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Abstract. The Large Scale Structure battle as seen by one of the foot-
folk, followed by some remarks on things vaguely seen through the gun-
smoke.

1. After the battle

When the battle is over, the generals begin to write their memoirs. These
memoirs are full of lies, because the generals – who are almost always among
those who survive the war – are worried about their place in history.

When a soldier writes memoirs, these are not very reliable either, because
a soldier sees only a small part of the field, has a shortage of everything, and is
mostly scared silly.

I am a soldier who served under the great Jan Oort, whose hundredth
birthday we commemorated last April. I have seen only a small part of the
cosmology battle and anyway I am mostly campaigning in a different corner of
the field now. So you can imagine my pleasant surprise when Vicent Mart́ınez
invited me to speak here. I am going to talk about three things: first, my
past involvement with the theory of large scale structure; second, my present
involvement with this; and, third, some remarks about what I think is the biggest
enigma today, as before: the cosmological constant.

2. Between Varenna and Leiden

Just as Bernard Jones did yesterday, let me say a few words about the way
in which I got involved in cosmology. I studied theoretical physics in Utrecht
under Tini Veltman, who won the Nobel Prize in physics last year, together with
Gerard ’t Hooft. Because job prospects in that field were very bad, I also did a
degree in astronomy. I graduated in 1969; Oort invited me to Leiden. In those
days, as opposed to the strictly regimented pseudo-industry that astronomy has
become today, picking a thesis subject was up to the individual. Oort’s colleague
Van de Hulst told the story that he once spoke with the physicist Gorter, and
worried about choosing a subject. Whereupon Gorter said: “Don’t worry, the
subject will pick you.”

And so it was. Already in Utrecht I had become interested in the formation
of structure in the Universe, from stars to galaxies, and my participation in
the Varenna Summer School (1968; Sachs, 1971) which Bernard mentioned was
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extremely important. There I met not only Bernard Jones, but also Kip Thorne,
Virginia Trimble, George Ellis, Joe Weber, and Jürgen Ehlers. To give you an
idea of the atmosphere: at the end of Ehlers’s lecture series, the students gave
him a standing ovation, and we did not stop clapping until he had left the chapel
where the lectures were being given. But the most important person there (for
me) was Martin Rees, after Oort the most influential person in my scientific life.

3. Leiden Style

When I got to Leiden, Oort gave me a paper to read that he had written on
the origin of the rotation of galaxies. A week later he asked me and another
graduate student – whose name I will keep secret – into his office, and asked
for our comments. I told him that I thought the paper was no good, because it
violated the laws of hydrodynamics. The other guy seemed to be frozen solid, but
I was too ignorant to be afraid. That sometimes happens to soldiers. Moreover,
being Veltman’s student, I had acquired a fearlessness that was quite real, even
though it was not warranted by my stature. Oort looked at me across his large
desk, and asked “Well, do you know how to do it, then?” And I said “Yes,
professor.” Whereupon he stood up, fixed me from under his bushy eyebrows,
and said “Then I will be looking forward to seeing your results.”

4. The Oort Constants of the Universe

The reason that I was so over-confident was, that I had learned hydrodynamics
during my stay at Utrecht, under the guidance of Van Bueren and Kuperus.
I had become totally fascinated with this trade, wrote a master’s thesis on
nonlinear magnetohydrodynamic wave coupling, and was eager to apply this
wondrous toy on the largest scales I could imagine. I was interested in big
things, because it was clear that the formation of individual galaxies and other
small stuff was likely to be dominated by radiative phenomena, and that the
clean interplay between gravity and hydrodynamical effects, such as pressure
and dissipation, would only be found beyond megaparsec scales.

That is true, even to this day. The giant simulations about which we hear so
much, almost all use the technique of smoothed-particle hydrodynamics (SPH),
which is a very superficial approximation of hydrodynamics. Leon Lucy in-
vented it for the specific purpose of (binary) star formation, and for this it was
an appropriate and indeed clever approximation; but its excessively dissipative
behaviour is, and always will be, utterly unsuitable for resolving true hydrody-
namical details such as shocks and other discontinuities. And the cosmic SPH
models contain no radiation at all; so I think that these monster computations
do not deserve to be taken nearly as seriously as most people take them.

So, more than in individual galaxies – which was Oort’s approach – I was
interested in really big stuff. I knew that the shape of self-gravitating things
would be highly asymmetrical, because of the following effect. Imagine that we
simplify the formation of galaxies in an infinite Universe to the formation of
just two objects of equal mass, forming out of a spherical volume. Cut a sphere
with radius R out of an infinite self-gravitating Universe, and pack the matter
from that sphere into two equal point masses M/2, placing them symmetrically
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on opposite sides of the centre of the evacuated sphere, a distance r from the
centre. What is the net force on the masses? The points attract each other with
a force

Fin = − GM2

4(2r)2
(1)

The void acts as a negative mass with constant density, so that each mass
experiences a force

Fout =




GM2

2R3 r inside the cavity

GM2

2r2
outside the cavity

(2)

(actually, in Newtonian gravity this pseudo-repulsion is due to a surface term in
the potential, which is the first cousin of the cosmological constant, but let that
pass). The net force is zero if

r =
1
2
R (3)

If the condensations are closer together than this, they will start to fall towards
each other; if they are farther apart, their mutual attraction is not strong enough
to overcome the effects of the ‘sea’ of matter surrounding them. Consequently,
I expected that the pieces of a perturbation that are close together will collapse
onto each other faster than the faraway parts, and that thereby the collapsing
shape would become more and more irregular. On the other hand, an irregular
void (from which the condensing matter came) would have to become more and
more spherical in the course of time.

Oort had given me a picture of the Shapley-Ames survey of galaxies, dating
from 1933 (remember, this was in 1969!) and had pointed out the elongated
shape of the arrangement of galaxies in the direction of the Virgo cluster. This
seemed to be in accord with the above argument, but more detailed analysis was
necessary. It seemed natural to study the formation of asymmetric objects by
means of the deformation tensor, i.e. the kinematic field induced by a velocity
field vi:

Qij ≡
∂vi
∂xj

(4)

This was all the more natural in the Leiden environment because Oort himself
had used this approach when studying the motion of stars; in cylindrical coordi-
nates, the deformation quantities reduce to the ‘Oort Constants’. The tensor Q
can be decomposed into irreducible parts, yielding a ‘generalized Hubble law’:

D ≡∑
iQii (diagonal, expansion) (5)

Rij ≡ 1
2(Qij −Qji) (antisymmetric, rotation) (6)

Sij ≡ 1
2(Qij +Qji) (symmetric, shear) (7)

In the case of the Oort Constants, the divergence D is the ‘K term’, which is
negligible because the Galaxy doesn’t expand; the other two are the famous A
and B constants. In the Universe, the ‘K term’ is the Hubble expansion, which
totally dominates the other two. But on the basis of the argument leading to
Eq.(3) I expected that in a fragmenting universe, the ‘Oort Constants of the
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Universe’, R and S, would become very large. Oort, in turn, was intrigued by
R, because of his interest in the origin of the rotation of galaxies, with which
(as I indicated above) our acquaintance began.

5. Ellipsoids

At the time, I didn’t know any better than to compute numerically the gravita-
tional collapse of homogeneous ellipsoids. The results confirmed my supposition
that the primary collapsing structures would be highly asymmetrical. By now,
we have reached 1970, and you may wonder why I do not mention the superb
Russian work on this subject. The fact of the matter is, that I was ignorant
of it. I know that this is no excuse – stupidity never is. Only later did I meet
the great Yakov Barisovich Zel’dovich, and some of his great students, such as
Igor Dimitriyevich Novikov. At the time, I wasn’t yet aware of the work by
Zel’dovich and his co-workers, an omission which I came to regret.

However, I had found a nice paper by Lin, Mestel & Shu (1965), who had
discovered a much more general version of the argument leading to Eq.(3). The
potential Φ near any point (x, y, z) of a self-gravitating medium can be written
as

Φ =
∑
ijk

aijkx
iyjzk (8)

Near a density maximum, the leading terms are the quadratic ones, which, by
a suitable orientation of Cartesian coordinates, can be written as

Φ = Ax2 + By2 + Cz2 + · · · (9)

Neglecting terms of higher than second order, this is the potential of a homoge-
neous ellipsoid. That should be no surprise: the smallest closed contours in any
topographical map are ellipses.

The collapse of high-density regions can thus be approximated by consider-
ing the homologous motion of ellipsoids. Consider, then, the Newtonian collapse
of a homogeneous ellipsoid. Suppose that a particle within such a mass distribu-
tion were initially located at (a, b, c), and that at some later time t it had moved
to the point (aX(t), bY (t), cZ(t)), then the density ρ would evolve according to

ρ(t) = ρ0/X Y Z (10)

The equations of motion for the scaling functions X, Y , and Z are found as
follows. The potential Φ obeys

Φ = k(αx2 + βy2 + γz2) +O(3) � k(αa2X2 + βb2Y 2 + γc2Z2) (11)

and Poisson’s Equation demands that

k(α + β + γ) = 2πGρ (12)

The components of the gravitational force are −∂Φ/∂x = − 1
X ∂Φ/∂a et cycl., so

that the equations of motion become

− 1
X

d2X

dt2
= 2πGρα ; − 1

Y

d2Y

dt2
= 2πGρβ ; − 1

Z

d2Z

dt2
= 2πGργ (13)
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where the functions α, β, and γ are defined as

α = abc

∫ ∞
0

ds

(a2 + s)∆
et cycl. (14)

in which
∆2 ≡ (a2 + s)(b2 + s)(c2 + s) (15)

Here a, b, and c are identified with the axes of the ellipsoid.
Now comes a crucial observation: without loss of generality, one may order

the axes according to a > b > c, in which case α < β < γ, so that

− 1
X

d2X

dt2
< − 1

Y

d2Y

dt2
< − 1

Z

d2Z

dt2
(16)

Consequently, the axial ratios a : b : c always increase with time, and slight
initial asphericities are amplified during the collapse. This secular increase of
aspherical perturbations provides an explanation for the filamentary appearance
of megaparsec structures. Although the authors did not look beyond galactic
scales, their theorem was eminently suited for megaparsec structures. For the
contraction described, the velocities inside the ellipsoid are linear functions of
position: the collapse produces a Hubble-type velocity field. Moreover, Poisson’s
Equation (12) implies that the potential function is always smoother than the
corresponding density distribution (in Fourier terms: the difference is two factors
of the wave number), so that the supposition in Eq.(9) is even better than one
might think.

I tried to find out if the collapse of elongated structures could be observed in
the Virgo cluster and the Perseus cluster. Oort was extremely skeptical of this.
During my thesis defense, he asked, in the formal manner which is customary
during these full-dress Dutch occasions: “Mr. Candidate, you really maintain
that there are structures as big as 14 megaparsec?” To which I could only
respond, in similarly formal fashion: “Most learned opponent, indeed I do.”
Oort shook his head. He did not believe in such gigantic things. Nor did
he believe in Zwicky’s dark matter, which provided an indication of enormous
amounts of stuff lurking under the visible surface. In a way this was strange,
because Oort himself had found evidence for dark matter in our Galaxy. I did
accept its existence; perhaps this was because of Zwicky’s angry no-bullshit style,
which I secretly admired. Remember that Zwicky was a guy who had built his
own Schmidt telescope, long before other people inderstood the importance of
that optical design.

Oort thought about galaxy clusters as he did about star clusters such as the
Hyades, on which Van Bueren did remarkable work under Oort’s guidance. After
a bit of to-and-fro, he allowed me to publish the Virgo cluster stuff (Icke 1973),
but he forbade publication of the Perseus cluster material (Fig.1). “That is not
up to the Leiden standard,” he said. My difficulty was, that in those regions
where you can see the galaxies easily, the space density is high; therefore, the
velocity dispersion is high, and this makes it very difficult to observe the R and
S terms in Eqs.(6-7). You may imagine my chagrin when, many years later, it
turned out (in the work of Giovanelli & Haynes, 1985, 1991) that the Perseus
region contains a chain of galaxies even more spectacular than Virgo.
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Figure 1. The Forbidden Diagram: my 1970 interpretation of the
Perseus Cluster which was panned by Oort. This image was scanned
from a lantern slide; the original, which I drew by hand (no plotting
programs, and no draughtsmen working for grad students!) has been
lost.

6. The Voronoi Surprise

So much for my involvement with the early history of dark matter, which perhaps
I ought to call the dark history of early matter. I will return to this dark history
at the end of my talk.

Throughout these events, it had been obvious to me (because of Eq.(3)) that
there should be enormous empty regions in between the galaxy filaments. After
all, the Oort constants of the Universe showed that there must be zones of super-
Hubble expansion; and the galactic matter must have come from somewhere.

It was not until 1983, though, that I finally wrote this up (Icke 1984). During
an AAS meeting in that year, I was talking with Bernard Jones, Joan Centrella,
and Adrian Melott. C & M had just completed (1983) the first three-dimensional
hydrodynamic simulation of dark matter-dominated structure formation. They
were puzzled that the low density regions were so spherical, whereas the col-
lapsing structures were long filaments. Of course they knew that Zel’dovich had
emphasized the formation of ‘pancakes’ (blini), but these turned out to be hard
to find in their results.

And so, during coffee break, and in the same brazen manner with which I
had talked to Oort a decade before, I said that it was obvious: in order to avoid
nonlinearities and other complications that always occur in high-density regions,
we should view the development of structure in a selfgravitating pressure-free
medium by considering the evolution of the low -density regions. These are the
progenitors of the observed voids. The arguments presented by Lin et al. can
still be applied, except that the sense of the final effect is reversed: the < in
Eq.(16) must be replace by > if a, b, c are the axes of a void.

Because a void is effectively a region of negative density in a uniform back-
ground, the voids expand slightly faster than the average Universe, as a ‘su-
perHubble bubble’ while the overdense regions collapse. In the process, slight
asphericities of the voids decrease as the voids become larger. This I called
the ‘Bubble Theorem’, which explained the numerical findings of Centrella &
Melott, and Joan and Bernard persuaded me to write it up (Icke 1984). The
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proof holds strictly only on a non-expanding background, though this should
be no objection for structures which are much smaller than the region where
the collapse speed is approximately equal to the Hubble speed across the void.
Because |δρ/ρ| does not exceed unity in a void, the approximation will remain
good for a longer period, except, of course, near the outer parts of the voids,
where the matter gets swept up.

According to the above, voids are the dominant dynamical component of
the inhomogeneous Universe. One may think of the megaparsec structure as a
close packing of spheres of different sizes, out of which matter flows in a slightly
super-Hubble expansion towards the interstices of the spheres. Thus, the im-
portance of the Bubble Theorem is that it provides a specific physical mechanism
for producing the non-Poissonian matter distribution in the large scale Universe.
Moreover, it dictates a specific spatial arrangement, and predicts that matter
should collect only in the regions where the filaments meet.

Back in Leiden, I managed to get a brilliant young graduate student, Rien
van de Weygaert, interested in this problem. Since Rien was graduating in
mathematics as well as astronomy, he was very well placed for the next step. I
asked him to find out what such a collection of superHubble bubbles would look
like. In no time at all, he unearthed a paper almost a century old (Voronoi 1908)
that provided the answer: a collection of expanding spheres produces a unique
partitioning of space, called a Voronoi tessellation. Rien proceeded to give an
extremely complete treatment of this, including some remarkable ‘experimental
mathematics’ (Van de Weygaert & Icke, 1989).

Together, we studied the properties of this type of tessellation. We called
it ‘Voronoi foam’, which was perhaps an unfortunate choice because it led some
people to think that the walls of this tessellation join at angles of 120◦, which is
not the case at all. A Voronoi tessellation comes about as follows: given a set of
points in space, called nuclei. A Voronoi cell around a given nucleus is the set
of all points that lie closer to that nucleus than to any other.

Part of the fun is, that this requires a recipe for the distance d. Figure 2
shows a tessellation for the ‘Pythagoras recipe’

d2 = x2 + y2 (17)

A different recipe might be
d = |x|+ |y| (18)

which I call the ‘Manhattan distance’: it is the distance produced by an in-
finitely fine mesh of perpendicular streets-and-avenues. This recipe produces a
completely different tessellation (Fig.3), in which the cell walls occur only at
integral multiples of half a right angle.

There is no reason to suppose that space is anisotropic, so Eq.(17) applies (in
three dimensions, of course). The really special thing about the Voronoi model is,
that it demands a specific topological arrangement of the matter distribution.
There can be four and only four elements: voids (the superHubble bubbles),
walls (blini , pancakes), filaments, and nodes.

When I calculated the two-point correlation function of the ‘galaxies’ in a
Voronoi model in which points were allowed to migrate from voids, via walls
and filaments, to nodes, I found that the result looked remarkably like the re-
sults found from observed galaxy counts by Peebles (1980) and others. Rien
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Figure 2. Two-dimensional Voronoi tessellation using the Pythago-
ras distance recipe (17). The crosses indicate the cell centres. Each
Voronoi cell is the locus of all points which are closer to its centre than
to any other centre, where ‘closer’ is measured using some disctance
prescription (in this case (17)).

Figure 3. Two-dimensional Voronoi tessellation using the ‘Manhat-
tan’ distance recipe (18). Notice that this tessellation is not isotropic:
due to the absolute-value operations in (18), the preferential directions
of the coordinate system are in evidence. The cell walls are oriented at
angles which are multiples of 45 degrees; this may be useful in practical
applications.
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Figure 4. Two-point correlation of Voronoi vertices using the
Pythagoras distance recipe. From Van de Weygaert, 2000 (priv.comm.)

proceeded to compute the two-point correlation function of the Voronoi nodes
(Fig.4), which we supposed to correspond to the galaxy clusters. This showed
two remarkable things: first, that the amplitude of this correlation was larger
than that of the galaxies, as had indeed been seen in galaxy surveys but was not
understood at the time; second, that this function was a power law over a large
range of its argument, with an exponent of the order of -2, close to the value of
-1.88 that was observed. So we had found a way to make correlations from a
totally uncorrelated distribution of nuclei (centres of initial low-density regions).

Furthermore, the rise and fall of the Voronoi features can be calculated
exactly. The effective excess Hubble parameter H∗ in a Voronoi structure is the
same in all topological features. This is one of the cute properties of the Voronoi
model.

Let N be a nucleus, let P be the point where a Delaunay line (that is a
line connecting two nuclei, perpendicular to a wall) intersects a wall, let W be a
point in the wall, and let the angle WNP be called φ (Fig.5). If we indicate the
distance NP by a, the distance PW by b, and NW by c, then the velocity at W
is cH∗. The components perpendicular and parallel to the wall are

cH∗ cosφ = aH∗; cH∗ sinφ = bH∗ (19)

Thus, the excess velocity in any Voronoi feature is simply found by multiplying
H∗ with the length along the feature. This allows us to use the above formula
for N = 3, 2, 1, and 0.
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Figure 5. Geometry of the mass flow in a three-dimensional Voronoi
tessellation.

It is then easy to determine how matter is transferred from one Voronoi
feature to another. In the quasi-linear case, the Hubble parameter H∗ is pro-
portional to t−1/3, because the excess velocity increases as H∗ax = v ∝ t1/3,
and in the Einstein-De Sitter case the Universe’s scale factor a ∝ t2/3. The
power law dependence means that one may absorb H∗ into the time by defining
dθ ≡ H∗dt . Consequently,

θ = θr(t/tr)2/3 (20)

where tr is the time at which the Universe becomes transparent to radiation and
may begin to fragment. The constant θr is related to the amplitude δr of the
voids at decoupling; one readily finds that

3θr = δr (21)

The amount dm of mass lost in a dimensionless time interval dθ, in N dimensions,
is then

dm = −Nmdθ (22)

The mass gain is found simply by reversing the sign of the loss term of the
feature higher in the hierarchy. This gives the following equations for the mass
in voids, walls, filaments and nodes:

dmv

dθ
= − 3mv (23)

dmw

dθ
= 3mv − 2mw (24)

dmf

dθ
= 2mw −mf (25)

dmn

dθ
= mf (26)
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Figure 6. Growth and decline of the mass in the four types of Voronoi
features. The voids steadily (and quickly) lose mass, which ultimately
ends up in the nodes. Notice that, if we could observe the mass in the
various cosmological mass concentrations, we could determine the age
of the Universe by means of this graph.

These equations are simply solved by noting that the N -dimensional mass loss
equation has a solution of the type ψ exp(−Nθ):

mv = e−3θ (27)

mw = 3e−2θ(1− e−θ) (28)

mf = 3e−θ(1− e−θ)2 (29)

mn = (1− e−θ)3 (30)

If we call mh = mw + mf + mn the total mass of the high density regions,
while ml = mv + mw + mf is the mass in low density features, I find that

mh/mv = exp(3θ2/3)− 1 (31)

ml/mn =
(
1− exp(−θ2/3)

)−3
− 1 (32)

The time scale of the Voronoi growth can be related to the initial amplitude
of the perturbations. Both mass ratios can then be compared with published
galaxy surveys. This gives us a way to determine ‘what time it is’ in the sim-
ulations and in the Universe (Fig.6). The equations allow one to relate the
dimensionless time parameter θ to the cosmic time and to the redshift z at
decoupling:

θ =
1
3
δr(t0/tr)2/3(t/t0)2/3 =

1 + z

3
δr(t/t0)2/3 =

1 + z

3
δrτ

2/3 (33)

The scaling of the time is given by the initial amplitude.
Van de Weygaert and I have continued working on Voronoi models, revisit-

ing this mathematical beauty spot every now and then for refreshment. During
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Figure 7. Two-point correlation ξ(r) of the nodes of three-
dimensional Voronoi tessellations, by Van de Weygaert (2000,
priv.comm.) The lower sequence shows the ξ of the nodes (‘Abell
clusters’); the higher sequences show the ξ of those that are found in
higher and higher density peaks, in steps of one-half sigma. Two things
are clear: (1) the clustering amplitude steadily increases as higher and
higher density peaks are selected, (2) the shape of ξ tends to a universal
form, with logarithmic slope γ = −1.85.

one of these visits, Rien has discovered another remarkable property of the cor-
relation of Voronoi vertices that I wish to preview here. As I mentioned above,
the two-point correlation function of these vertices is rather close to what is
observed for clusters of galaxies. In order to see what the properties of the most
prominent mass concentrations would be, Van de Weygaert used the vertex dis-
tribution as a point process, from which he generated subsets by selecting the
high-density peaks. By picking out the peaks above 0.5σ, 1σ, 1.5σ, and so forth,
he obtains a set of point processes, the correlations of which can be studied as
before (Fig.7). As expected, the amplitude of the correlation function increases,
but the remarkable thing is that the shape of the function converges to a fixed
form. The exponent of the corresponding power law tends to a fixed value:
γ = −1.85± 0.05, surprisingly close to the observed value.

Although the two-point correlation does not prove this completely, the
strong suspicion is that the distribution of the high-density peaks in a field of
Voronoi vertices is self-similar. Van de Weygaert is now studying the higher-
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order correlation properties of these point processes to see if this hypothesis still
holds.

7. Modern Times

As Bernard Jones explained yesterday, the bad old days were remarkably bad in
some respects. Computers were rather primitive then. Today, I could reprogram
the chip in the GSM telephone in your pocket, and use it to solve equations of
motion fifty times faster than I did when I computed ellipsoid collapse for my
Ph.D. thesis.

After 12 years abroad I returned to Leiden and my life changed. Oort had
retired 14 years before that time, and my duties became different. He asked me
to survey the literature for him, and once a week he invited me into his office
for a discussion. You may gather that I still felt rather intimidated by this,
perhaps even more so than when I was a youngster who hadn’t yet collided with
his own limitations. Still, these were immensely valuable years, because I was
allowed to continue working in the personal, intimate style that always suited
me best. Until his death, the regular conversations with Oort sheltered me from
the sea change that was sweeping the field. For in the meantime, the research
landscape had changed beyond recognition. Not because of the questions we
ask, not even because of the wonderful answers we are beginning to get, but due
to the politics of science. What Bernard told you yesterday is entirely correct:
present-day research groups are too big, the money they use is too big, and they
are run by people who believe of themselves that they are correspondingly big.

I do not necessarily refer to observational astronomy. The enterprise there
is always big, it cannot be otherwise. Measured in today’s euros, we find a
canonical scale of expense: a hundred million is so little that it does not buy
you much; ten billion is too much for political reasons; so the state-of-the-art
money scale is always of the order of one billion (year 2000) euros. But also
the part of the field that used to be called astrophysics has become big; what
is worse, it has become big business. And I do not like big business. I happen
to believe that all truly important things came not from billion-euro businesses,
but from the few pounds of grey glop between the ears of individual people. It is
this feeling that was reinforced by Oort’s attitude, even though the Old Oak of
Astronomy (Chandrasekhar’s words in his condolence telegram) had managed
to get quite a few acorns out of the Netherlands Treasury.

So I have opted out. In karate, my favourite sport, if you reach a certain
stage, you abandon your black belt and start wearing a white belt again. So,
from now on, no more talk about the past: let’s face the future.

8. The Cosmological Constant

In my opinion, the most annoying – and the most important – question is: is
there a cosmological constant Λ, and if so, why, and why a particular value?

Compare this with classical mechanics. There, a gravitational potential
Ψ is not observable; only the gradient ∂Ψ/∂x has consequences. Similarly in
electrodynamics: the vector potential cannot be seen, it is the field tensor that
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is observable. Just so in QED; the photon field itself is not seen; its direct
consequences can be removed by the process of renormalization.

But the Einstein equations are different. In those, the analogue of the po-
tential is the metric tensor gµν , and it appears explicitly. This is tantamount to a
potential that can be ‘seen’ directly. In a static universe, it can be renormalized
away; in a dynamic universe this can only be done at one specific time. So Λ has
dynamical consequences, and because it is a proportionality constant to gµν it
represents a vacuum energy density. I believe that this is a peculiar remnant of
the way in which Einstein constructed his equation, namely by linking g00 to Ψ
and T00 to ρ in Poisson’s Equation. The bizarre thing is, that Poisson’s Equation
is a prescription for the potential, whereas Einstein’s Equation is taken as an
equation of motion because the matter in Tµν couples to gµν and its derivatives.
This is surely odd; in classical as well as quantum mechanics, the equation of
motion is connected to the potentials in such a way that only potential deriva-
tives occur, or (in the QED case) only the effects of virtual particles (with a
vertex at the both ends of the particle). This removes the absolute value of the
potential, or allows renormalization of the vacuum energy density terms.

Current fashion says that Λ has been observed. But when we consider its
value, something remarkable appears. In a phase plot of the universal expansion,
in which the time derivative da/dt of the cosmic scale factor is plotted against
a, we happen to live near the time when the curve reaches a minimum. That
is to say, ’round about this time the deceleration of the universal expansion is
just about being replaced by the acceleration due to the cosmological constant.
It is a crazy miracle that, at the time when we naked apes come climbing out of
the trees, these two effects should be nearly equally strong. I do not accept ‘an-
thropic’ arguments for anything, and certainly not for this. We cannot compute
the structure and the behaviour of even the simplest virus from first principles;
so why should I take arguments seriously that hinge on the presence of humans?

To me, Λ is a road sign, but I have no idea what is written on it, or even
in which direction it points. But I could make some wild guesses. These are
desperate times, and they call for desperate measures.

First, let’s say Λ = 0 after all. Astronomically this is hard. As Zel’dovich
would say, in his inimitable voice: “Hit is poossible, but hit is difficoolt.” More-
over, since Λ cannot be renormalized away (except in unbroken supersymmetry),
we can guess its value. From dimensionality we get

[Λ] = [sec]−2 (34)

Thus, dimensionally, Λ scales as the square of the Hubble parameter H. If m is
a mass scale (e.g. from QCD or whatever), then a corresponding length scale is
the Compton length

λC =
h̄

mc
(35)

The corresponding mass density is

ρ =
m

λ3
(36)

and therefore
Λ = Gρ = G

m

λ3
= m4c3Gh̄−3 (37)
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Employing the Planck units

mP ≡
√
h̄c

G
; tP ≡

√
h̄G

c5
(38)

this can be written as

Λ =
(

m

mP

)4

t−2
P (39)

Using commonly accepted values, and taking for m the largest mass scale known
to exist on the particle level, the ratio of Λ over the square of the Hubble
parameter turns out to be 10118. Observers tell us that this number is actually
about 1. So, either Λ = 0 due to some unknown mechanism, or we always have
Λ ≈ H2 due to some equally unknown mechanism.

If the latter proportionality occurs, we must either have Λ evolving with H,
for which there is not a shred of theoretical underpinning; or else H must be a
true Hubble constant, for which there is not a shred of astronomical evidence.
But let me persist: if Λ ≈ H2, then we can use the connection of H with cosmic
time, H ≈ 1/t, to write (

m

mP

)4 (
tP
t

)2

≈ 1 (40)

which means that the mass m, which now plays the role of an absolute ‘vacuum
mass scale’ must obey

m = mP

√
tP
t
≈ 10−7 me (41)

at the present time. Do we have a candidate particle with one-millionth of
the mass of the electron? That is unknown, because its visibility depends on its
interactions, which are yet more speculative than the above. And even if Eq.(41)
were valid, it would run into difficulties at very early times. If we equate the
Compton length of m to the horizon radius,

h̄

mc
=

c

H
(42)

one immediately derives

m = (HtP )mP = mP
tP
t

(43)

This implies that before t ≈ tP , the mass m would be smaller than this limit,
so that its Compton length would be bigger than the local horizon.

The Universe is made of particles, space and time. Since Einstein we know
that spacetime is real stuff. But what is it made of? If spacetime is somehow
made of particles (whatever those are), how does a photon propagate, i.e. inter-
act with whatever it is that spacetime is made of? How can a graviton, which
presumably is a spacetime structure, propagate through space and time? In
general: if space has microstructure, what precisely does it mean to say that
a particle moves through space? The answer to this question must somehow
be related to the old chestnut: why don’t particles expand with the Universe?
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Figure 8. My installation in the entry hall of the J.H. Oort Building
in Leiden, showing a portrait of Jan Oort at 80 years, flanked by images
of the Crab Nebula, Comet Halley, and a hydrogen channel map of
the Milky Way. The streaks on the left are water damage due to
construction flaws in the new building.

The most elementary quantum relations, the De Broglie conditions, say that en-
ergy is proportional to frequency and therefore inversely proportional to length.
From the redshift we know that the quantum length of photons couples directly
to the scale of the Universe, but then why doesn’t the Compton length do the
same?

9. Conclusion

So much, then, for my ramblings on “Modern developments in historical cosmol-
ogy.” Historians put a lot of emphasis on the published literature. But for me,
history is what actually happened, rather than what found its way into print.
Even the events in a small corner of the field can be totally absorbing for the
soldier who happens to be fighting there.
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When the battle is over, the generals begin to write their memoirs. But in
science, the battle always goes on. Moreover, there is not really a fight. It is
a quest, a journey, and even though the old generals can be very nasty to each
other, it is rare for anyone to be seriously hurt.

Which brings me back to Jan Oort. I am working in a brand-new building
in Leiden that bears his name. I designed a work of art for the entry hall (Fig.8).
The Jan Hendrik Oort Building was ‘designed’ by a modern architect, the sort
of person who, as they say in American politics, is a major-league *bleep*. So it
is leaking on all sides, and even the walls are literally falling down, three years
after its construction. I think that this is emblematic of big, modern science,
and it makes me deeply sad that this is so.

Therefore, in defiance, I dedicate this writing to the memory of that great
man who was born 100 years ago, last April. After all, Oort never wrote his
memoirs.

He just wrote history.
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