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Noise in Radio Interferometry 
 

Let’s worry a little about the sensitivity of interferometric 
observations.  For the  uninitiated we begin with noise and signal 
strength from radio observations in general.  It is rather hard to 
calibrate the sensitivity of an antenna or an amplifier absolutely, 
say in millivolts/Jy input, but easier to calibrate the response to a 
thermal, blackbody source.  The output of an antenna from a 
source, is described in terms of the antenna temperature T_A no 
matter how the signal is amplified or otherwise processed.  This is 
temperature of a hypothetical black-body surrounding the antenna 
that produces the same signal.  The system temperature T_S, is 
the equivalent black-body temperature describing the system 
output including all sources of noise.  So T_S>0 even when there 
is no astronomical source in front of the telescope.  Usually T_S~ 
physical temperature of the first electronic subsystem, unless the 
sky and ground around the telescope are effectively hotter.  This is 
the case, for instance, for low frequency observations in the disk of 
the Galaxy.  T_S and T_A can be calibrated by putting resistors 
with known temperatures in place of the first amplifying stage. 

The brightness temperature of an extended source is the bb-
temperature that produces the same surface brightness at the 
specified frequency, and is thus a source property, independent of 
the telescope.  From quantum physics: 

http://www.strw.leidenuniv.nl/~jaffe/obstech/iers2003.pdf�
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In units of energy/area/steradian/time/frequency. 

Note that the 2nd part of the expression disappears at low 
frequencies and the expression is linear in T. 

For our purposes ABBA TT ΩΩ≅ /  where the last ratio is that of the 
solid angle of the source to that of the antenna beam, or 1 if the 
source is fully resolved. 

The Flux Density νS  of a source is the brightness in physical units 

integrated over the source, so for low frequencies B
BkT

S Ω= 2

2
λν .  

For  convenience this is often measured in Janskys where 1 Jy = 
10^-23 erg/s/cm^2/Hz or 10^-26 W/m^2/Hz. 

 

So what is the uncertainty in a measure of T_A if the system 
temperature is T_B?  From quantum mechanics (to be derived 
downstream) we can describe a radiation field by the number of 
modes (polarization, frequency, direction) and the number of 
photons in each mode.  Because photons are bosons they do not 
always obey the usual sqrt(n) that we are used to for the standard 
deviation of a random process.  Rather, if the expected number of 
photons is n, the standard deviation of the number is 

212 /)()( nnnSD += .  So this statistical fluctuation is proportional to 
n^1/2 if n <<1, but proportional to n itself if n>>1.  This last is true 
for the radio case.  For a rapidly varying field, i.e. one that has a 
finite bandwidth of ν∆  we can measure independent samples of 



the field at the same rate, and if we do this for a total integration 
time of t, the uncertainty of the averaged power, expressed in 
terms of T_S is: 

ν∆= tTTSD SA )( ; or signal/noise = ν∆tTT SA *)/(  . 

Homework : A 25m telescope observes an earth-like planet at 21 
cm wavelength with a system temperature of 20 K and a bandwidth 
of 50 MHz for 1 hour.  How far away can the planet be so that the 
signal/noise is >1? 

Quantum digression: 

In one electronic mode we consider the probable distribution of 
photon numbers n. From the usual Boltzmann argument, the 
probability of being in a given state )(nP  is proportional to 

( ) QkThkTnhkTE nn ≡−=−=− /exp()/exp()/exp( νν  

The constant of proportionality can be fixed by insisting that 
1=Σ )(nP

n
.  Can you figure this out? 

So )()( QQnP n −∗= 1 .To calculate averages, variances etc. consider 
the m-moments ><nm  where m is an integer 
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This rather complicated looking equation is not so bad for n=0,1,2 So 
<n> = ))//(exp()/exp(/()/exp( 111 −=−−− kThkThkTh ννν .  

So the number of photons per mode is large if kTh <<ν and small 
otherwise. 

Combining this with the density of modes, and adding: 



• a νh to calculate the energy density rather than photon density 
• one c to change from energy density to energy flux 
• one factor of 2 to account for polarizations: 

kThifkTkThhTB <<≅−= νλνλννν
22 212 /))//(exp(/),(  

Which is the standard Planck function. 

For calculating noise fluctuations it is important to also know 
<n^2>because we know the uncertainty in a measured value of n 
is: )( ><−>=< nnn

222σ  

Note for convenience that we can write: )/( ><+>=< nnQ 1  and 
)/( ><+=− nQ 111 . 

We calculate the formula above for m=2 we find: 
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Note that ><n  is often written as 
_

n . So for large <n> (radio) the 
uncertainty is proportional to <n>,while for small <n> (optical) it is 
proportional to Sqrt(<n>). 

Homework:can you show that the above formula for the standard 
deviation of T_A is correct? (fairly difficult). 

What about measuring the phase/strength of an electric wave?  
Measuring the strength is like measuring then energy; νnhE = , and 
measuring the phase is like measuring time as the wave goes 
by: νφ /=t .  But we know from the uncertainty principle that 

1>∆∆⇒>∆∆ φnhtE  

End of quantum digression 



 

So much for 1 telescope.  Now 2 telescopes in an interferometer.  
Let’s do this in terms of post-amplification regime where for the 
measured electric field we have a signal E and a noise source gσ  
where g is a random gaussian variable with unit variance. 

Then the average power for one telescope is 
22222 2 σσσσ +>=<+><+>>=<+< SgEgEgE )(  

and the Variance of the power is <P^2>-<P>^2 is: 
42422422224 24236 σσσσσσσσ +=++−++=+−>+< SSSSSSgE ][)()(  

If the instantaneous S/N is small, the last term dominates and 
22σσ =S .  If we look at the correlation between two signals this 

is: 

SgEgE >=++< ))(( 21 σσ , where the two gaussian noise variables 
are independent.  Note that the bias term has disappeared 
because we are using a multiplying correlator; this is very useful. 

Easy homework: show that the uncertainty in the interferometric 
flux is 2σσ =intS , sqrt(2) better than the single dish (why?). 

 

Several things to contemplate: 

 If I have m telescopes, I have (m*(m-1))/2 interferometric 
measurements.  If these are statistically independent the 
uncertainty in the flux of an unresolved source goes down as 
sqrt(2)/m. 



 Easy homework: show that the signals from two interferometer 
baselines sharing one telescope are independent. 

 Note that expressed in fluxes, the noise from an interferometer is 
of the same order—perhaps a little better—than the single dish, 
but expressed in surface brightness sensitivity it is much worse 
by a factor of (D/B)^2, where D is the dish diameter and B the 
interferometer baseline.  This is why, historically, radio 
interferometers were extremely important in sorting out the 
structures of synchrotron sources, which are nontherma sources 
whose brightness temperatures can be >10^12 K, but 
observations of thermal sources (HII regions, planets… only 
became easy when large arrays of telescopes with cryogenic 
receivers were developed. 

Homework: For the VLA at 21 cm wavelength: 

 27 telescopes 

 T_sys=20 K 

 Bandwidth 50 MHz 

What is the faintest point source (in Janskys) that can be detected 
in 12 hours? 


