
A Little More Fourier Transforms 
 

Fast Fourier Transforms: Performing a FT by multiplication by a 
bunch of sines and cosines is called a Direct Fourier Transform 
(DFT).  If you count the number of multiplications it takes to finish the 
job, it takes (of order) N^2 complex multiplications.  For large 
numbers of points this can grow relatively large.  In the 1800s Gauss 
conceived a numerical shortcut now termed a Fast Fourier Transform 
(FFT) and named after Cooley and Tukey who rediscovered it in 
1964.  The basic idea is that an FT can be factored into a set of 
smaller FTs that take fewer operations (see 
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm) .  The 
number of operations is then ~2N(sum of prime factors of N).  If 

nN 2= , which is a common case, then NOP NN 22 log≈ .  This can 
lead to factors of 1000 improvement, and it is almost universally used 
in numerical computation. 

The big loser is that the algorithm requires that the input data must 
be uniformly spaced.  This may or may not be the case.  If it isn’t, and 
you still want to use a FFT, it is necessary to interpolate the data onto 
a uniform grid. You can do this by a straightforward interpolation, but 
the process invariably destroys information in an unpredictable way.  
The preferred process is 2-step. First we convolve the data with a 
smooth function, destroying high frequency data in a controlled way, 
then multiplying by a Shah function (resampling/reduplication in the 
FT space) and then a FFT.  The main error is that a pragmatic 
smoothing function leaves a little high-frequency information in the 
FT plane, which is confused with information from the next duplicate 

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm�


piece of FT space.  This confusion is called aliasing. It can be 
suppressed by using a fancier smoothing function, or by increasing 
the density of sampling points (pushes the FT tiles farther apart), but 
both fixes cost computing time 

 

A more or less complete radio interferometer 
Let’s mix and match components and build a radio interferometer.  
We want to measure the E field at two separated pieces of ground, 
and then correlated them. 

So first the collection, with an antenna.  This may be fixed conductor 
(e.g. a dipole) or a steerable, often parabolic dish (collector).  These 
have the advantage of high sensitivity in a specific direction, but are 
more expensive.  Often high frequency systems have steerable 
dishes, and low frequency systems have fixed dipoles. 

In very large modern telescopes like LOFAR, the individual antennas 
are simple dipoles, but groups of the dipoles are combined together 
as phased arrays to limit the field of view and lower the data rate of 
transmission.  Phased arrays are complicated and expensive but 
offer great advantages in flexibility and speed over physically steered 
arrays. 

Then you want to bring the signals to a common point.  Mirrors etc 
are a pain, so this is usually done by bringing the signals via wires or 
coax cables or wave guides.  At very high frequencies these do not 
work very well, so it is common to reduce the signal frequency by 
heterodyne mixing to a lower frequency.  If we want the final 
correlation to be phase stable, it is necessary for the mixing signal 



(local oscillator) to be phase stable.  This is done in a geographically 
local system (not VLBI) by generating a single, relatively low 
frequency, signal at a central point, then transmitting it to the 
antennas, then creating a high frequency signal with a phase stable 
multiplier. 

There are several important technical limits on signal transmission: 

1. Little loss of signal or addition of noise. 

2. Bandwidth: needed for good S/N; ~1 GHz for electronic 
transmission, say 10 GHz for optical fibers, 1 PHz for mirrors 

3. Phase stability w.r.t. physical or atmospheric changes. 

Delay Lines: 

After transmission, the signals from the telescopes are brought to a 
central point, amplified(!), and prepared for replication and 
correlation.  A crucial step at this point is the insertion of delay lines.  
These bring the difference in path length from the various telescopes, 
including the geometric delay on the sky, to almost zero. 

Why? The typical delay,OPD, is of order B, the baseline, which is 
many wavelengths.  The delay also varies rapidly with time, (how 
rapidly?), and “slowly” with position.  From the FT correlation theorem 
that we proved earlier, the strength of the correlation is proportional 
to FT(Power Spectrum; OPD), which begins to drop when 

1>∆ν*OPD , where ν∆  is the bandwidth. 

We could avoid any decorrelation by choosing a very small 
bandwidth, but this has a bad effect on our signal/noise result.  So we 
reduce this problem by inserting a delay line for each telescope that 
cancels the OPD, at one specific point on the sky, known at the 



tracking center.  This delay correction must track the change of delay 
with time.  The gradient of delay with position, the notorious UV 
coordinates around the tracking center, is not changed by this 
operation, so the whole image synthesis business still works.  If the 
field of view is large, the OPD at the edges can violate the above 
criterion, leading to a loss of correlation.  This is technically known as 
delay attenuation or delay beaming.  If this is a problem you have to 
decrease the bandwidth, for example by breaking the total band up 
into subbands. 

Radio delay lines were first constructed with switchable pieces of 
coax cables, but this is messy, inflexible, and the switches add 
difficult to calibrate changes in transmission.  Modern delay lines are 
digital.  The signal is gain stabilized, digitized or sampled (see below) 
with an ADC (analog digital converter), and introduced into a large 
bank of shift registers.  The sampling rate, and time accuracy of the 
shifting are driven by the required bandwidth.  In current radio usage 
this often lines in the range of a few MHz to a few GHz. 

Replication and Correlation: 

We now figure out how many telescope pairs we wish to correlate, 
and break up the incoming signals into enough copies to do this.  
Since this is all digital processing it is fairly straightforward.   

Then we correlate the signals.  In theory is consists of multiplication 
and averaging.  Because full fledged digital multipliers are slow and 
complicated, a simplifying approximation is used:  the signals are 
brought to a standard level relative to the noise, and 1-bit sampled, 
i.e. either positive or negative.  The samples from two telescopes are 
“multiplied” by a very simple circuit called an exclusive OR (XOR) 



circuit (1*1=1,0*1=0,1*0=0;0*0=1), and then accumlated.  This can 
easily be done at multi GHz rates. 

HOMEWORK: What is the loss in signal/noise ratio that occurs 
with 1-bit multiplication versus true multiplication?  Assuming 
that the instantaneous S/N of the incoming signals is very small. 

 

In practice it turns out to be cheap enough to use slightly more 
complicated multipliers (1.5 or 2-bit) that reduce the noise somewhat 
relative to a 1-bit multiplier. 

Complex correlation 

A direct multiplication of the incoming signals yields something 
proportional to the cosine of the OPD.  If we want to do a true FT to 
get an image, we also need the sine component.  This is done by 
setting up a 2nd correlator system with a 4/λ  delay on one telescope 
of each pair.  Note that this only works if the bandwidth is relatively 
limited, otherwise 4/λ  is not well defined. 

Note also that for the imaging FT to work right you need to get the 
phases of the correlations right, as well as their amplitudes.  This 
means that you have to keep phase/time stability of the entire 
receiver, transmission, delay, and correlator systems accurate to 4/λ  
or better. 

Spectral Line Correlation: 

In many astrophysical cases we are also interested in the spectrum 
of the signal, often as a function of position.  Can we arrange our 
interferometer to deliver spectra?  This may also be necessary to 
decrease the delay limitations on field-of-view.  In the optical/ir this is 



done, rather crudely, by inserting prism/grating hardware before the 
correlator.  In digital radio systems this can be done by inserting 
variable (multiple) delay lines, so that the correlation is measured at a 
range of delays.  The correlation as a function of frequency can be 
recovered by an addition Fourier Transform. 

 

A Note on Calibration: 

Many of the components I have described affect the amplitude and 
phases of the signals delivered to the correlator.  Generally these 
distortions cannot be calculated directly from the component designs, 
and most vary with time.  If they are not known, however, they 
prevent accurate image construction.  Usually we only try to specify 
in the design that they change "slowly" with time and we measure the 
end-to-end distortions of the atmospheric, reception and transmission 
train by observing calibration sources of known strength and 
position.  We need to observe them more frequently than the rate of 
change of the component characterization. 

A Second Note on Calibration: 

It often turns out that this is not possible for physical reasons, e.g. we 
cannot switch the antennas from source to source that quickly.  A 
partial solution is self-calibration in which we identify some 
redundancies in the signal system and use these to constrain the 
instrumental behavior.  I will discuss these more completely in the 
sections on data reduction. 

Pretty Pictures: 



 

 



 

 

 
 

 

 

 



VERY LONG BASELINE INTERFEROMETRY (VLBI) 

see also:NRAO VLBI page 

 

This is a magical/mysterious extension of radio interferometry where 
the IF (intermediate frequency) signals from the various telescopes 
are not brought together directly, but recorded on magnetic tape and 
brought together days-to-weeks later for electronic correlation.  The 
advantage is extreme high resolution:for example if we observe at 
3mm on a baseline of 10,000 km the resolution is 3.10^-10 radians 
(300 picoradians, or 6 microarcsec).  The disadvantages are high 
operational complexity and a limited number of targets because of 
low surface brightness sensitivity. 

VLBI stations: 

VLBI  -- Craig Walker
Synthesis Imaging Summer School 2002
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GLOBAL VLBI STATIONS
Geodesy stations.  Some astronomy stations missing, especially in Europe.

 
 

Pretty VLBI pictures: 

http://www.aoc.nrao.edu/events/synthesis/2002/WalkerVLBI.pdf�


3C120 superluminal motion 

m87movie 

VLBI  -- Craig Walker
Synthesis Imaging Summer School 2002
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MOTIONS OF SGRA*

Reid et al. 1999, Ap. J. 524, 816

Measures rotation of the Milky Way Galaxy

0.″0059±0.4 / yr

 
 

Special issues of VLBI observing: 

o Telescopes are often not specifically built for VLBI usage 

o To get delay right to (say) 100 nsec is not easy:   

There is no synchronisation signal sent to all telescopes so we 
use very accurate clocks (hydrogen masers) at each site and 
synchronize one to the other using e.g. GPS.  The maser 
signals are written on the tape along with the data.  The true 
delay is found empirically by trying to find fringes on calibration 
sources and tracking the delay and delay rate, and 
interpolating between calibrators. 

http://www.iaa.es/~jlgomez/Jose_L._Gomez/3C120_images_movies.html�
http://www.aoc.nrao.edu/~cwalker/M87/index.html�


 
o Delay depends on distance and orientation between stations, to 

mm accuracy.  If one has a reliable set of calibrators, this 
information can be used to measure the positions of the stations 
including continental drift, earth rotation etc. 

o VLTI determination of telescope positions and quasar positions 
help define the International Celestial Reference Frame and the 
International Terrestrial Reference Frame. 

See also: IERS home page, US Naval Observatory ICRS page 

http://www.iers.org/�
http://aa.usno.navy.mil/faq/docs/ICRS_doc.php�
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