S, but only 
supply an estimate of the offset of the “center of light,” that is, |S| * a(ν).



Solving for resolvability r (and eventually a(ν))
for an observation corrupted by water vapor dispersion

1) Convert the measured phase to delay:    τraw(ν) = φraw(ν) / 2πν
2) Determine a weighting function W( ν) which is inversely proportional to 

the measurement noise in the system which estimates φraw(ν). 
Note: the expected value of the eventual result is insensitive to W.

3) Form the modified weighting function W’(ν) = νW(ν) which applies more 
weight to delays at higher frequencies where those delays correspond to 
larger phases.

4) Using the refractivity of water (something proportional to n-1), form a 
delay function for “clean water” by adjusting its offset. “Clean water” is 
defined as a substance which has zero average delay using the 
weighting function W’ and can be formed as follows:
τH2O(ν) = nH2O(ν) – τ0 where the offset is given by:

τ0 = ,dν W’(ν) nH2O(ν)      (nH2O is the refractivity of water)



Solving for resolvability r (and eventually a(ν))
for an observation corrupted by water vapor dispersion

…. continued:

5) Find the amount of water w to subtract, and the amount of achromatic 
delay τoffset to subtract using the following integrals. (Note: by using 
“clean water” these two determinations have been orthogonalized).

 ττoffset = (,dν W’(ν) τRAW(ν)) / (,dν W’(ν))
w = ( ,dν W’(ν) τRAW(ν) τH2O(ν)) / ( ,dν W’(ν) (τH2O(ν))2)

6) Finally, we form the “waterless” (and offsetless) delay function τWL(ν) as 
follows:

τWL(ν) = τRAW(ν) – w τH2O(ν) - τoffset 



Finding the degradation factor for an observation 
corrupted by water vapor dispersion

To find out how sensitive our estimator will be to the brightness 
of a planet, a(ν), after making the data “waterless”, we perform 
the following analysis.

Suppose that the original phase function was due to a true 
planet/star contrast ratio a which is constant over frequency. 
Then we would expect the measured phase to be:

φraw = a R(ντsep) + φoffset+ φH2O + φnoise 

If there were no offset phase or water dispersion, then we could
ignore those terms (as if the phase could be observed 
perfectly!) and the SNR2 of an observation would be 
proportional to:

Strength = ,dν (W(ν) φRAW(ν))2 (note we are now using W, not W’)



Finding the degradation factor for an observation 
corrupted by water vapor dispersion

Now we do the same thing using the “waterless delay” which we first convert

to an equivalent phase φWL (ν) = 2πντWL(ν) 

Then we expect an SNR2 proportional to:

StrengthWL = ,dν (W(ν) φWL(ν))2 

The degradation in the SNR is therefore given by:

D = (StrengthWL / StrengthRAW)1/2

Note that a will cancel out of this computation – this solely has to do with 
the resolvability aspect of the phase function.

D must be computed on a case-by-case basis. Some examples will now be

presented.



Examples of phase functions from planets, making those 
functions “waterless”, and finding the SNR degradation factors D

Assume detection in N band, from 20 to 40 THz, using constant weighting

Well resolved observation:
τsep = 50 fs

Resolvability: 1.000  to  2.000

Degradation in SNR, D = .665

Resolved observation:
τsep = 30 fs

Resolvability: .6000  to  1.200

Degradation in SNR, D = .422

Underlying 
Delay function

“Waterless” 
Delay function



More examples
Barely resolved observation:

τsep = 20 fs
Resolvability: .4  to  .8

Degradation in SNR, D = .184

Under-resolved observation:
τsep = 10 fs

Resolvability: .2 to  .4

Degradation in SNR, D = .0752

Underlying 
Delay 

function

“Waterless” 
Delay 

function



φraw = a(ν) R(ν) + φother

Under-resolved observation using 
spectral features in source

In this case, the resolvability r << 1. That will cause the 
phase delay at all frequencies to be shifted by approximately 
the same amount (to the “center of light”) so that the effect of
the planet will be undetectable due to R(ν).

However if a(ν) contains sharp spectral features within the 
frequency range of observation, those will generally cause 
shifts in the phase delay which are clearly differentiated from 
a fixed delay, and cannot be ascribed to water-vapor 
dispersion.

Note: a planet spectrum which falls off at short wavelengths 
simply due to its temperature, is not sufficient for this 
purpose!!



Example of enhancement of detectibility due to spectral features

Under-resolved observation:
τsep = 10 fs

Resolvability: .2 to  .4

Degradation in SNR, D = .0752

Underlying 
Delay 

function

“Waterless” 
Delay 

function

Degradation in SNR, D = .714

Same planet, but with strong 
“absorption lines” across N 

band: will increase detectibility



The End


