
Chapter 2 

Let’s go from a lens to a Young style interferometer.  Take a 
square aperture of size X.  For now we will only worry about the 
x-direction.  The electric field point spread function in the image 
plane is: sinc(kXα) where α=p/f. Let’s move it to the left a distance 

B/2.  From simple FT behavior this multiplies the E-field by 
exp(ikBα).  This creates no visible change in the image, which is 

proportional to sinc^2, because we only observe the absolute 
square of the complex E-field.  But now we add a similar square 
aperture at –B/2.  The E-fields add to give 2 cos(kBα)sinc(kXα) 
 

 
 

For the normal case B>>X, you see the very find fringes on top of 
the larger scale response to the individual holes.  This is very 
characteristic behavior of optical systems, which can be derived 
from the convolution theorem of Fourier Transforms: The FT of a 
convolution is the product of the FTs of the individual functions, 
and visa versa. So the response of the interferometer to a point 
source—the so called point spread function (psf)—is the product 
of the cosine wave of the interferometer times the psfs of the 
individual subapertures. 
 
The next step in our construction of an interferometer is to 
remove the lens.  If the holes are small relative to their spacing, 
the lens-induced phase shift across the hole is small and can be 
ignored.  So we can just ignore the virtually expensive lens in 
front of the interferometer. 
 
What we have computed so far is the response to an on-axis 
point source.  Suppose the point is off-axis at an angle β.  Then 



the electric field in the aperture plane will be proportional to 
exp(ikX β).  From another FT theorem, if you shift a function you 

multiply the FT by an exponential, and again visa versa.  This is 
actually a special case of the correlation theorem.  So the 
displacement of the source on the sky yields an exponential 
phase ramp in the aperture plane, and again a shift in the image 
plane, thankfully. 
 
 

Electric Fields,  Power,  and Correlation 
 
We don’t measure the electric field in the image plane, but its  
average square, the received power, which in the case of two  
small holes looks like Sinc^2*cos^2…  For more complicated  
apertures (remember the Besel Functions) we remember from  
Fourier transformations that the FT of an absolute square is  
the autocorrelation function of the FT itself. Thus the power psf  
is the FT of the autocorrelation function of the aperture pattern. 
The square of a J1(x)/x function is known as an Airy function, and 
is the FT of the autocorrelation function of a circle. 
 

Normally we cannot measure the electric field directly, because it 
changes too fast, even at radio wavelengths.  We normally 
measure the power or something related to the power.  So let’s 
look at this a little more carefully. We will ignore the single 
aperture parts of the psf, i.e. consider a very small aperture, and 
consider only the sinusoidal part at positions p.  The intensity I is 
the square of the sum of the electric fields from the two pathways. 
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Where f is the phase angle between E1 and E2. The high 
resolution  part of this signal is the last term which oscillates like  
cos (kBα) while the first two terms represent the total power 

coming through the 1
st
 and 2

nd
 slits.  These may contain very 

large terms due to sky radiation that have nothing to do with the 
target, so it would be nice to get rid of them.  We can do this if we 
have a Correlator rather than a detector.  A correlator measures 
the average product of two signals: 
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So in the end I can throw away my entire optical system and 
substitute a correlator that takes a piece of the E-field behind 
each hole and multiplies them to find the correlated flux: 
C=Scos(kD) where S is the total flux of the (point) source, and 

D is the difference in travel distance from the source to the 
receivers, known as the Optical Path Difference (OPD).  
 
If n

  is a unit vector toward the source and B

is the vector 

connecting the two receivers, then BnD


 .  Note that the 
correlated flux does not depend on where the receivers are 
placed on the ground, but only on the direction and distance of 
separation.  For radio interferometry, the correlation is actually 
measured directly by digitally multiplying the electronic signals 
from the two antenna at frequencies up to ~1GHz.  I will describe 
this in more detail in a later lecture. In optical/infrared 
interferometry, where quantum physics plays a role, you cannot 
do this multiplication directly.  Then the E-field product is 
recovered by splitting the signals, forming the sum and 
difference, squaring each (i.e. using a power detector), and 
subtracting: 21
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to disappear requires very accurate balancing of the two squaring 
devices. 



Correlation, coherence, and extended sources 

Now let’s consider what happens if we have more than one 
source of radiation on the sky.  Then antenna 1 receives not only 
electric field E1 from one source but also, say, F1 from the other 
source, with similar E2 and F2 at the other receiver.  Then the 
formulas for I and C should contain complicated terms like: 
 
 
That is, besides the sum of the correlated fluxes from each of the 
sources separately, we get complicated nonlinear cross terms. 
This would be very messy, but fortunately astronomical sources 
are incoherent, that is, the phase difference between two 
unrelated sources is never completely constant, but drifts quickly 
or slowly with time (to be described later).  So a term like  
actually shows up as  
where φ is a randomly drifting phase difference.  Then these 

terms all average to zero and can be ignored.  This would not be 
true if there were extended coherent sources like lasers on the 
sky. 
 
So, surprisingly or not, the correlated flux from the whole sky, or 
at least that part of it that our receivers see, is the sum of the 
fluxes from all the individual parts of the sky; in the end the 
powers add rather than the electric fields.  This can be written 
symbolically as: 
where )(nI

  is the intensity as a function of position on the sky. 

This looks sort of like a Fourier Transform, but not quite.  The 
cosine term is actually a complicated non-linear term of the form 
cos(kB cos(β)) where β is the angle between n

  and B

.  As a 

function of actual position on the sky, say RA and dec, this is 
quite complicated.  On the other hand, the individual receivers 
are usually only sensitive to radiation from a small piece of sky, 
so the equation for the OPD can be linearized into: 
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where D is the OPD, and L is the distance relative to a reference 
position Lo. (U,V) are called the “UV-coordinates” of the particular 
baseline and reference position.  For measurements with a small 
bandwidth, like many radio observations, the wavenumber k is 
absorbed into the definition of U and V, so these are measured in 
wavelengths rather than meters. 
 
Ideally, if we were smart enough to design truely complex 
correlators, that measured both the cosine and sine terms in the 
integral, we could determine the complex correlated flux as: 
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 which looks exactly like a Fourier 

Transform. Can you think of a way of building a complex 
correlator? 
 
In any case, we have now more or less constructed a complete 
interferometer.  If we measure the correlated flux at many 
different telescope separations U then we can transform the 
measured fluxes back into the L plane and reconstruct a picture 
of the source.  This is called Aperture Synthesis.  Moving the 
telescopes around may be difficult or expensive, but part of the 
problem is solved by keeping them fixed on the ground and 
letting the world rotate and change the UV coordinates relative to 
the source.  This is called Earth Rotation Synthesis.  A large part 
of the skill of experienced interferometrists is to reconstruct 
images when the measurements in the UV plane are not 
complete. 
 
Exercise: Suppose you have a baseline of length B pointing 
toward a direction on the sky defined by its declination B  and 

hour Angle:HA.  You are observing around a reference point Lo 
defined by its right ascension and declination, ss  , .  What are U 

and V? 
 
 
 
 



 
 
 


