
Noise in Optical Interferometry 
 

While we are still on noise calculations let’s make some similar 
calculations for optical/IR interferometry, although we haven’t dealt 
with the details of the instruments yet.  The first is that we are now 
in the regime where kTh >ν where I haven’t specified exactly what 
I mean by T, but you can take it to be the brightness temperature 
of the object+background that we are looking at.  So <n> <<1 and 
the standard deviation in the number of photons is SQRT(<n>). 

Note that these statements are definitely true for optical and near 
infrared observations, but only marginally true for midIr 
observations (say 10m wavelength and T~300 K). 

Less fundamental but equally important for groundbased 
interferometry:  The atmosphere introduces rapid phase 
fluctuations so signals cannot be coherently added indefinitely. 

The maximum integration time is about 10 msec for visual/near IR 
observations and scales with wavelength approximately as 56 /λ  

Thermal formulas for counting photons etc are still relevant, but 
more complicated to use because they no longer are linear in T. 

The final signal is still the number of coherent photons from the 
source, while the noise is the quadratic sum of uncertainties from: 

 Photon noise from the source (usually not important) 

 Photon noise from thermal backgrounds of sky or telescope 
(important for mid infrared) 



 Detector readout noise (typically dominant at shorter 
wavelengths. 

I’ll give some typical calculations of these quantities: 

 

Background Noise:  As in the radio case, lets assume that the 
thermal background looks like a black body with an emissivity e. 

We rewrite the BB law: ))//(exp()/)(/( 12 2 −= kThkThkTB ννλ  

In terms of photons/s/cm^2/ster/Hz by dividing by the photon 
energy: ))//(exp()/( 12 2 −kThνλ .  Now consider the photon 
number in time t, in bandwidth Dν from a telescope with  

diameter D  solid angle 2)/( Dλ : ))//(exp( 12 −Δ kTht ννε .  Note 
surprisingly that it doesn’t depend on the telescope size or the 
wavelength.  Orders of magnitude: in the midIr, ν~3*10^13Hz, so 

Dν might be 10^13 Hz, t might be a few tenths of a second before 
atmospheric decorrelation, e depends on the exact wavelength, but 
also contains significant contributions from the telescope mirrors, 
perhaps even 50% for a complicated interferometer. 

bands

So the number of photons/s/telescope is fairly large except for the 
exponential factor 1/(exp(hc/lkT)-1) where hc/k = 1.439 cm K. 

Homework: at which wavelength is the number of sky photons per 
second of order unity? 



If the background counts were exactly constant, they would be no 
problem, but of course in any particular interveral they show a 
standard deviation of order SQRT(<n>). 

 

Readout Noise is caused by thermal fluctuations in the electronics 
that are used to convert the –very small—electric charge that has 
been read into an amplifier, into a much larger signal.  This 
uncertainty is stated as the r.m.s. uncertainty in the number of 
electrons created from a photoelectric device per readout per pixel. 

This noise varies with the device, its temperature, and the speed at 
which the device is read out, varying typically as 1./sqrt(t_readout). 

Typical values are ~5 electrons (visible CCDs), 30 electrons (near IR 
CdHgTe devices), 600 e- (midIR SiAs detector). 

 

So the thermal noise and readout noise do not (to first order) depend 
on the size of the telescopes, but the signal does, so the S/N does. 

For signal strengths expressed in Janskys this is fairly obvious: 

Home work: how many photons/s come from a 1 Jy source at 

10m wavelength with a 10% bandwidth into a 10 m telescope? 

Of course expressed as the signal from a blackbody source the same 
scaling with diameter applies; 

Homework: calculate photons/s for the same telescope from a 300 K 
opticaly thick target with an angular size of 10 millarcsec. 



Now a particularly nasty aspect of noise in optical interferometers: 
you cannot amplify the signals from a telescope without destroying 
the phase information.  So if you want to combine the signals from 
two telescopes, the S/N is sqrt(2) better than 1 telescope (actually 
depends a bit on the details), but if you have more than 2 telescopes, 
you have to split up the light with beam-splitting mirrors and combine 
it in bits and pieces.  Suppose you have N telescopes and you try to 

detect all (N*(N-1))/2 visibiities.  Then the light available at each 
beam combiner is ~2/N of the light from each telescope,  This leads 
to a decrease in S/N for each visibility of 2/N (readout noise limited) 

or SQRT(2/N) (background limited).  If we can combine all the 
visibilities, say to estimate the flux of a point source, the S/N is 
increased once again by SQRT(N*N/2), so the S/N relative to a 
single interferometer pair (or a single telescope, for that matter) is 
proportional to SQRT(N) (background limited) or 0N  (RO noise). 

There are some tricks to improve this latter result – to be discussed 
later—but this line of reasoning discourages building large arrays of 
optical telescopes, and most systems are limited to 4-6 telescopes. 

 

Some myths and facts about coherent and incoherent noise. 

With a nice radio interferometer under good weather conditions, the 
atmospheric phase distortion is small during the time that it takes to 
calibrate it, so individual complex visibilities are coherent. This means 
that if you measure a large number of them in a short time, you can 
add them as complex numbers, and the S/N of the result is that of the 
individual measurements but improved by SQRT(N_DIT). 



Simple complex example: Suppose the signal is c+is=Aexp(ia) and 
the noise in  the real and complex measurements is  )( sc igg +σ , 
where the g’s are the usual gaussian variables.  If you add N 
measurements the signal becomes Nc+iNs while the noise becomes 

)''( sc iggN +σ , so the S/N of the result is ~A/s 

In the optical domain, and to some extent in the VLBI domain, the sky 
changes the phases of the complex visibiities in a period shorter than 
one can calibrate (unless a reference source can be used).  Then it is 
not possible to determine the full complex visibilities but only their 

amplitudes.  In this case we cannot just add up the measured 
complex visibilities because they decorrelate.  If we extend the above 
example, the noise calculation is unchanged but each realization of 
the signal is multiplied by exp(iφ) where the f are random numbers.   

One can show that < exp(iφ)> = )/exp( 22 ><− φ . 

Homework: show that this is true. 

For large rms values of f the average values of the signals c and s 
disappear.   To make the algebra in the following sections simpler, 
we assume that rmsφ  is large (in radians). The rotated vaues of the 
real and complex parts of the signal are now random variables with 

rms values of A/sqrt(2) (where does the sqrt(2) come from ?) If there 
are a lot of them they can be considered to have a gaussian 
distribution.   So suppose we decide to average them together. 

We write each complex measurement as 
)())(/( 21212 iggiAM i +++= σγγ  where the g’s and g’s are the usual 

normalized gaussian variables.  Clearly <M>~0, so using the average 



of the complex values to estimate A doesn’t work.  What if we, 
foolishly, take the square of the average, which is at least positive. 

Let T=SM.   With the usual manipulations, <T>=0. 
224422222 43432 AANTVarANT σσσ ++=+>=< )/(()(),(  give or take 

a factor of 2.  We see that we could use this method to estimate A if 
we know s, ( 22 σ−>< NTA /~ ), but the uncertainty in this estimate 
does not decrease with N!: standard deviation( 2T /N)~ 22 σ+A . 

Bad idea.  A better idea is to take the absolute value of each 
measurement, squared, and average these: 

NAMVarAM /)()|(|;|| 2242222 32 σσσ +=+>=<  

 

A couple of things to notice—  

  The S/N now goes up as sqrt(N). 

      If (s<A) the S/N  is of order  σ/AN  as expected 

      If (s>A) the S/N  is of order  2)/( σAN  

 

Master’s research project (small): 

Work out a theory to estimate A from M in the partially coherent 
case where  rmsφ  ~1. 
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